
 

 

 
 

 

 
 
 

 
 
 

 

 
 
 
 
 
 
 
 
 
 

  

APPROVED: 
 
Paolo Grigolini, Major Professor 
Gary A. Glass, Committee Member 
Duncan Weathers, Committee Member 
Yuri Rostovtsev, Committee Member 
Michael Monticino, Interim Chair of the 

Department of Physics 
Su Gao, Dean of the College of Science 
Victor Prybutok, Dean of the Toulouse 

Graduate School 

APPLICATION OF STATISTICAL PHYSICS IN HUMAN PHYSIOLOGY: 

HEART-BRAIN DYNAMICS 

Gyanendra Bohara 

Dissertation Prepared for the Degree of  

DOCTOR OF PHILOSOPHY 

UNIVERSITY OF NORTH TEXAS 

August 2018 



 

Bohara, Gyanendra. Application of Statistical Physics in Human Physiology: 

Heart-Brain Dynamics. Doctor of Philosophy (Physics), August 2018, 98 pp., 1 table, 34 

figures, 117 numbered references.     

This dissertation is devoted to study of complex systems in human physiology 

particularly heartbeats and brain dynamics. We have studied the dynamics of heartbeats 

that has been a subject of investigation of two independent groups. The first group 

emphasized the multifractal nature of the heartbeat dynamics of healthy subjects, whereas 

the second group had established a close connection between healthy subjects and the 

occurrence of crucial events. We have analyzed the same set of data and established that 

in fact the heartbeats are characterized by the occurrence of crucial and Poisson events. 

An increase in the percentage of crucial events makes the multifractal spectrum broader, 

thereby bridging the results of the former group with the results of the latter group. The 

crucial events are characterized by a power index that signals the occurrence of 1/f noise 

for complex systems in the best physiological condition.   

These results led us to focus our analysis on the statistical properties of crucial 

events. We have adopted the same statistical analysis to study the statistical properties 

of the heartbeat dynamics of subjects practicing meditation. The heartbeats of people 

doing meditation are known to produce coherent fluctuations. In addition to this effect, 

we made the surprising discovery that meditation makes the heartbeat depart from the 

ideal condition of 1/f noise. 



 

We also discussed how to combine the wave-like nature of the dynamics of the 

brain with the existence of crucial events that are responsible for the 1/f noise. We showed 

that the anomalous scaling generated by the crucial events could be established by means 

of a direct analysis of raw data. The efficiency of the direct analysis procedure is made 

possible by the fact that periodicity and crucial events is the product of a spontaneous 

process of self-organization. We argue that the results of this study can be used to shed 

light into the nature of this process of self-organization. 
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CHAPTER 1

INTRODUCTION

This chapter intends to provide a general outline of the present dissertation. It gives a

general thought of comprehension about my research work and how the dissertation is sorted

out. It additionally clarifies some essential ideas that we have to know to comprehend the

entire work specified in this document. All of the studies to be discussed based on various

complex systems so we need to know about complex systems first.

1.1. Complex Systems

A complex system is neither a perfectly ordered nor a chaotic system. It is actually

an intermediate condition between them. If the system is perfectly ordered or chaotic,

then it is easy to formulate them numerically and the future is deterministic. However,

in most complex systems mathematical formulation isn’t simple and what’s to come isn’t

well known. We have to follow a probabilistic approach to forecast the future. A unified

definition of complexity is not yet well established. But there is common agreement between

investigators that a complex system is a system which comprises of an extensive number of

particles, components or constituents and the interaction between them generates nonlinear

dynamics which is frequently portrayed by a power law distribution.

(1.1) ψ(τ) ∝ 1

τµ

Where ψ(τ) is the waiting time distribution (WTD), τ is the distance between two consec-

utive events of a nonlinear system and µ is the complexity index. A Complex system may

also be characterized by different scaling of self-organized and self similar patterns resulting

from the interaction between its constituents.

The essence of statistical physics is that it deals with the complex systems, which

exist everywhere. There are several examples of complex systems in the real world, e.g.,

the dynamics of Stock Markets, Earthquakes, Human Brains, Heartbeat dynamics, Internet
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networks, High- way traffic and etc. This dissertation is devoted to study of complex systems

in human physiology particularly Heartbeats and Brain dynamics. We recommend readers

[1, 2, 3, 4, 5] for more insight about complex system studies.

1.2. History

“the Second Law of Thermodynamics only applies in an equilibrium state. And we've

now demonstrated the universe is in a radically non-equilibrium state. The universe is not

falling apart. Its enthralling, creative, participating. And life is a natural outcome of a

creative universe. We are part of an unfolding universe of increasing complexity in which

living things have co-evolved with other living things, mutually make livings together, are

functionally coupled and mutually unfolding ” Stuart Kauffman [6].

“ You cannot reverse the evolution of the universe, even theoretically. And you

cannot predict its future, except in terms of scenarios that depend on never-ending series of

crossroads in the chain of causality ” Ilya Prigogine [6].

Complexity is a very broad interdisciplinary subject. It covers many fields like

Physics, Biology, Chemistry, Sociology, Ecology, Geology etc. However, there is no long

history of complexity studies compare to other natural sciences. Theoretical modeling and

quantitative investigation of it has been ascending since 20th century with the advent of

advanced digital and analog computers. Complexity theory is also called Post Newtonian

Paradigm theory. As indicated by Newton our universe is steady and predictable, which we

know now no true any longer. Poincare in 1910 found that three body problem can’t be

solved, which implies that our universe is a million- body system in an out of equilibrium

condition, which is not predictable. Investigators in the 19th century likewise discovered

that the Second law of thermodynamics is only applicable to closed and isolated systems. It

doesn’t hold true for open systems. These two ideas drive the world to think toward complex-

ity theory [6]. Numerous inteligent individuals devoted their lives to the study of complexity.

Mainly, there were three uderlying foundations of complexity in 20th century [7]. American

Cybernetics shaped by splendid individuals in Mathematics ( Norbert Wiener, John von
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Neumann, Walter Pitts), Engineering( Julian Bigelow, Claude Shannon) and Neurobiology

(Rafael Lorente de No, Arturo Rosenblueth, Warren McCulloch) in 1946. Causality, feedback

networks, artificial intelligence, and communication were among its main themes. Similarly,

General systems theory, considered as an European counterpart to American Cybernatics

headed by Ludwig von Bertalanffy was evolving since 1920. Afterward, Von Bertalanffy,

moved to North America and formed the Society for General Systems Research (SGSR)

in 1956 at Stanford, with Ralph Gerard, Kenneth Boulding, and Anatol Rapoport. Sys-

tem dynamics is another foundation of complexity which is a branch of mathmatics which

established chaos theory along with the discovery of digital and analog computers.

1.3. Thesis Structure

The next chapter focuses on the fundamental theories, basic terms and some math-

matical concepts require to study complexity. Chapter 3 explains the analytical techniques

applied in our studies. In Chapter 4, we exhibit the outcomes from the analysis of heart-

beat data using Diffusion Entropy Analysis (DEA) and Multi-fractal Detrended Fluctuation

Analysis (MFDFA) techniques. Chapter 5 is devoted to meditation effect on heartbeat dy-

namics . Chapter 6 is based on brain dynamics with EEG data analysis . Finally, Chapter

7 ends with conclusion and future works .
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CHAPTER 2

FUNDAMENTAL THEORIES AND PROBABILISTIC APPROACH

This chapter concentrates on fundamental theories and some mathmatical concepts

in the study of complex systems. It likewise provides an intuitive idea regarding the char-

acteristics of complexity for the individuals who are new to this field. I attempt to make it

more tutorial for those who don’t have any mathematical background or knowledge.

2.1. General Characteristics of Complexity

The definition of complex system alongside its historical studies are already men-

tioned in Chapter 1. The properties of complexity are very essential to know while studying

complex systems. For that propose, general characteristics of complexity are described as

follows.

2.1.1. Nonlinearity

Complex systems are nonlinear in nature. In other words, the interactions between

its constituents don’t follow linear behavior. A Complex system contains a very large number

of constituents. The interactions and connectivity between the constituents are very high.

There is no direct relation between cause and effect like in other simple linear systems. That

is the reason we call this system a nonlinear system which is a key characteristic of complex

systems. This can produce sudden change from one regime to another regime. There is

a brisk transition from a stable to an unstable condition. We can see several examples of

nonlinearity in complex systems in our real life like human brain, heartbeat dynamics, stock

market fluctuations, political revolutions, internet networks etc.

2.1.2. Self-Organization

Self organization is another key feature of complexity. It arises due to the interactions

between the elements of a complex system. When the elements within the system interact,
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they organize themselves giving rise to self-similar sturctures or patterns. This is a sponta-

neous appearance of order from a bottom up process also referred to as global coordination

out of local level interactions.

The term ‘self-organization’ was introduced by one of the pioneers of cybernetics and

renowned psychiatrist William Ross Ashby in 1947 [8] . Later on, in 1977, Nobel laureate

Ilya Prigogene found “order out of chaos”, in other words ‘self-organization’, in many non-

equilibrium physical and chemical systems [9]. His discovery implies that the 2nd law of

thermodynamics is no longer applicable in open systems due to reduction of entropy in such

systems.

2.1.3. Self Similarities

When self-organization is achieved in complex sytems, we see similar patterns with

nice structures. These are also called scale-invarianct structures. Mathematically it can be

written as

f(λx) = λαf (x)

which is a homogeneous function of degree α. Where λ is an arbitrary real number.

This distribution follows the power law (see Eq.1.1).

2.1.4. Emergence

Complex systems show emergent behaviour. These behaviours emerge at the level of

the systems as wholes, as a result of interactions between the individual components in the

systems. This sort of behaviour cannot simply be derived by aggregating the behaviour of a

system’s components. The whole is more than the sum of its parts which is also known as

non-reductive property of complex systems. Most often the emergent behaviors of systems

are more intricate and less predictable than the behavior of their individual constituents.

Emergence is a necessary but not sufficient condition for a system to be complex. We are
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stating this because an ideal gas may show emergent behaviour but it is not a complex

system.

One example of a complex system whose emergent properties have been studied ex-

tensively is cellular automata [10]. In almost all cases, cellular automaton evolution is

irreversible. In a cellular automaton, a grid of cells, each having one of finitely many states,

evolves over time according to very simple rules. These very simple rules create complex

emergent phenomenon through the ‘interactions’ of each cell with its neighbor cells. Although

the rules are defined locally, they are capable of producing global behavior, for instance in

Conway’s Game of Life devised by John Horton Conway in 1970.

2.1.5. Stochastic

Complex systems are stochastic in nature. They change over time in a random way.

Mathematically, stochastic process can be defined as a set of random variables {Xt}t ∈ T ,

indexed by T, Where T is a subset of (0,∞). {Xt}t ∈ T is said to be a discrete-time process

and continuous time process when T = (0, 1, 2, 3.....N) and T = (0,∞) respectively.

The concept of a stochastic processes is very important both in mathematical theory

and its applications in science, engineering, economics, etc. It is used to model a large number

of various phenomena where the quantity of interest varies discretely or continuously through

time in a random fashion.

Fig. 2.1 shows the stochastic characteristics in heartbeats and brain signals.

2.1.6. Non-Deterministic

Complex systems often are not deterministic. In other words, complex systems are

not well predictable. That’s why we use a probabilistic approach to study the behavior

of complex systems. Because of the interconnection of large numbers of elements within

a system, a small change in a local entity will change the global behavior of the complex

system.
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Figure 2.1. Stochastic process

2.2. Probabilistic Approach

We already described in the previous section that complex systems are not determin-

istic. In order to make predictions we have to use a probabilistic approach. Probabilistic

theories are based on events. Let us discuss about events first.

2.2.1. Events

Events are noticed when there are significant changes from the normal trend in a

system. The definition of events also depends on the system under consideration. For

example, it may be an earthquake in a geological system, a crash in a stock market, avalanches

on a mountain, etc. These events are the most important ingredients in probability theory

as well as in complex system studies to predict future consequences.

2.2.2. Crucial Events

Crucial events are also known as renewal events. These events are totally uncorrelated

with each other. In other words, the events which are going to occur will be totally indepedent

from whatever occured earlier. We adopt the theoretical perceptive of ref [11] to define
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crucial events on the basis of the time interval between the occurance of two consecutive

events.

The WTD (see 2.2.3) of Crucial events follow the asymptotic inverse power law (IPL)

structure:

(2.1) ψ(τ) ∝ 1

τµ

with µ < 3. The time intervals between two different pairs of consecutive events are totally

uncorrelated:

(2.2) 〈τiτj〉 ∝ δij.

Where δij is the Kronecker delta. By definition

(2.3) δij =


1, if i = j,

0, if i 6= j.

Crucial events play an important role in the transport of information from one com-

plex network to another [12].

It is important to discuss the dynamical origin of crucial events. These events are

the product of cooperative interactions between the elements of a complex network; they

are expected to lead to a spontaneous organization process, usually called Self Organized

Criticality (SOC)[13]. Numerous studies have been made regarding SOC since the original

work of Bak et al..

2.2.3. Waiting Time Distribution

Let us suppose τ is the time distance between two consecutive events. This is also

called the waiting time. The probability density function (PDF) of τ is called the waiting

time distribution (WTD) ψ(τ). Mathematically, the probability that an event occurs in the

short time interval [τ, τ+dτ ], is given by PDF ψ(τ)dτ , which must be ≥ 0. Also, the waiting

time PDF must satisfy the normalization condition
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(2.4)

∫ ∞
0

ψ(τ) dτ = 1.

Studies of the waiting time distribution suggesting long range temporal correlations

in different complex systems can be found elsewhere. .

2.2.4. Survival Probability

The probability that an event of interest such as a failure, break or something else

has not occured by the time t is called the survival probability. Mathematically, it can be

written as

(2.5) Ψ(t) =

∫ ∞
t

ψ(τ) dτ

Using Eq. 2.4 , Eq. 2.5 can be written as

(2.6) Ψ(t) = 1−
∫ t

0

ψ(τ)dτ

Now, it is clear that at t = 0, Ψ(0) = 1. Also, at t =∞, using Eq. 2.5, Eq. 2.6 gives

Ψ(∞) = 0.

Also, the waiting time distribution is the negative of the derivative of the survival

probability density (SPD). This can be written as

(2.7) ψ(t) = −dΨ(t)

dt
= −Ψ′(t)

9



2.2.5. Events Rate

Rate of events is defined as the number of events occur per unit time. Let us suppose

R(t) is the rate of events, the probability for an event to occur in the short interval of time

(t, t + dt) is R(t)dt. Where t is measured from the begining of the observation. It can be

expressed in terms of WTD as follows.

(2.8) R(t) =
∞∑
1

ψn(t).

Where,

(2.9) ψn(t) =

∫ t

0

ψn−1(t′)ψ(t− t′) dt′

is the probability density for n− th event to occur in time t.

2.2.6. Aged Events Rate and Poisson Distribution

The age-dependent rate of events, often called the hazard function g(t), is defined

as

(2.10) g(t) = lim
dt→0

Pr(t ≤ T < t+ dt | T ≥ t)

dt

The term in the numerator of above equation is the conditional probability that the

event will occur in the interval (t, t+ dt) given that it has not occurred before, and the term

dt in the denominator is the interval width.

Also, the rate of occurrence of the event at duration t equals the waiting time distri-

bution ψ(t) of the events at t , divided by the survival probability to that duration without

experiencing the event. It can be expressed as,

(2.11) g(t) =
ψ(t)

Ψ(t)
.

Substituting ψ(t) from eq. 2.7 in eq. 2.11 we get:

(2.12) g(t) = −Ψ′(t)

Ψ(t)
.

10



Again,

(2.13) g(t) = −Ψ′(t)

Ψ(t)
=
d (log[Ψ(t)])

dt

This implies that,

(2.14) d log(Ψ(t)) = −g(t) dt

which results the final equation as,

log[Ψ(t)]− log[Ψ(0)] = log

[
Ψ(t)

Ψ(0)

]
= −

∫ t

0

g(t′) dt′,

(2.15) Ψ(t) = Ψ(0)e−
∫ t
0 g(t

′) dt′ = e−
∫ t
0 g(t

′) dt′ ,

Where Ψ(0) is equal to 1 because It is sure that there is no occurance of event during time

0.

When g(t) = g, i.e.constant over time, the survival distribution of eq. 2.15 be-

comes,

(2.16) Ψ(t) = e−
∫ t
0 g(t) dt = e−gt,

This distribution is called the Poisson (or negative exponential) distribution with parameter

g. Fig. 2.2 shows the poisson distribution plot in log log scale.

Poisson distribution is also a very popular distribution and has several relevant appli-

cations in real life such as number of decay of atoms in radioactive process , the number of

arrivals at a car wash in one hour, the number of network failures per day and etc. [14].
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2.2.7. Aged Waiting Time Distribution

Aging phenomena are very common in a number of complex systems like spin glasses,

high-temperature superconductors, and charge density wave systems. Experimentally, these

systems appear to be in equilibrium if observed over short period of time, while longer time

observations reveal that they are out of equilibrium [15].

Let us consider a system which is prepared in such a way that an event occur at

t = 0. Let’s start to observe the system at time ta for an event to occur at time t after the

preparation event. The probability density we obtain in this case is given by

(2.17) ψ(ta, t) = ψ(t) +

∫ ta

0

R(t′)ψ(t− t′) dt′

is called the aged waiting time distribution.
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Similarly, the aged survival probability is given by

(2.18) Ψ(ta, t) = Ψ(t) +

∫ ta

0

R(t′)Ψ(t− t′) dt′

2.2.8. Power Laws

When the probability of finding a particular value of some quantity varies inversely

as a power of that value, the qunatity is said to obey a power law. Power laws distribu-

tion often called Pareto distribution which was named after the Italian engineer, economist

and sociologist Vilfredo Pareto. Pareto first noticed the power law in the income weatlth

distriubtion in 1897 which is considered as a real hallmark of complexity. Since that time

several studies reveal that power laws appear widely in physics, chemistry, biology, ecology,

sociology, economics finance and several other interdisciplinary areas [16, 17].

Mathmatically it can be defined as,

ψ(t) ∝ t−µ.

power law is also a linear relationship between logarithms, of the form

logψ(t) = αlogt+ logK

where K is propotionality constant. Many studies of critical phenomena in different systems

suggest that power laws emerge close to special critical or bifurcation points separating two

different phases or regimes of the system.

Power law distributon also obeys the symmetry of scale invariance.

f(λx) = λαf (x)

Fig. 2.3 shows the power law distribution plot in log log scale.

Initially the ubiquity and significance of scale invaraiance was pointed out by Man-

delbrot. He invented the term ‘fractals’ to explain the nondifferentiable geometric objects

that follow power law scaling when α is not equal to an integer value. Fractals have the

13
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property that the system or structure keeps the same behavior interms of different scalings

while we zoomed it. Mandelbrot illustrated that fractals are pervasive in nature, e.g. coast-

lines, clouds, floods, earthquakes, financial returns, and fundamental inaccuracies in clocks

[18].

The moments of the power law distriution diverge when m > µ− 1. Mathamatically,

mth moment < τm > of the power law distribution is given by,

(2.19) < τm >=

∫ ∞
0

τmψ(τ) dτ

In the ergodic regime 2 < µ < 3, the second moment of the distribution diverges.

Where as in non-ergodic regime 1 < µ < 2, the first moment (mean) diverges.
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2.2.9. Entropy

Entropy is the most influential concept in statistical physics, information theory and

complexity theory. It was Clausius who coined the term entropy in mid 19 th century. He

found very important relation between heat , temperature and entropy as follows.

(2.20) S =
dQ

T

where S denotes entropy, dQ stands for change in heat and T is absolute temperature of

the system. Most often it is known as a quantitative measurement of disorderness in the

systems. Earlier invention of entropy by Clausius didn’t mention it as a measure of order

or disorder in the systems. Later Boltzman related entropy to the disorder. Mathmatically

Boltzman entropy can be expressed as,

S = kBlnΩ

Where kB is Boltzmanns constant and Ω is the thermodynamical probability in which

each possible microstate of a macrostate is equaly probable. This shows entropy as a measure

of distribution of atoms and molecules in the thermodynamic system. Perfectly arrangement

of particles in crystals have more ordered which tells us the fact that entropy is zero or

minimum where as the arrangement of particles in gases have more disordered where entropy

is maximum.

Second law of thermodynamics is also related to entropy. The second law of thermo-

dynamics states that the entropy of an isolated system is always increasing. But for open

systems entropy not always increase, it also decreases.

After a century since the invention of Boltzmann entropy, Shannon in 1949, invented

fascinating formula 2.21 in information theory.

(2.21) S(t) = −
∫ +∞

−∞
dxp(x, t) ln [p(x, t)] .
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Boltzmann entropy is a special case of the Shanon entropy. Shannon entropy gives

the wonderful idea to quantify uncertainty which is also called a lack of information about

a system. For eg. if you toss a fair coin, the outcome of it is either head or tail with

equal probability of 1/2. This means that we have some uncertainty about the outcome

of each experiment. It can be quantified using Shannon equation. Now, if we modified a

coin in such a way that it’s outcome is tail all time. Then the probability of occurance of

tail is 1 with entropy 0 which means that we don’t have any uncertainty in the outcome of

the experiment. The entropy in Information theory has also an important role in shaping

theories of perception, cognition, and neural computation [19].

2.3. Chaos Theory

Chaos theory is a mathematical tool to study complex and nonlinear dynamical sys-

tems. It can be called as a branch of physics which deals with the non-linear systems.

While talking about the chaos theory there are several researchers who made significant

contributions to this field recently.

However, the brilliant Lorentz comes first in mind who made a profound discovery

in chaos theory. In 1961, Lorentz was developing a weather prediction mathematical model

using three coupled differential equations. He was running the model in powerful computer

to make prediction accurate. One day, he decided to review his forecasts. He decided to

save time starting from halfway through the first run cconsidering that as a initial condition.

After some time, he found the final result was drastically deviated from the previous run. He

was thinking what had gone wrong? He printed out the result which was showing to three

decimal places, it was actually crunching the original six decimal places. So, in the second

run he used the number 0.506 which was originally 0.506127. The result of the second run

turned out drastically different with minor change in intial state although the difference was

one part in a thousand. He found seeds of chaos [20]. This means tiny differences produce

huge effects which is a remarkable hallmark of chaotic system.

Lorenz explained this effect with the famous analogy of a butterfly flapping its wings
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Figure 2.4. Single attractor

and thereby causing the formation of a hurricane or huge disaster half a world away. ”But-

terfly effect” was just an anology to explain real small effect in an initial condition to produce

large effect in the final.

Another famous term in chaos theory is an “attractor”. An attractor can be a point,

a set of points, a curve or even a complicated structure towards which dynamical systems

evolve. This helps a lot to predict the final state of the system. Fig. 2.4 is an example of

single attractor towards wihich dynamical system evolves.

But some time system evolves towards strange attractors too. Strange attractors are

the new attractors toward which systems evolve leaving previous attractor. Fig. 2.5 is an

example of strange attractor where the system evolves leaving previous attractor.
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Figure 2.5. Strange attractor

Chaos theory is applicable in many fields such as physics, biology, sociology, econom-

ics, psychology and etc.

2.4. Brownian Motion

History of Brownian motion begins with the Dutch physician Jan Ingenhausz who

observed the zigzag motion of powdered charcoal on an alcohol surface in 1785. But the

phenomenon was labelled as “Brownian motion” under the name of Botanist Robert Brown

who reported the ”rapid oscilatory motion” of pollen particles in water through a micro-

scope while studying the fertilization process in a species of flowers in 1828. A satisfactory

explaination of ”Brownian motion” was not possible until 1905. World renowned scientist
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Einsten was the one who made it possible to explain ”Brownian motion” [21].

According to Einstein, Brownian motion generates in the continual bombardment of

the pollen particles by the molecules of the surrounding water. He argued that the pollen

particles had the same average kinetic energy as the molecules of surrounding water as a

result of continuous bombardment. Einsten’s explaination regarding Brownian motion was

much more important that it was showing the theoretical evidence about the existance of

atoms. From his mathmetical derivation of the mean squared displacement of the Brownian

particle with linear dependence on time (see 2.22)

(2.22) < x2 >≈ 2Dt

Jean Perrin was able to measure Avogadro’s number. Perrin won the 1926 Nobel

Prize in Physics from that invention.

Brownian motion follows the normal distribution with mean 0 and variance linear

with time t.

Development of Brownian motion process studies and its many generalizations and

extensions occur in numerous and diverse fields such as economics, communication the-

ory,biology,management science,and mathematical statistics [22].
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CHAPTER 3

ANALYTICAL TECHNIQUES

In this chapter we discuss the analytical techniques used to study heart-brain dy-

namics. Predominantly we used two analytical techniques, one is Diffusion Entropy Anal-

ysis (DEA) and the other is Multifractal Detrendred Fluctuation Analysis (MFDFA). Brief

introduction, procedure and the importance of these analytical techniques are presented as

follows.

3.1. Diffusion Entropy Analysis

Since we already discussed about the fact that scale invariance is one of the funda-

mental properties of Complex systems, finding the correct scaling of such systems is equally

important. It is also evident that these systems can’t be described by the ordinary statistical

physics. Ordinary statistical physics strictly related with central limit theorem which can’t

go beyond Gaussian distribution. Therefore, one can say that the search for the correct scal-

ing exponents has the connection with the discovery of deviations from ordinary statistical

mechanics.

There are several methods that have been developed recently to find correct scaling

of complex systems. Many of them can produce correct scaling for Gaussian distribution but

fail to determine the correct scaling for non-Gaussian distribution such as Levy statistics.

Grigolini and his group in 2002 invented Diffusion Entropy Analysis (DEA) method [23].

The DEA let the correct scaling of a diffusion process, regardless of whether the Gauss

condition applies or not.

To introduce an algorithm to find scaling exponent δ using DEA, let us consider a

sequence of N numbers ξi, i = 1, ..., N . At first, let us choose an integer number t, satisfying

the condition 1 ≤ t ≤ N . This integer number is referred as time. For any given time t we

can get N − t+ 1 sub-sequences given by
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(3.1) ξ
(s)
i ≡ ξi+s, with s= 0, . . ., N-t.

Now, we have a diffusion trajectory, with index s, defined by position

(3.2) x(s)(t) =
t∑
i=1

ξ
(s)
i =

t∑
i=1

ξi+s.

Let us suppose that we have a stochastic particle which has the position as defined

above and it’s movement is characterized by Eq. 3.1. Now we need to evaluate the PDF

p(x, t). It can be done by dividing the x-axis into many cells of size ∆(t). After this we

count how many particles are there in the same cell at a given time t. Let us suppose there

are Ni(t) no. of particles. Now the probability that a particle can be found in the i− th cell

at time t is given by

(3.3) pi(t) ≡
Ni(t)

(N − t+ 1)
.

So, the entropy of the diffusion process is given by,

(3.4) Sd(t) =
∑
i

pi(t) ln [pi(t)] .

Now, Let us follow the continuous assumptiion for simplicity where Shannon entropy

of the diffusion process becomes

(3.5) S(t) = −
∫ +∞

−∞
dxp(x, t) ln [p(x, t)] .

Also, PDF p(x, t) takes the form,

(3.6) p(x, t) =
1

tδ
F
( x
tδ

)
,

where F (y) is a function for crucial events which doesn’t follow ordinary Gaussian form.
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Figure 3.1. DEA example

From Eq. (3.5) and Eq. (3.6), and replacing the integration variable x by the other

integration variable y = x/tδ, we get

(3.7) S(t) = A+ δ ln(t),

where,

(3.8) A ≡ −
∫ +∞

−∞
dyF (y) ln [F (y)] .

The slope of the straight line resulting from Eq. (3.7) is the scaling coefficient δ. An

illustrative example is shown below in Fig. 3.1.
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3.2. Multifractal Dentrendred Fluctuation Analysis

Multifractal Detrendred Fluctuation Analysis (MFDFA) is based on a generalization

of the detrended fluctuation analysis (DFA) technique. Peng and his group in 1994 invented

DFA method. They used this method to study the correlation properties in heart beat time

series and DNA sequences [24, 25].

After that it became a very popular technique for the determination of (mono-) fractal

scaling properties and the detection of long-range correlations in noisy, nonstationary time

series. It has been widely used in diverse fields such as neuron spiking, human gait, long-time

weather records, cloud structure, geology, ethnology, economics time series and so on. One

of the main reason to apply this method is to avoid spurious detection of correlations that

are artifacts of nonstationarities in the time series.

DFA calculates a fluctuation function F (t) as a function of log (t). The logarithmic

plot of F (t) vs t gives a straight line if there exists long range temporal- correlation. The

slope of the logarithmic plot is also called α scaling exponent which provides the following

information depending on their values.

Table 3.1. Scaling Exponent and Corrrelation

Scaling Exponent Corrrelation

α ∼ 0.5 Uncorrelated sequence

0 < α < 0.5 Anti-correlated sequence

0.5 < α < 1 Long-range temporal correlations

α > 1 Strong correlations that are not of a power-law form

Complex systems in general do not exhibit a single scaling exponent or simple monofrac-

tal behavior. In such systems multiscaling behavior can be observed in many subsets of the

time series.

Kantelhardt developed a MFDFA method in 2002 to study the multifractal charac-

teristics of nonstationary time series, which is based on a generalization of the DFA method
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[26].

Let us suppose that xk is a series of length N . Our aim to find the spectrum of

singularities fq(s) for the series xk. MFDFA procedure consists of the following steps.

Step 1: Determine the profile

(3.9) Y (i) ≡
i∑

k=1

[xk− < x >], i = 1, ..., N

Subtraction of the mean < x > is not necessary, it can be eliminated by detrending

in the third step.

Step 2: Divide the profile Y (i) into Ns ≡ int(N/s) nonoverlapping segments of equal

length s. Since the length N of the series is often not completely divisible by time scale s,

a short part sometime remain as remainder. In order to account that remainder, the same

procedure is followed starting from the opposite end there by obtaining 2Ns segments in

total.

Step 3: This step is focused to detrend the profile in each segment of length s sepa-

rately. The least-square fit of the series for each of the 2Ns determines the variance as,

(3.10) F 2(s, υ) ≡ 1/s
s∑
i=1

{Y [(υ − 1)s+ i]− ynυ (i)}2

for each segment υ, υ = 1, ..., 2Ns, the corresponding variances are given by

(3.11) F 2(s, υ) ≡ 1/s
s∑
i=1

{Y [N − (υ −Ns)s+ i]− ynυ (i)}2

for υ = Ns + 1, ..., 2Ns where ynυ (i) is the fitting polynomial in segment υ with order

n. Eq. 3.11 shows that the detrending of the time series is done by the subtraction of the

polynomial fits from the profile. The different order DFA varies in their ability of removing

trends in the time series. This is called the MFDFA of order n.

Step 4: We define qth order fluctuation function as

(3.12) Fq(s) ≡

{
1/2Ns

2Ns∑
υ=1

[F 2(s, υ)]q/2

}1/q

24



where, the index variable q can have any real value except zero. The standard DFA

procedure is retrieved when q = 2. Here, Fq(s) depend on the time scale s for different values

of q so we must repeat steps 2 to 4 for several time scales s. By construction, Fq(s) is only

defined for s ≥ n+ 2.

Step 5: Now we determine the scaling behavior of the fluctuation functions by ana-

lyzing log-log plots Fq(s) versus s for different values of q. If the time series xi have long

range correlation, it follows the power law as,

(3.13) Fq(s) ∼ sh(q)

where the exponent h(q) depend on q. For stationary time series, h(2) is identical to

the well-known Hurst exponent H. Thus, we will call the function h(q) generalized Hurst

exponent.

We also define the exponent

(3.14) τ(q) = qh(q)− 1

Fig. 3.2 gives the straight line if the time series is monofractal. Similarly the plot

gives curved line if the time series is multifractal.

Finally the singularity spectrum f(α) vs α gives the multifractal spectrum as shown

in Fig. 3.3, where f(α) and α are related to τ via a Legendre transformation as

(3.15) α = τ ′(q)

and

(3.16) f(α) = qα− τ(q)

.
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Figure 3.2. τ(q) vs q

Here, α is the singularity strength or exponent, while f(α) denotes the dimension of

the subset of the series that is characterized by α.

Using equation 3.14 in 3.15 and 3.18 we have,

(3.17) α = h(q) + qh′(q)

.

and

(3.18) f(α) = q[α− h(q)] + 1
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CHAPTER 4

CRUCIAL EVENTS AND MULTIFRACTALITY IN HEARTBEATS

This chapter is devoted to present the results of heartbeat data analysis. Following

[27] and [28], we used the ECG records of the MIT-BIH Normal Sinus Rhythm Database and

of the BIDMC Congestive Heart Failure Database, for healthy and congestive heart failure

patients, respectively. We made an investigation to study the relationship between the multi-

fractal property and crucial events in the case of heart beat variability from both healthy and

pathologic subjects. Over the last twenty years two apparently different diagnostic techniques

have been established: the first is based on the observation that the multi-fractal spectrum

of healthy patients is broader than the multi-fractal spectrum of pathologic subjects; the

second is based on the observation that heartbeat dynamics are a superposition of crucial

and uncorrelated Poisson-like events, with pathologic patients hosting uncorrelated Poisson-

like events with larger probability than the healthy patients. In this study, we prove that

increasing the percentage of uncorrelated Poisson-like events hosted by heartbeats has the

effect of making their multi-fractal spectrum narrower, thereby establishing that the two

different diagnostic techniques are compatible with one another and, at the same time,

establishing a dynamic interpretation of multi-fractal processes that had been previously

overlooked. This study might be of a broad interest to not only physicists, but also to

biologists and medical doctors.

4.1. Introduction

The hypothesis that multi-fractality is a significant property of physiological processes

picked up a consideration in the writing of the most recent two decades. Ivanov et al [29]

admitted this attention using wavelet transform method to analyze the heartbeat time series

of several patients, some healthy and some suffered by congestive heart failure.

This chapter is reproduced from Bohara, Gyanendra and Lambert, David and West, Bruce J and Grigolini,
Paolo, ”Crucial events, randomness, and multifractality in heartbeats”, published on Dec 29, 2017 in Journal
of Physical Review E,Vol. 96, 062216, with permission from APS.
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They discovered that the distinction between the healthy and non-healthy is that

the healthy subjects have a significantly wider multi-fractal spectrum. The multi-fractal

technique [29] is an efficient tool to study cardiovascular variability [30], referred to as heart

rate variability (HRV), the proper treatment of which is still the object of intense discussions

[31].

The statistical probe of heartbeat variabilities in addition to that of other physiolog-

ical phenomenon, is often accomplished by preparing proper time series. Each time series

is special which generates the problem to establish a connection with the Gibbs ensemble

perspective, where mean values have to be taken over indistinguihable copies of the same

system. This difficulty is solved with the assumption that different sections of the individual

time series can be explained as indistinguishable copies of the same process, correspond-

ing to different initial conditions. A notable analysis procedure of this type is Detrended

Fluctuation Analysis (DFA), [32, 25]. Due, to some degree, to the expanding enthusiasm

in multi-fractality [33], Kantelhardt et al. [26] stretched out DFA to make it conceivable

to extricate from it multi-fractal information, by means of the spectral density f(α) which

frequently has the form of a wide inverted parabola that is expected to become very thin

and centered on the scaling index α = 0.5 in the conventional Poisson case. We refer to

the procedure developed by Kantelhardt et al.[26] as Multi Fractal Detrended Fluctuation

Analysis (MFDFA). MFDFA is embraced to talk about the transmission of multi-fractality

from a complex network stimulus to another complex network [34], both being described by

a broad f(α) spectrum.

The fundamental motivation behind the investigation is to reveal the dynamical origin

of a wide f(α) range by moving from the particular instance of HRV to the general properties

of non-Poisson time series. To accomplish this, we follow the scan for a diagnostic distinction

between healthy and pathological subjects. The objective, in any case, is to get a superior

comprehension of the dynamical root of multi-fractal variability. Huge bits of knowledge

about this dynamic origin would attract general interest to the enhancement of diagnostic

techniques. One possible road to the arrangement of this issue can be found by noticing that
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in 2002 Allegrini et al [28] used the detection of crucial events as the main tool to distinguish

healthy (with a broad f(α) spectrum) from unhealthy (with narrow f(α) spectrum) patients.

For a proper definition of crucial events we adopt the theoretical point of view built up in

earlier work, see for example [11], defining the crucial events on the basis of the time interval

between the occurrence of two consecutive events.

4.2. Origin of Crucial Events

It is vital to talk about the dynamical root of crucial events. Crucial events are an

indicatiion of agreeable interactions between the units of a complex network that is relied

upon to lead to a spontaneous organization process, usually called Self Organized Criticality

(SOC). Huge advance has been made in understanding SOC since the first work of Bak et

al. [13]. The development of SOC is motioned by the births of anomalous avalanches, see

[35, 36] for recent work along these lines.

There exists a new approach to SOC emphasizing temporal rather than intensity

anomalous distributions [37, 38]. The authors of Ref. [38] characterized their way to deal with

self-organization as Self-Organized Temporal Criticality (SOTC). As indicated by SOTC the

crucial events characterized before with the assistance of Eqs. (1.1) and (2.2), to be specific

the events that the authors of [28] could discover in heartbeats, occur on an intermediate

time scale, after an initial transient regime to the condition of intermediate asymptotics. The

inverse power law (IPL) nature of crucial events is tempered by an exponential relaxation

in the long-time limit. This elucidation enables us to encourage our way to deal with the

connection between the diagnostic techniques of Ref. [29] and of Ref. [28]. In fact, the

three time regimes of SOTC are a type of variability that we subsequently connect to the

physiological variability that drove the authors of Ref. [29] to their diagnostic insight.

To rundown judgment the crucial events are responsible for the complexity of the

intermediate asymptotics regime, as it will be more broadly pointed out in Section 4.4.

Furthermore, we must consider that as stated by Ref. [28] the definition of crucial events

must be extended to consider the case where the time interval between the occurrence of

30



the crucial events defined by Eq. (1.1) and Eq. (2.2) is filled with events with memory.

The initial crucial event triggers the generation of the filling events and the occurrence

of the next crucial event ends this arrangement and activates a new sequence of strongly

correlated filling events. The events filling the time interval between two crucial events must

not be confused with the Poisson-like events disturbing the healthy physiological condition

of the heartbeats. In Ref. [28] the events filling the time distance between two consecutive

crucial events were responsible for a phenomenon called memory beyond memory effect. The

intuitive idea of this effect is that the crucial events with µ < 3 are responsible for slowly

decaying correlation functions, thereby implying a form of memory. The filling events have

an additional memory preventing them from disturbing the healthy physiological condition

signaled by the crucial events. Those actual heartbeat process will be a superposition of

two time series, the former relating of the healthy function and the later being given by a

sequence of completely uncorrelated events.

In this investigation the surrogate time series are produced adopting for the healthy

time series two different prescriptions. The first prescription fits the direction of Ref. [28].

For effortlessness’ purpose, we set up the exceedingly correlated nature of the filling events

with the assumption that time distance τ between two consecutive pseudo events is constant.

The distribution of τ is an inverse power law with µ essentially bigger than 3 including µ =∞,

namely an ordinary Poisson process. Obviously, for this situation, the crucial renewal con-

dition of Eq. (2.2) is violated. The later time series, of perturbing Poisson-like events, is

generated by deriving the time distance between two consecutive events from a distribution

density with µ > 3 indistinguishable to that of the filling events of the previous. As we shall

see, these perturbing Poisson-like events reproduce very well the disturbing process respon-

sible for heart failure. We adopt also the second prescription, where the healthy time series

hosts only crucial events and the wide laminar region between two consecutive crucial events

is left empty. This straightforward prescription makes it possible for us to delineate the

efficiency of the technique of Diffusion Entropy Analysis (DEA) [23] to determine the scaling

generated by the crucial events, however it can’t be utilized to disclose how to establish the
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percentage of disturbing Poisson-like events. The straightforward prescription, however, is

advantageous to demonstrate that crucial events alone can produce the multifractal distri-

bution. We shall refer to the first prescription as generating dressed crucial events and to

the second as generating bare crucial events.

4.3. Crucial Events and Multifractality

The search for crucial events is made troublesome by the way that crucial events are

often imbedded in billows of uncorrelated and irrelevant events. The authors of [28] utilized

a procedure of measurable investigation, called DEA [23], to detect the anomalous scaling

index δ, which these crucial events would create were they not imbedded in a billow of

non-crucial events, specifically, when they are visible. Nonetheless, to establish a connection

with the results of Ivanov et al [29] it is important to address an issue that goes beyond the

merely diagnostic goal of both [29] and [28]. The issue is to reveal the physical mechanism

creating the multifractality uncovered by MFDFA. This issue has been the subject of many

research papers and we devote this Section to a short review of the consequences of that

exploration.

A key component of this debate is the DEA, which was appeared to be the right

approach to decide the scaling produced by crucial events while DFA isn’t [39, 40, 41].

This is a result of the fact that DFA determines the scaling of the second moment of a

distribution that can be divergent for non-Gaussian distribution densities. Therefore many

endeavors have been made to consolidate the right scaling assessment with the evaluation of

multifractality [40, 41, 42, 43, 44, 45]. However, these fascinating papers leave unanswered

the focal inquiry of the multifractal significance of crucial events, since these authors applied

the new method of analysis to real data with no discussion of surrogate data hosting only

crucial events.

It is advantageous, for lucidity, to mention some papers from the field of experimental

psychology [46, 47, 48, 49]. For our purposes, the value of these publications is that they set

up, through their investigation of real data, a connection between multifractality and the
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transport of information. Along these lines they imply a connection between multifractality

and the crucial events uncovered by the best possible utilization of DEA, in accordance with

the observation that crucial events play a vital role in the transport of information from one

complex network to another [12].

Finally, it is vital to say that [50] and [51] inspect a non-stationary human network by

means of DEA that empowers them to uncover the presence of periodicity and complexity

simultaneous. Sarkar and Barat [51] apply DEA to analyze heartbeats before and after

meditation, with the astounding revelation of a distinct oscillatory behavior of diffusion

entropy. We shall come back to talk about the results of [51] in section 4.8. Here we restrict

ourselves to properly addressing the connection between crucial events and multifractality

by using surrogate sequences with a mixture of Poisson-like and crucial events, including the

situation where only crucial events are hosted in the sequence. Such surrogate arrangements

enable us to assess how crucial events are perceived by MFDFA. This is the case where it is

useful to utilize the prescription for bare crucial events.

As indicated by the measurable examination of [28] the distinction between healthy

and pathologic subjects is set up by noting that the heartbeat dynamics of pathologic subjects

host a critically large number of uncorrelated Poisson-like events. An essential result of this

study is the observation that uncorrelated Poisson-like events have the impact of lessening

HRV. The largest HRV is figured it out in the ideal case of cardiac dynamics uniquely

determined by the SOTC process, with its complete time evolution including the transient

regime, intermediate asymptotics with its crucial events of Eqs. (1.1) and (2.2), and the final

tempered asymptotic regime. The dressed crucial events are a type of randomness flagging

the healthy physiological function of heartbeats, while the uncorrelated Poisson-like events

represent a disturbance of this healthy physiological function and therefore we refer to them

either as randomness or strong randomness, when they reach the high concentration revealed

by our analysis in the case of heart failure. In addition to results of diagnostic approach,

this investigation starts down the road to a more profound comprehension of the dynamical

origin of multifractality.
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4.4. Intermediate Asymptotics

In his book on intermediate asymptotics [52] Barenblatt adopts a visual art metaphor

to illustrate the idea of intermediate asymptotics: “... We need to take a look at paintings

at a distance far enough not to see the brush-strokes, but rather in the meantime sufficiently

enough to enjoy not only the painting as a whole but also its important details: think of van

Gogh’s work, for example. ...”. Goldenfeld [53] delineates the renormalization group rules

that we need to adopt to eliminate the divergences generated by the perturbation approach.

This representation is based on the assumption that the physical condition of intermediate

asymptotics is a type of perennial transition to equilibrium.

There is a wide conviction that this is a simplifying however valuable glorification

of reality. A remarkable example is managed by the work of Mantegna and Stanley [54].

These authors noticed that although a finite size-actuated truncation is an unavoidable

outcome of the dynamics of real physical processes, the time duration of the transition to

the Gaussian statistics prescribed by the central limit theorem may turn out to be extremely

extended, in accordance with the idealized condition of perennial intermediate asymptotics

of Goldenfeld. However, for practical purposes a complex system can likewise be seen on

so extensive a time scale as to see dynamical impacts that for straightforwardness might

be deciphered as types of ordinary fluctuation-dissipation processes. Essential work has

been done to get analytical results for both short- and long-time regimes, see for example

[55], which activated noteworthy enthusiasm in the appropriate mathematical formalism of

transient anomalous diffusion [56], including the exponential type of tempering [57, 58]. It is

advantageous to point out that tempering might be an impact of representing real physical

processes by means of finite length time series, an unavoidable consequence of observation.

We accept [38] that tempering is a bona fide property of self-organization process itself, since

it rises up out of the cooperation of a finite number of units and that the heartbeat dynamics

belongs to this class of self-organizing processes, thereby involving tempering.
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4.5. DEA and Crucial Events

The DEA technique [23] was initially acquainted to properly analyze time series

assumed to be driven by crucial renewal events. It is essential to stress that the renewal

events speculated [28] for the analysis of heartbeats are the subject of an extended literature

concentrating on the phenomenon of renewal aging [59]. For an agreeable delineation of

the main results of this study, we remind the readers about an algorithm used to produce

non-Poisson renewal events. It is given by [12]

(4.1) τ = T

(
1

y
1

µ−1

− 1

)
,

where y is a real number selected with uniform probability on the interval (0, 1). The times τ

produced by this method are completely uncorrelated and obey the waiting time PDF

(4.2) ψ(τ) = (µ− 1)
T µ−1

(τ + T )µ
.

Note that to be as close as possible to the tempering prescriptions of SOTC [38], we should

adopt a survival probability Ψ(t) with the structure

(4.3) Ψ(t) =

(
T

t+ T

)µ−1

exp(−λt),

with the transient regime to intermediate asymptotics being determined by the parameter

T and defined by the time region 0 < t < T . The time region of intermediate asymptotics

corresponds to T < t < 1
λ

and the tempered region is given by t > 1
λ
. For the sake of

simplicity, surrogate sequences hereby utilized are established using Eq. (4.1), which would

correspond to λ→ 0, the tempered action being exerted by the finite size of the time series,

L. We make the assumption that λ ∝ 1/L.

In this chapter, following the results of earlier work [28], we restrict our analysis to

the IPL index range:

(4.4) 2 < µ < 3.
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It is important to notice that the Poisson events correspond to µ =∞, but events generated

using µ = 5 are sufficienctly far from the crucial condition which can be used as generators

of non-crucial events. The algorithm of Eq. (4.1) can be applied to describe in an intuitive

way the different nature of the randomness of µ < 3 as compared to that of µ � 3. The

time interval between two consecutive events of the random number y in Eq. (4.1) has the

mean value

(4.5) 〈τ〉 =
T

(µ− 2)
,

as can be easily determined using the waiting time PDF ψ(t) of Eq. (4.2) to find the average.

If 〈τ〉 < ∆t, where ∆t is the integration time step, we see a process that is totally random.

In the limiting case of µ < 2, 〈τ〉 � ∆t, since in this case < τ > is divergent; the randomness

is sporadic. In the region 2 < µ < 3 randomness is not as sporadic as for µ < 2. However,

< τ 2 > is divergent and as a consequence randomness remains distinctly intermittent. We

assume that the sporadic randomness of crucial events is better for the healthy function of

cardiac dynamics and that an excess of randomness is risky.

To talk about the joint activity of frequent and sporadic randomness let us generate

resonable surrogate time series, namely a proper sequence of times τ1, τ2, ....τi, τi+1, .... . This

arrangement is produced by a repeated random selection of y in Eq. (4.1) so as to generate

either a sequence of crucial events, with µ < 3, or a sequence of non-crucial events, with

µ > 3. More accurately, in the applications of the present study we choose 3 > µ > 2 for

crucial events and µ = 5 for non-crucial events.

Each of these two time sequences has to be converted into a corresponding suitable

fluctuation ξ(t). For that we apply the Asymmetric Jump Model (AJM) [28]. The reason

of choosing this model is that this random walk rule helps DEA to find the correct scaling

established by the generalized central limit theorem (GCLT) [60] in the entire crucial event

region µ < 3, including the region µ < 2. This random walk rule is obtained by setting

ξ = 0 when there are no events, and ξ = 1 when either a crucial or uncorrelated Poisson

event occurs.
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Thus we generate two time series, one corresponding to µ < 3 and the other corre-

sponding to µ > 3. The surrogate time series used here for the analysis corresponds to the

superposition of both time series,

(4.6) ξ(t) = (1− ∈)ξµ>3(t)+ ∈ ξµ<3(t).

The parameter ∈< 1 is the probability that the observed heartbeat signal, detected accord-

ing to the prescription of the next section is generated by a genuine SOTC process. The

prescription chosen to produce the complex time series is the prescription earlier mentioned

as generating bare crucial events. In Section 4.6 we illustrate how to obtain ∈ from the

analysis of real heartbeat data, with the help of surrogate time series when we apply the

prescription to create dressed crucial events.

In the case where SOTC events are visible, specifically ∈= 1, DEA leads to the

detection of the scaling index

(4.7) δ =
1

µ− 1

after an initial transient corresponding to the micro-time regime, where complexity process

is not yet perceived. Keep in mind that the transition from the Lévy to the Gauss regime

occurs at µ = 3. However, as mentioned earlier, the surrogate time series of this study rest

on µ = 5, namely a condition well imbedded in the Gaussian basin of attraction.

Figs. 4.1, 4.2 and 4.3 show the results of applying DEA to a different data sets

through the linear-log representation, which is used, according to Section 3.1, to detect the

scaling index δ, the slope of the linear portion of S(t) in this representation.

Fig. 4.1 shows the case where ∈= 1, specifically the condition where the bare crucial

events are fully visible, with µ = 2.2. The corresponding crucial scaling should be δ = 0.83.

However, in the short time regime the scaling has the larger value δ = 1.5 and the scaling

δ = 0.83 of crucial events appears in the intermediate time regime. For this reason, the

proper scaling, as shown in this figure, is optimal in the intermediate time regime. Actually,

we see that in the region around t ∝ 105 a tempering deviation from the crucial scaling of

Eq. (4.7) occurs. Note that this is not the tempering of the SOTC defined in [38]. The
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 =0.83, =1

S 
(t)

ln (t)

Figure 4.1. Entropy of the time series versus the logarithm of time from the

micro-time to the asymptotic time scale with ∈= 1. The solid line (green)

is numerical. Numerical constants are T = 0.5 and length of time series

L = 1.5(105). We use the prescription generating bare crucial events.

theoretical study of that physical tempering of the process is beyond the scope of this study,

but we make the plausible assumption that heartbeat dynamics fit it as a consequence of

being itself a self-organized process.

Fig. 4.2 illustrates the more important case where the crucial events are hidden by

a billow of noncrucial events. In this case, too, according to previous analysis [28], the

precise scaling obtained by the bare crucial events appears in the intermediate time regime.

However, in this case the reason for the initial transient is quite different from the SOTC
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 =0.50 (fitted)
  =0.83 (fitted)

S 
(t)

ln (t)

Figure 4.2. Entropy of the time series versus the logarithm of time from

the micro-time Gaussian basin of attraction to the asymptotic time scale with

∈= 0.1. The solid line (green) is numerical. Numerical constants are T = 0.5

and length of time series L = 1.5(105). We use the prescription generating

bare crucial events.

initial transient. In this case the initial short-time regime characterized by the conventional

scaling δ = 0.5, corresponds to the scaling of uncorrelated Poisson-like events. In the long-

time limit, when the SOTC intermediate asymptotic emerges, the faster scaling of the crucial

events with µ < 2 leads them to crossover to ordinary diffusion. The overlap of the Poisson-

actuated transient regime and transient SOTC make the derivative of the diffusion entropy

non-monotonic. For the sake of simplicity we don’t demonstrate this complicated behavior,
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Figure 4.3. DEA determines the scaling of invisible crucial events in the

intermediate asymptotic time. The solid line (green) is produced from real

heartbeat data of healthy individual. The scaling index δ is the slope of the

straight line between the two vertical arrows.

rather we concentrate on the complexity of the intermediate asymptotics. Notice that,

although the stretched out transient to the intermediate asymptotic regime actuated by

a large percentage of uncorrelated Poisson-like events can be confused with the transient

SOTC regime, the corresponding physical impacts are the inverse of each other. The SOTC

transient creates a wide multi-fractal spectrum, while the long transient actuated by a large

percentage of uncorrelated Poisson-like events has the impact of making the multi-fractal

spectrum narrower.
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To wrap up this section we make a few remarks concerning Fig. 4.3. In Section

4.6 we disclose how to get this figure from real data on heartbeats. Here we constrain our

observation to the scaling index δ, representing the indicator of the occurrence of crucial

events. The IPL index is obtained by observing the intermediate asymptotics region, the

short- and long-time limit of which are meant by vertical arrows. In this case, the deviation

from Eq. (4.7) of the tempering region is most likely due the properties of heartbeats, as

opposed to the finite size L of the sequence under investigation.

In brief, it is imperative to emphasize that based on late advances made concerning

SOTC [38], the time series produced by complex processes are described by three regimes:

the short-time regime, where the genuine complexity of the process is not yet perceived; an

intermediate time regime driven by the crucial events; and a long-time regime where the

process can be mistaken for an ordinary statistical process. The long time regime is, on the

contrary, a tempering effect generated by self-organization.

4.6. Detecting Events in Heartbeat Time Series

Following [27] and [28], we use the ECG records of the MIT-BIH Normal Sinus

Rhythm Database and of the BIDMC Congestive Heart Failure Database, for healthy and

congestive heart failure patients, respectively.

The fundamental issues experienced in demonstrating that SOTC is the procedure

driving the phenomenon under investigatiion has to do with the detection of the crucial

events, in particular, events with a waiting time PDF yielding a diverging second moment.

Fig. 6.7 demonstrates the approach we adopt, following that utilized before [28]. The

experimental signal is generated by assigning to each beat a value corresponding to the time

interval in the vicinity of one and the following.

We partition the inter-beat time axis into proper stripes of size ∆T . We take after

the results of the investigation done in [61] to define ∆T . These authors recommend ∆T ∼=

30 msec and we set ∆T = 33 msec. We identify the occurrence of an event when the

experimental signal crosses the stripes. We observe that the heartbeat trajectory may stay
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in a particular strip for an extended time, suggesting the typical intermittent behavior that

led to the finding of crucial events. However, the experimental signal crossing the border

between two bordering stripes isn’t necessarily a crucial event. The crucial events are renewal

and thus the times τi should be uncorrelated. To assess the breakdown of the renewal

condition we find the time-average correlation function, where the time average is given by

an overbar

(4.8) C(t) =

∑
|i−j|=t

(τi − τ) (τj − τ)∑
i

(τi − τ)2
.

This correlation function is properly normalized yielding C(0) = 1, and in the case of actual

renewal events must satisfy the condition C(t) = 0 for t > 0. On the other hand we get

(4.9) C(1) ≈∈2,

where ∈ is the probability of selecting ξ, see Eq. (4.6). This result is theoretically well

explained. According to [61] the correlation function C(t) must read

(4.10) C(t) = (1− ∈2)δt,0+ ∈2 Λ(t),

where δt,0 refers to the Kronecker unit step function, namely a function equal to 1 for t = 0

and equal to 0 otherwise, and Λ(t) is a slowly decaying smooth function with the property

Λ(0) = 1. This theoretical approach results Eq. (4.9).

In short, we must use C(1) to define ∈. The investigation of real data as appeared

in Fig. 4.5 drives to conclusions that qualitatively match with this theoretical approach,

with some cautionary remarks, however. Fig. 4.5 demonstrates that the correlation function

C(t) makes a sudden jump from 1 to a little, but non-vanishing value of ∈2, affirming that

the examination we apply to uncover events actually does not detect only genuine renewal

events, but a blend of renewal and non-renewal events. Moreover, as depicted from Fig. 4.5,

in the case of pathological individuals, C(t), after the fall experiences quick exceptional fluc-

tuations that may stop us from defining ∈2 through C(1). In this situation, and in the case

where C(1) < 0 as well, we alternatively define C(1) through the average over the first one
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Figure 4.4. Rule applied to define events. An event is defined as the experi-

mental curve, thick black line, crossing the border between two nearest stripes.

The symbols τk represent the time distance, as number of beats, between two

consecutive events, characterized as the black line crossing from one strip to

one of the neighbor stripes The size of the stripes is ∆T = 1/30 sec.

hundred events. In the case of fluctuations of moderate intensity, we utilize C(1) to define

∈2. We likewise utilize Fig. 4.5 to characterize the border between strong and weak ran-

domness. Estimations of ∈2 larger than 0.05, ∈> 0.22, are considered as weak randomness

and values of ∈2 smaller than 0.05, ∈< 0.22, are considered as strong randomness.This defi-

nition is suggested by the observation of the healthy and pathological individual of Fig. 4.5,

however this definition must be used with caution because the distinction between healthy
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Figure 4.5. Correlation function C(t) for two typical patients, one healthy

and one pathological.

and pathological individuals, as shall we observe with Fig. 4.8, requires the knowledge of

the scaling index δ and in addition that of ∈2 .

To show signs of improvement in the comprehension of the significance of ∈2, and

to clarify the theoretical motivation behind why we can utilize Eq. (4.9), we interrogate

the surrogate sequences defined by Eq. (4.6), for the situation when the sequence of crucial

events is generated by the prescription to create dressed crucial events. With the assistance

of Fig. 4.6 and Fig. 4.7 we build up that the intensity ∈2 is the square of the probability

that an event is a crucial event. This is the motivation behind why we choose the symbol

∈2 to signify the estimation of the correlation C(t) instantly after the sudden jump down

44



0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
C

th
eo

rit
ic

al
 (

t)

t (no. of laminar regions)

2=0.0194

Figure 4.6. Correlation function C(t) for the surrogate data in the case of

strong randomness. We utilize the prescription creating dressed crucial events.

from C(0) = 1. Fig. 4.6 demonstrates a theoretical correlation function utilizing a surrogate

sequence for strong randomness. Fig. 4.7 demonstrates a theoretical correlation function

utilizing a surrogate sequence for weak randomness.

It is important to address that the selection of ∆T = 1/30 sec is not random. In fact,

investigators [61] determine that the estimation of ∆T prompts the maximal intensity of

∈2 for all patients, both healthy and pathological, except for the transplanted hearts. This

widespread property appears to infer the action of the autonomic system [61].
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Figure 4.7. Correlation function C(t) for the surrogate data in the case of

weak randomness. We utilize the prescription producing dressed crucial events.

4.7. Joint Use of DEA and C(t)

Here, we retrieve the main result of [28], which was based on the joint use of DEA

and the correlation function C(t). For each subject we evaluate both δ and ∈2.

Fig. 4.8 is virtually identical to the main result discovered by the investigators of [28],

which determines a measure to recognize pathological patients from healthy patients using

HRV time series. We see that the ideally healthy condition compares to ∈= 1 and δ = 1.

This implies that the crucial events should not host any uncorrelated Poisson-like event and

must have µ = 2, which is the border between the region of perennial aging, µ < 2, and the

region where the rate of randomness production becomes constant in the long-time limit,
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Figure 4.8. Distinguishing subjects with healthy from those with patholog-

ical HRV.

µ > 2 [12]. The individuals’ HRVs advance toward the pathological condition as their scaling

turns out to be nearer to the scaling of ordinary diffusion δ = 0.5, to be specific nearer to

the border between the region of crucial events, µ < 3, and the Gaussian basin of attraction,

µ > 3.

It is important to note that the work of [11] built up that the brain, producing perfect

1/f -noise, is situated at the outskirt between the region of perennial aging and the region

of crucial events hosted by heartbeats, as per the investigation of this study and prior work

[28].

The investigation done in the new field of network medicine [62] concentrates on the
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communication between the diverge organs of the human body, the brain and heart being a

unique instance of this intercommunication [63]. As per the principle of complexity matching

[12], based on the assumption that the synchronization of complex networks is encouraged by

the networks having the same complexity, µ = 2, in the case of brain-heart correspondence,

we make the conceivable assumption that the right-top corner of Fig. 4.8 refers to a suitable

condition for brain-heart communication in the ideal case of healthy patients. However,

the recent literature on complexity matching stresses the correspondence between the two

complex networks through their multi-fractal spectra [34]. Along these lines, building up a

relation between crucial events and multi-fractal spectra is an objective of this study. The

most essential property of Fig. 4.8 is to contribute to achieve that objective by building up

a relation between [28] and [27, 29].

We concentrate our attention on the patients marked A, B, C and D in Fig. 4.8. These

patients have the same δ and as indicated by the prior analysis [28] the distinction amongst

sick and healthy patients is due to the fact that the heartbeat of the sick patients is influenced

by excessive randomness. Moreover, as per some investigators [27, 29] the difference is

because of the fact that healthy patients have more wider multi-fractal spectra.

The focal result of this investigation is acquired by applying the MFDFA to the

patients A, B, C and D to prove the relation between the diagnostic approach of [28] and

that of [29, 27].

Fig. 4.9 fully confirms this connection. We observe that , moving from the sick (A)

to the healthy patients (B,C,D) has the impact of broadening of the multi-fractal spectrum.

Note that Fig. 4.10 presents additional confirmation of this relation through the utilization

of surrogate sequences.

4.8. Concluding Remarks

The diagnostic technique produced by following prior work [28] provides extra ad-

vantages compared to the method of [29]. One of these advantages is that the distinction

amongst healthy and pathologic patients is built up through the two-dimensional portrayal
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Figure 4.9. Multi-fractal spectra of HRV as a function of ∈ (see Fig. 4.8)

keeping constant the scaling index δ = 0.79.

of Fig. 4.8 instead of the three-dimensional portrayal of [29]. Another significant outcome of

this investigation is its contribution to an enhanced vision of variability and multi-fractality.

To welcome this noticable improvement let us concentrate on the outcomes obtained by

applying the MFDFA to the surrogate series in the limiting case of a SOTC [38] process,

unperturbed by uncorrelated Poisson-like fluctuations ∈= 1, and of a mere sequence of

uncorrelated fluctuations, ∈= 0.

The outcome of this investigation is illustrated in Fig. 4.11. In the top panel of

this figure we adopt the prescription to create bare crucial events and in the base we adopt
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Figure 4.10. Multi-fractal spectra of surrogate data, based on the prescrip-

tion creating bare crucial events, as a function of ∈ with constant the scaling

index δ = 0.83.

the prescription to produce dressed crucial events. Obviously, for the situation ∈= 0 both

procedures create a very sharp multifractal distribution centered at α = 0.5.

The narrowest multi-fractal spectrum is obtained by setting ∈= 0. The broadest

multi-fractal spectrum is obtained without Poisson-like random events, ∈= 1, with a slight

difference between bare crucial events ( top panel of Fig. 4.11) and dressed crucial events

(bottom panel of Fig. 4.11). The dressed crucial events are appeared to yield a more

extensive multi-fractal spectrum.

We restate that, as per SOTC [38], crucial events are portrayed by three different
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time regimes, a transient initial regime, the intermediate asymptotics time regime, and a

last tempered time regime with exponential truncation. The transient time regime turns out

to be increasingly stretched out with reducing ∈. However, the extended transient regime

produced by a very small value of ∈ must not be mistaken with a wide transient regime

relating to the occurrence of an adequate number of crucial events to realize the prescription

δ = 1/(µ − 1) of the GCLT [23, 60]. The GCLT transient regime is the smaller scale

advancement towards the IPL regime anticipated by SOTC [38]. This transient regime, the

intermediate asymptotic time regime and the last tempering time regime are the creators

of the wide variability that the multi-fractal DFA proficiently identifies. The uncorrelated

Poisson-like events with µ > 3 produce a stretched out transient regime that has the contrary

impact of yielding a very narrow spectrum around the ordinary scaling index α = 0.5.

Taking everything into account, the outcomes of this study set up a connection be-

tween the multi-fractal spectrum and SOTC fluctuations, subsequently managing a promis-

ing tool to get further advancements in the field of network medicine [62], where broad

multi-fractal spectra are transferred, as indicated by [12], starting with one network onto

another by means of crucial events.

The exploration program laid out in this chapter isn’t finished, since we have not, so

far, addressed the brain-heart correspondence and the impact of periodicity [63]. It is vital to

mention that SOTC [38] can be applied to create a self-organization phenomenon combining

crucial events and periodicity, so as to change the black line of Fig. 4.4 into fluctuations that

affected by either therapeutic action [64] or meditation [51] may turn out to be relatively

coherent oscillations.
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Figure 4.11. Extreme cases of very narrow, ∈= 0, and very broad, ∈= 1,

multi-fractal spectra. The top panel is based on the prescription creating bare

crucial events and the base panel is based on the prescription creating dressed

crucial events. Numerical constants used in the calculation are T = 0.5, L =

1.5(105), window sizes (500 : 500 : 30000). Other parameters are moments

range q = −0.4 : 0.001 : 0.4 for µ = 5 and q = −0.02 : 0.001 : 0.02 for µ = 2.2.
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CHAPTER 5

MEDITATION AND HEARTBEAT DYNAMICS

Results obtained in Chapter 4 led us to focus our analysis on the statistical properties

of crucial events. We have adopted the same statistical analysis to study the statistical

properties of the heartbeat dynamics of subjects practicing meditation. The heartbeats of

people doing meditation are known to produce coherent fluctuations. In addition to this

effect, we made the surprising discovery that meditation makes the heartbeat depart from

the ideal condition of 1/f noise. Also, this method of statistical analysis quantifies the level

of stress reduction realized by the practice of Kundalini Yoga Meditation.

5.1. Introduction

Stress is known to disturb the ordinary HRV spectrum and figuring out how to evade

the debilitating impact of stress is one of the motivation of meditation. The origin of medita-

tion is unknown, yet researchers agree that it has been part of civilized culture for thousands

of years, with the earliest records, around 1,500 BCE, involving Vedantism, a Hindu custom

in Nepal and India. As specified by Chow [66] the Yoga Sutras of Patanjali, illustrating the

eight limbs of yoga, was incorporated between 400-100 BCE. Contemporaneously, the Bha-

gavad Gita was composed, which talks about the philosophy of yoga and meditation.

From a physiological point of view meditation constitutes a coupling of the function-

ality of the heart with that of the brain and has been investigated and grown for centuries.

However, we are just now starting to apply the techniques of science and data analysis to

this brain-heart coupling. The fundamental purpose of this investigation is to give a measure

of decrease in the level of stress provided by meditation, which is to evaluate, through the

This chapter is reproduced partially from Tuladhar, Rohisha and Bohara, Gyanendra and Grigolini, Paolo
and West, Bruce J, ”Meditation-Induced Coherence and Crucial Events”, published on May 29, 2018 in
Frontiers in Physiology, Vol.9, 626, with the permission terms of the Creative Commons Attribution License
(CC BY) http://creativecommons.org/licenses/by/4.0/.
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statistical analysis of HRV time series before and during meditation, precisely how much

stress is reduced by control through meditation of the heart-brain coupling.

5.2. Statistics

The crucial events are described by the fundamental property that the time inter-

val between the occurrence of consecutive crucial events is described by the waiting-time

probability density function (PDF):

(5.1) ψ(τ) ∝ 1

τµ
,

As indicated by Watkins [67, 68] the non-ergodic fractional renewal model of Mandelbrot

[69, 70] yields the inverse power law (IPL) spectrum as function of the frequency f :

(5.2) S(f) ∝ 1

fγ
,

with

(5.3) γ = 3− µ.

The dynamics creating crucial events are renewal, which implies that the sequence of

waiting times {τi} between successive events are totally independent of one another. This

renewal property can also be expressed by the assumption that the probability of occurrence

of both τi and τj, Π(τi, τj), when i 6= j is given by,

(5.4) Π(τi, τj) = P (τi) ∗ P (τj),

where P (τi) and P (τj) are the probability of occurrence of τi and τj, respectively.

Also, the times τi should not be correlated. This property is expressed by the math-

ematical relation of the two-point correlation function

(5.5) C(t) =

∑
|i−j|=t

(τi − τ) (τj − τ)∑
i

(τi − τ)2
.
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This correlation function is properly normalized, thereby yielding C(0) = 1, and in the case

of genuine renewal events should satisfy the condition C(t) = 0 for t > 0. Here, we focus on

C(1) defined as C(1) = C(t = |i− j| = 1).

The physical significance of this mathematical property is that the occurrence of a

renewal crucial event creates a rejuvenation of the system. Therefore, the system develops

towards the occurrence of the upcoming renewal event as if the occurrence of the earlier

crucial event made the system brand new.

We found that meditation shifts the IPL index µ of Eq. (5.1) with perfect 1/f

condition, µ = 2, to the index values close to the Gaussian basin of attraction, µ = 3.

5.3. Subordination of Harmonic Oscillations

Ascolani [71] investigated the subordination of a dynamic process to harmonic motion

in 2009. We assume that the clock’s hour-hand completes a rotation from twelve to twelve

through M clicks. The time interval between two consecutive clicks ∆t is normalized to 1.

The frequency of the regular oscillator is given by

(5.6) Ω =
2π

M
.

The regular oscillation is deterministic motion given by the rate equation

(5.7)
dξ

dt
= iΩξ

Being insigthful of the decision ∆t = 1, we set Ω� 1 in order for the dynamics to be

as close as possible to the coherent behavior of a regular clock. Each time duration between

back to back clicks is changed over into an operational time τ whose statistics are given by

the hyperbolic PDF;

(5.8) ψ(τ) = (µ− 1)
T µ−1

(τ + T )µ
,

. This is identical to realizing the time duration between crucial events given by Eq. (5.1).

Numerically these statistics are generated [72] by drawing a random number y with a uniform
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PDF on the interval [0, 1] (0 < y < 1) and changing over it into the operational time

using

(5.9) τ = T

[
1

y
1

µ−1

− 1

]
.

The outcome of this process yields a stochastic trajectory which for the simplicity of the

discussion is illustrated in Fig. 5.1. Here we concentrate our attention on µ > 2, a condi-

tion making the average value 〈τ〉 finite, where the brackets denote an average taken using

Eq.(5.8):

(5.10) 〈τ〉 =
T

(µ− 2)
.

The quantity of crucial events generated moving from noon to the long-time limit t is equal

to t/ < τ >. Thus, the frequency of the subordinated signal is equal to that of the coherent

oscillator.

It is vital to point out that the theoretical arguments using diffusion entropy analysis

(DEA) [28, 65], in the long-time limit the crucial events yield a scaling index

(5.11) δ =
1

µ− 1
,

We need to average the solution of Eq.(5.7) over an ensemble of realizations to obtain

the spectrum. Therefore, we define

(5.12) Y (t) = Re [〈ξ(t)〉] ,

where ξ(t) is a single realization and the brackets denote an ensemble average.

Also, we adopt the prescription

(5.13) 〈S(ω)〉 =
1

L

〈
|
∫ L

0

dteiωtξ(t)|2
〉
,

to evaluate the spectrum S(ω) with a time series of length L, which is equivalent to

(5.14) 〈S(ω)〉 = 2ReA,
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Figure 5.1. Subordinated cosine wave with Ω = 0.8 and µ = 2.8

where

(5.15) A ≡ 1

L

∫ L

0

dt1

∫ t1

0

dt2e
iω(t1−t2) 〈ξ(t1)ξ∗(t2)〉 .

It is helpful to notify that the correlation function, under the integral in Eq.(5.15),

isn’t stationary, yet it becomes stationary in the long-time limit. We expect that if the length

L of the time series is adequately large, the spectrum characterized by Eq.(5.13 ) reduces to

the ordinary Wiener-Khinchin prescription

(5.16) S(ω) =
1

2π

∫ +∞

−∞
Φξ(t)exp(−iωt)dt,

where Φξ(t) is the aged correlation function. The aged correlation function is a damped

oscillatory function, with a tail portrayed by the aged survival probability, specifically an
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Figure 5.2. Spectra corresponding to µ = 2.55 (top) and µ = 2.8 (bot-

tom).The red lines are the fitting to the numerical results. Top panel: The

red lines at the left of periodicity bumps yield γ = 0.43 to be compared to

the theoretical prediction γ = 3 − µ = 0.45. The red lines at the right of

the periodicity bump correspond to the prediction γ = 2. Bottom panel: The

red lines at the left of periodicity bumps yield γ = 0.26 to be compared to

the theoretical prediction γ = 3 − µ = 0.2. The red lines at the right of the

periodicity bump correspond to the prediction γ = 2.

IPL with index µ − 2. We expect, in this manner that for f → 0 the results of Eq. ( 5.2)

and Eq. (5.3) are recovered.

The numerical outcomes of Fig. 5.2 satisfy our heuristic arguments. Indeed, we find

that in the region of low frequency the theoretical prediction γ = 3 − µ is satisfactorily

confirmed. In the less exact case portrayed on the bottom of the figure, we run µ = 2.8 and
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the numerical outcomes correspond to an effective µ = 2.74. In the region of very high values

of ω, the exponential decay of the damped oscillations produce γ = 2. Between the two IPL

regions a bump shows up, this being a clear mark of the effective frequency that becomes

lower by decreasing µ. Actually, decreasing µ diminishes the rate of event production, which

corresponds to the effective frequency ωeff = rΩ . Decreasing the rate of event production

r decreases the effective frequency.

5.4. Power Spectra from Real Data

Here, we show the power spectrum of Eq. (5.13) of two individuals, C1 and C2,

practicing Chi meditation and two individuals, Y1 and Y2 practicing Kundalini Yoga me-

diation. We present samples of the HRV time series in Fig. 5.3 referring to individuals Y1

and C2 to understand our procedure in a more clear way. The data is taken from Physionet,

previously analyzed by Peng et al. [73] using completely different techniques than ours.

Among the meditators, Chi meditators are novices and the Kundalini Yoga meditators are

advanced practitioners. We observe that the main qualitative difference between Kundalini

Yoga and Chi meditation is that the rate of heartbeats in the former case significantly in-

creases, whereas in the latter it does not. However, coherent-like oscillations appear during

both types of mediation.

The power spectrum S(ω) for the case of Chi mediation is shown in Fig. 5.4. We

find that for both Chi meditators, C1 and C2, the transition from the pre-meditation to the

meditation condition produces visible periodicity bumps. Comparing from right to the left

panels, a bump appears at ω ≈ 0.34 radians per second for C1 and at ω ≈ 0.38 for C2, each

induced by meditation.

With the technique of scaling analysis presented in Section 5.5 the IPL index µ of C1

is found to change from 2.4, before meditation, to 2.55, during meditation. Similarly, the

IPL index µ of C2 is seen to change from 2.28, before meditation, to 2.54, during meditation.

Similar properties can be seen in the case of Kundalini Yoga meditation, Fig. 5.5. In the

latter case the periodicity bump during meditation for Y1 appears at ω ≈ 0.4 and for Y2
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Figure 5.3. HRV time series of Yoga meditator (Y1), at the top, and the

Chi meditator (C2), at the bottom. The vertical red lines denote the time at

which the two meditations start.

at ω ≈ 0.65. Note that in the case of both Y1 and Y2 meditators there exists periodicity

bumps before meditation. From the observation of these two experienced practitioners we

find that periodicity bumps exist, even before meditation, this suggest that the long term

practice of meditation yields permanent physiological effects. Regarding IPL index µ, the

evaluation done in Section 5.5 depicts that the individual Y 1, before meditation, has the IPL

index µ = 2.64, which moves to µ = 2.68. The individual Y 2 has the IPL index µ = 2.66

before meditation and the IPL index µ = 2.72, during meditation. We shall discuss this shift

in more detail in Section 5.6.
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Figure 5.4. The Power spectra S(ω) of Chi meditators (C1,C2) before, on

the right, and during meditation, on the left.

The spectrum of real data shown in Fig. 5.5 with the idealized surrogate spectrum

of Fig. 5.2 has impressive similarity. The top panel of Fig. 5.2 has been obtained using

subordination process with the IPL index µ = 2.55, which is the mean value of the IPL

index corresponds to Chi meditation and the bottom panel with the value µ = 2.8, is the

average value corresponds to the Kundalini Yoga meditation. More detail is presented in

Section 5.5.

We again take note that the spectral analysis had been previously examined by Peng

et al [73], and observed the meditation-induced bump first time. However, they didn’t talk

about the frequency region to the left of the bump, which from our analysis is theoretically
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Figure 5.5. The power spectra S(ω) of Kundalini Yoga meditators (Y1,Y2)

before, on the right, and during meditation, on the left.

obtained by crucial events. It is vital to say that Fig. 5.2 is produced by evaluating averages

of many numerical realizations. IPL index µ corresponding to the spectrum to the left of

the periodicity bump cannot be derived from the experimental spectrum because of single

realization. This information can be obtained by adopting the technique [28, 65] used by us

in Section 5.5.

5.5. Search of Crucial Events

As mentioned earlier, the search for crucial events is carried out using the method of

stripes, developed earlier [28, 65].
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Fig. 5.6 and Fig. 5.7 are obtained applying the analysis procedure of Refs. [28, 65]

to the HRV meditation data of Ref. [73]. We see the different effects with different forms of

meditation. Let us compare the Chi meditation Fig. 5.6, to the Kundulini Yoga meditation

Fig. 5.7. In both meditations we see the IPL index µ increases significantly. Among Chi

meditators only subject not changing µ is C7. For the rest, δ moves from above the dashed

line to below it. The change in µ is little low, for C1 and C5, moving from µ = 2.47 to

µ = 2.54 where as the higher change, for C2, moving from µ = 2.28 to µ = 2.54. In case of

Kundalini Yoga meditators the minimal change is for Y1, from µ = 2.64 to µ = 2.68 where

as the maximal change is for Y4, moving from µ = 2.66 to µ = 2.85.

Yoga meditators surprisingly have an effect of noticable increasing of ∈ in addition

to changing µ. Allegrini et al. [28] conjectured that 1− ∈ is an indicator of stress level that

will eventually lead to heart failure. According to this interpretation, we can say that yoga

is an efficient technique to reduce stress. It seems that Chi meditation is not as efficient as

Kundulini Yoga, since for some meditators, C3, C4 and C8, ∈2 is decreasing rather than

increasing.

5.6. Concluding Remarks

Here we oberved that meditation does not suppress the occurrence of crucial events

alongwith the well known fact that it creates “exaggerated heart rate oscillations” [73]. We

already figured out in an earlier publication [65] that these crucial events are often embedded

in a billow of uncorrelated and irrelevant events. This leads us to introduce the notion of

dressing. Meaning of dressed crucial event is that the time interval between the crucial events

are filled with poisson events. The exaggerated heart rate oscillations are the type of dressing

induced by meditation. The selection of the strip method [65] facilitated the evaluation of the

level of dressing by means of the measure ∈2. This allowed to illustrate 1− ∈ is the percent

of Poisson events which affect the HRV time series. Allegrini et al. [28] conjectured that the

Poisson events are the source of stress and the large quantity of such events as quantified

by ∈2, i.e., stress, might be the reason for heart failure. According to this interpretation,
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Figure 5.6. DEA scaling δ, IPL index µ and ∈2 of the HRV time series of

eight different participants before and during Chi meditation

one can conclude that the results of Fig. 5.7 demonstrate that Kundalini Yoga meditation

significantly diminish the level of stress. Therefore, this study provides a method of analysis

of HRV that might be utilized directly to evaluate the advantage of meditation, which are

currently examined indirectly, through the observation of psychological health [74].

Gard et al. [74] portrayed a fascinating remarks on the bottom-up and top-down

processes induced by yoga. We discover that the meditation-enhanced cognition mentioned

by them has the vital impact of changing the IPL index µ from a region near to the border

µ = 2, which is the ideal 1/f -noise, see Eq. (5.2), to a region nearer to the Gaussian basin

of attraction, µ = 3 [75].
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four different participants before and during Kundalini Yoga meditation

Does meditation make physiological processes more complex, or less complex? We

posit the plausible conjecture that meditation makes physiology more complex [51] through

the observation made in this study where we found the value of IPL index µ increasing

signifying a tendency towards the Gaussian basin of attraction. The increase of ∈2, with

significantly lessening the amount of Poisson events, facilitates the generation of regular

oscillations.

The shift taking place from a region near to µ = 2 to nearer to µ = 3 is a signature

of departure from the ideal 1/f -noise condition which fits the examination done by psychol-

ogists [76] in line with the phenomenological philosopher Heidegger [77], according to which
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cognition is activated by performing a difficult task. This fits with the examination done by

Correll [78] that the fast reaction to a difficult social identification task often results uncon-

scious bias; one measure of the task’s difficulty being the profound cognitive transition from

1/f - noise to white noise, corresponding to µ� 1. Meditation, generating a shift from the

ideal 1/f -noise to the Gaussian basin of attraction, which in the Poisson limit µ→∞ results

white noise, is a form of a difficult task that yields relaxation and stress reduction, where as

the difficult task of bypassing the unconscious bias might be a source of stress.

According to [79] and [80] phenomena such as dreamless deep sleep and brain dy-

namics under anesthesia respectively result a shift from the criticality condition, and this

is considered as favoring a lack of sensitivity to perturbation [81] in line with other recent

results [82]. There is another important literature written by Varela and his co-workers ac-

cording to which Buddhist philosophy, a source of meditation techniques is of fundamental

importance in dealing with the ambitious field of cognition [83], which is similar to those

examined in this study. Therefore we believe that this research approach plays an important

role to the advancement of cognition science.
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CHAPTER 6

DYNAMICS OF THE BRAIN

In this chapter we discuss how to combine the wave-like nature of the dynamics of the

brain with the existence of crucial events that are responsible for the 1/f noise. Crucial events

correspond to abrupt transitions in the wave-like structure of EEG’s, requiring a complex

procedure for their detection. We show that the anomalous scaling generated by the crucial

events can be established by means of a direct analysis of raw data. The efficiency of the

direct analysis procedure is made possible by the fact that periodicity and crucial events are

the product of a spontaneous process of self-organization. We argue that the results of this

study can be used to shed light on the nature of this process of self-organization.

6.1. Introduction

The dynamics of the brain are a challenging issue that is forcing researchers to go

beyond the conventional forms of non-equilibrium statistical physics [85] and is expected to

contribute to reshaping the emerging field of complex networks [86]. The dynamics of the

brain, as those of biological processes more in general, are characterized by homeodynamics

[87], thereby implying the analysis of the dynamics of the brain to be done taking into

account that they are driven by rhythms and waves.

A parallel line of inquiry has been developing in the past years focusing on the con-

nection between the dynamics of the brain and criticality [88, 89, 90]. Allegrini et al. [91]

using a technique proposed by Kaplan and co-workers [92] proved that the Rapid Transition

Processes (RTP) host crucial events.

Crucial events are defined in terms of their statistical properties as follows. The time

intervals between consecutive crucial events are described by a waiting time probility density

function (PDF) ψ(τ) with the inverse power law (IPL) structure

(6.1) ψ(τ) ∝ 1

τµ
,
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with an IPL index in the interval

(6.2) 1 < µ < 3.

The crucial events are renewal and consequently the times τi should not be correlated.

If a sequence of crucial events are defined by the time intervals τ1,τ2,τ3,....... then the time-

average correlation function is a Kronecker delta function where the time average is indicated

by an overbar

(6.3) C(t) =

∑
|i−j|=t

(τi − τ) (τj − τ)∑
i

(τi − τ)2
.

This correlation function is properly normalized, thereby yielding C(0) = 1, and in the case

of genuine renewal events should satisfy the condition C(t) = 0 for t > 0. This renewal

property can also be expressed by the assumption that the probability of occurrence of both

τi and τj, Π(τi, τj), when i 6= j is given by,

(6.4) Π(τi, τj) = P (τi) ∗ P (τj),

where P (τi) and P (τj) are the probability of occurrence of τi and τj, respectively. Allegrini

et al. [91] conjectured that these crucial events are a signature of criticality and addressed

the important tasks of detecting them from the observation of EEG [93]. The criticality

hypothesis is in line with the views of many other researchers [94, 95, 96, 97]. However, it is

not yet clear what kind of criticality, either that determined by externally tunning a control

parameter (Ising-like) or that achieved spontnneously through the internal system dynamics

i.e., Self-Organized Criticality (SOC), is expected to afford sufficient theoretical picture. We

discuss the open issue of the proper form of criticality to use to increase our understanding

of the brain dynamics in Section 6.5 and Section 6.6 .

The adoption of the RTP method is very attractive but, as shown in Section 6.2

its adoption does not make it possible for us to measure the complexity of brain dynamics

directly and in addition requires a filtering process. Herein we propose a technique of analysis

of EEG data not require the detection of RTPs, and leads to the detection of scaling directly
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from raw data. We show that the resulting scaling is identical to that obtained in earlier

work using RTP’s. More importantly , we argue that the present technique may help to

establish a bridge between EEG waves [98] and crucial events. In fact, as shown in Section

6.3, this result may lead us to understand more about what form of criticality to apply to

study the dynamics of the brain.

In section 6.2 we review the procedure adopted to detect RTP events. We devote

Section 6.3 to an intuitive introduction to the process of self-organization combining period-

icity and crucial events and in Section 6.4 we analyze the spectrum of one EEG to point out

the interesting qualitative agreement with the predictions of Section 6.3. In Section 6.5 we

illustrate a technique of detection of crucial events that will facilitate the analysis of EEG’s.

Finally, in Section 6.6 we make concluding remarks and plans for future work.

6.2. Detection of Rapid Transition Events

The efficacy of the RTP method in the study of brain dynamics has previously been

demonstrated by Allegrini and co-workers [91]. However, for the sake of clarity we sketch

the method here to emphasize the importance of recovering the same results for detecting

the same scaling, using a very different technique. We base our analysis on data derived

from Ref. [99], which are available in Ref. [27]. These EEG data have been filtered between

0.15-28 Hz and the sampling rate (Fs) is 2048 Hz. We select one healthy subject, from

the dataset, and the top panel of Fig. 6.1 shows the raw data of this subject. The second

panel displays one intrinsic mode function, obtained adopting the method of Hilbert-Huang

Transformation (HHT) illustrated in [100]. The HHT method decomposes the original EEG

signal into many intrinsic mode functions, with different structures. We select a structure

with a kind of sausage-like pattern suggested by the theoretical results of Bologna et al. [101].

They proved that a set of infinitely many three-state oscillators, cooperatively interacting

with an interaction parameter K, at criticality generate a coherent non-harmonic oscillation.

When the number of oscillators is finite the regular non-harmonic oscillations generate a

sausage-like structure similar to the second panel of Fig. 6.1. In Section 6.6.1 we shall make
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additional remarks on the criticality-induced sausage-like structure.

The third panel of Fig. 6.1 from the top is the module of the second panel. The

green curve in the fourth panel is the envelope of the curve of the third panel, called Testing

Sequence (TS). The blue curve in the fourth pannel of Fig. 6.1 is the Level Sequence (LS)

obtained from the TS via a running-average smoothing. Finally, the red crosses denote the

crucial events.

x xx xx xx
x

xx
xxxxxxxxxxx

x

EEG HHT

EEG Module

TS and LS

x
Actual RTP

EEG Raw data

Figure 6.1. Illustration of the RTP procedure

Note that this procedure to find the crucial events is not sufficiently accurate to

be restricted to detecting only renewal events. It is known that the events revealed by

this analysis are a mixture of crucial events and ordinary Poisson events [102]. However,

the presence of Poisson events does not prevent us from detecting the anomalous scaling

generated by the crucial events. The desired scaling is detected in the following way. The
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authors of [103] make the detected events generate a diffusion process x(t) using the rule

that the random walker makes a jump ahead when event, either crucial or Poisson, occurs.

The scaling generated by the Poisson events has a power-law index δ = 0.5, whereas the

scaling power-law index δ of the crucial events is given by the important relation

(6.5) δ =
1

µ− 1
,

Note that the latter scaling dominates asymptotically in the time due to Eq. (6.5) resulting

in δ > 0.5 when the condition 2 < µ < 3 applies [103]. When 1 < µ < 2 crucial events yield

the scaling δ = (µ−1), but the EEG’s studied in this paper and the subordination theory of

Section 6.3 adopted to explain their complexity show that we have to focus on µ > 2.

To be explicit, since in this paper as far as the scaling detection is concerned, we adopt

the same procedure as that proposed by Grigolini et al [103], we generate a fluctuation ξ(t)

holding the value 1 when an event, either crucial or Poisson, occurs, and the vanishing value

when no event occurs. The diffusion variable x(t) is obtained from the following equation of

motion

(6.6)
d

dt
x = ξ(t).

Using a moving window of size t, we generate a PDF p(x, t) and the Shannon information

entropy

(6.7) S(t) = −
∫ +∞

−∞
dxp(x, t)ln[p(x, t)].

The PDF constructed from the diffusion process has the scaling form

(6.8) p(x, t) =
1

tδ
F
( x
tδ

)
.

Then inserting Eq. (6.8) into Eq. (6.7), after a simple algebra yields

(6.9) S(t) = A+ δln(t),

where A is the entropy constant

(6.10) A ≡ −
∫ +∞

−∞
dyF (y)ln[F (y)].
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To make this treatment compatible with the hereby discussed arguments about intermediate

asymptotics, we rewrite Eq. (6.7) in the following way

(6.11) S(t) = C + δ(t)ln(t),

where C denotes a constant that may different from A, when, as in the case of this paper,

the proper complexity scaling emerges only in the intermediate asymptotics.

It is important to stress that a significant advance on regarding the theoretical justifi-

cation of Eq. (6.11) based on an extension of the theory of SOC, incorporating complexity in

the time domain, is called Self-Organized Temporal Criticality (SOTC) [38, 104, 105]. This

new theory leads us to strongly support the adoption of this method to define the crucial

IPL index µ. In fact, according to SOTC the processes of spontaneous self-organization, in

general, and especially those behind the statistical analysis used herein, namely physiolog-

ical processes, naturally evolves to a state generating the crucial events defined in Section

6.1. These events emerge in the intermediate time scale, called intermediate asymptotics

[106, 53]. As a consequence of temporal complexity emerging in the intermediate time scale,

S(t) is not a straight line when expressed as a function of ln(t). As shown in Fig. 6.2, it

is a straight line in the intermediate time scale and its slope is used to define the statistics

of crucial events occurring in that intermediate time scale through the power law index µ

established by Eq. (6.5).

To explain using an intuitive interpretation the intermediate asymptotics, we notice

that the short-time region corresponds to the time scale where the self-organization is not

yet perceived by the interacting units. According to SOTC [38], the intermediate time scale

with temporal complexity becomes more and more extended with an increasing number of

units cooperatively interacting. However, the fluctuation intensity becomes smaller and the

long-time scale is a sort of Poisson shoulder that, however, does not affect the communication

efficiency of the complex system that is determined by the intermediate time region. The

exponential truncation favors the transmission of information because the flexibility of the

complex system to the environmental influence requires that the system explores a sufficiently
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high number of crucial events (free-will states) to adapt itself to the external influence and

the exponential truncation has the effect of making the mean value of the mean time interval

between consecutive crucial events finite, even in the case µ < 2. We remind the reader that

the theoretical mean time between crucial events is < τ >∝ 1/(µ − 2), if µ > 2 and it is

divergent if µ < 2 and the inverse power law distribution density is not truncated.

The events generated by SOTC are renewal thereby explaining the adoption of Eq.

(6.5) for the connection between δ and µ, which is based in fact on the renewal assumption

[103].
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Figure 6.2. Detection of the scaling δ applying DEA to the diffusion process

generated by a random walker making a jump ahead when a crucial event

occurs.
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We see from Fig. 6.2 that the subject examined with DEA procedure yields µ =

2.2.

It is convenient to stress the fact that the choice of the RTP method, illustrated in

Fig. 6.1, has been motivated by the intuitive assumption that crucial events have physical

effects. With reference to the second panel from the top of Fig. 6.1, an event may be

located in the short time region of weak fluctuations separating an ending sausage from the

beginning of a new one. Actually, the theoretical approach outlined in Section 6.3 suggests

that many more crucial events exist, thereby leading to a scaling method evaluation resting

on a much larger number of crucial events, even if, as in the case of the method of Kaplan

et al [92], not all the events adopted to generate the diffusion process analyzed with DEA,

are crucial.

6.3. Subordination

Establishing the statistics of the crucial events hosted by EEG’s by means of the

detection of RTP, unfortunately, does not help us to build a bridge between the wavelike

nature of EEG’s and crucial events. To establish the theoretical connection between the

periodicity of EEG’s and crucial events, we adopt the SOTC of units with an individual

periodicity, for instance the SOTC [38] as applied to the Kuramoto model [107]. This

computationally demanding approach has not yet been converted into an analytical approach

to bridging waves and crucial events. We believe that the theoretical remarks of this Section

are a fair account of this form of SOTC.

The research work done in the recent past on the brain with the help of the RTP

method led the authors of Ref. [108] to conclude that the crucial events are characterized

by values of µ very close to µ = 2, according to the prescription

(6.12) S(ω) ∝ 1

ω3−µ .

The derivation of this spectrum was done by the authors of Refs. [109, 72] assuming that

the time regions between consecutive crucial events are filled with either +1′s or −1′s, values
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generated by a coin tossing algorithm. No direct evaluation of the EEG spectrum was done.

Herein we see that if the EEG spectrum is evaluated, the frequency region for ω → 0 is

affected by strong fluctuations making it difficult to assess the IPL property of Eq. (6.12).

However, we are able to shed light into the overall structure of the spectrum and we argue

that this is compatible with Eq. (6.12).

To establish a bridge between crucial events and periodicity, as done by Ascolani et al.

[71], we make an extension of the well known Continuous Time Random Walk (CTRW) [110,

111, 112]. The subordination to a coherent process with frequency Ω is a mathematical simple

way of simulating a genuine process of self-organization. We have a clock with frequency Ω

the hands of which move clockwise from noon to noon making TRR clicks with an interval of

∆t. Thus,

(6.13) Ω =
2π

TRR∗∆t
.

The crucial events, some of which have been detected by Allegrini et al. [91] through

the search of RTP, are imbedded into this regular motion, by assuming that the time interval

between consecutive clicks is derived from a waiting-time PDF ψ(τ) with the temporal

complexity of Eq. (6.1). The explicit analytical form of ψ(τ) is

(6.14) ψ(τ) = (µ− 1)
T µ−1

(τ + T )µ
,

corresponding to the survival probability

(6.15) Ψ(τ) =

(
T

τ + T

)µ−1

.

The parameter T serves the purpose of properly defining the short-time scale and setting the

normalization condition Ψ(0) = 1. The temporal complexity becomes important at times

τ � T .

This procedure of infusing the original perfect coherence of the clock with complex

randomness establishes a bridge between waves and crucial events. This has the effect of
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turning the frequency Ω into an effective frequency Ωeff , thereby modeling a process of self-

organization of interacting oscillators, each of which is characterized by its own frequency,

into a collective homeodynamic process.

According to the theoretical treatment of Ref. [113], valid for µ > 2,

(6.16) Ωeff =
Ω(µ− 2)

T
.

This theoretical prediction suggests, in agreement with Fig. 6.3, that the frequency peak is

evident for µ > 2 and that, in addition to that, it also depends on the parameter T of the

waiting time distribution density ψ(τ) of Eq. (6.14). This property is used in Section 6.4 to

shed light into the meaning of the HHT components of the method adopted to detect RTP

events [100]. In the range µ > 2, when both the first and second moment of τ are finite,

Ωeff = Ω [113].

This illustration of subordination makes it evident that crucial events are not only at

the border between consecutive pieces of the sausage but the oscillatory-like behavior within

a sausage hosts crucial events. This observation suggests that it should be possible to design

a method of statistical analysis for extracting information from a larger set of crucial events

even if they remain invisible.

Fig. 6.3 illustrates spectra generated by surrogate sequences obtained using the subor-

dination method with ∆t = 1 unit. We keep the frequency Ω fixed and change the power law

index µ. We note that a spectrum consists of three parts. There exists a peak corresponding

to the effective frequency Ωeff that shifts to the right upon decreasing µ and disappears for

µ < 2. At the left of the Ωeff the slope of the spectrum β obeys the prescription

(6.17) β = 3− µ.

We see that the spectrum becomes flat at µ = 3 and remains flat for higher values of µ, as

clearly shown in Fig. 6.3.

Note that due to the average of many realizations, which is not possible with a real

EEG, the region of small frequencies is regular and is not affected by the fluctuations that

would appear when evaluating the spectrum with only one time series. For this reason,
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Figure 6.3. Spectra obtained averaging over 300 trajectores with numerical

parameters T = 0.5 and the regular oscillation before subordination has the

frequency Ω = 0.77.

the adoption of surrogate time series makes it possible for us to prove that, as expected,

subordination is compatible with the emergence of 1/f noise in the ideal case µ = 2.

6.4. Spectra from Raw Data

In this section we discuss the spectrum generated by real EEG fluctuations as shown

in Fig. 6.4. We see that the region of low frequencies is very erratic, due to the fact that, as

mentioned earlier, the use of only one time series makes it impossible to generate a smooth

curve. There exists a sign of a frequency bump, generated by periodicity, and for frequencies
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larger than this bump the slope β = 2 is recovered. This real spectrum depends on a wide

set of frequencies.
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Figure 6.4. Spectrum obtained from raw data

To stress the multi-frequency nature of the real spectrum, using again the HHT

method [100] we evaluate six intrinsic mode functions of the EEG raw data corresponding

to the spectrum of Fig. 6.4. These different components of the whole signal correspond to

six different frequencies of decreasing value. They are the frequencies: 26.84 Hz; 18.97 Hz,

10.59 Hz; 5.406 Hz and 2.438 Hz and 1.031 Hz, which are shown in Fig. 6.5.

In Fig. 6.6 we use the subordination prescription described in Section 6.3 with ∆t

as a inverse of sampling frequency of real data (∆t = 1
2048

sec) to generate surrogate spectra

that should help clarify the meaning of the different spectra in Fig. 6.5. We assign to the
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Figure 6.5. Power Spectra of the same subject with different frequency com-

ponents.

monochromatic frequency 62 Hz with six different values of the parameters T , mimicking the

dominant frequencies of the six HHT components illustrated in Fig. 6.5. The real spectrum

of Figure 6.4 is interpreted as a superposition of the spectra illustrated in Fig. 6.6. In fact

all these spectra share the property β = 3−µ in the small frequency region and the property

β = 2 in the large frequency regions and intermediate region where the change of slope

occurs is significantly more extended than in the monochromatic case.

6.5. Method of Stripes

The stripe method was originally adopted to detect the scaling of crucial events hosted

by heartbeats [28] and was not used in the case of EEG’s probably because of a lack of a

proper theoretical understanding of the connection between crucial events and periodicity.

The same method was more recently applied by Bohara et al. [65] to establish a connection

between the occurrence of crucial events and multifractality.

In Section 6.3 we used an intuitive illustration of the process of self-organization,
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Figure 6.6. Power Spectra generated according to subordination of Section 6.3 .

based on subordination that affords theoretical support for the adoption of the method of

the stripes. The central idea is that the RTP method detects only a small fraction of crucial

events, whereas real EEG’s, and subordination theory with them, host a much larger number

of crucial events, even if they remain invisible.

Fig. 6.7 shows how the method of stripes works. As is well known [93], an EEG mea-

sures Event Related Potentials (ERPs) which, in turn, measures the rate of firing neurons.

The method divides the vertical axis into many stripes of size ∆E, here assumed to have the

value ∆E = 1/30 µv, and we record the times at which the raw signal crosses the line sepa-

rating two adjacent stripes. The level of the stripe is determined by the number of neuron

firings at a given time, and we record for how long that firing rate remains constant.

The change from one firing rate to another is an event. Of course this event is not

necessarily a crucial event. As a consequence, the time distance between consecutive events

cannot be used to define the important parameter µ. This lack of precision in determining

the occurrence of crucial events applies also to the RTP method. Let us call NT the total
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Figure 6.7. Illustration of the method of the stripes. The size of stripes is

∆E = 1/30 µv.

number of events detected, Nc the total number of (unknown) crucial events and Nnc the total

number of non-crucial, possibly Poisson events. The intermediate asymptotics, revealing the

complex scaling δ of Eq. (6.5), begins earlier upon increase of the ratio

(6.18) rc ≡
Nc

NT

.

In both cases, the adoption of the DEA method is essential. In fact, after recording

events with the method of the stripes, as done with the method of RTP, we adopt the

prescription of Ref.[103]. We turn again the sequence of detected events, either crucial or

not, into a diffusion signal x(t) by making the random walker jumping ahead by a fixed

quantity, equal to 1. As pointed out in Section 6.2, the non-crucial events generates a

diffusion process with scaling δ = 0.5 and the crucial events, on the contrary, generate the
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scaling of Eq. (6.5) that for µ > 2 is larger than 1/2, thereby making it possible for DEA to

establish the correct scaling of Eq. (6.5) at long times.
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Figure 6.8. DEA applied to the diffusion process generated by the stripe-

crossing events.

The result illustrated in Fig. 6.8 shows that the scaling detected with this method

is virtually identical to the result obtained with the use of RTP method. In both cases the

complex scaling of Eq. (6.5) appears in the intermediate time regime, but it appears that

the present method is somewhat more accurate, since the slope covers three decades of scale,

see Fig. 6.8, while the RTP method is limited to only two decades (Fig. 6.2). This is a clear

indication that the method of stripes makes the ratio rc of Eq. (6.18) significantly larger

than the RTP method.
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6.6. Concluding Remarks

The adoption of the RTP method makes it easy to establish the non-local nature of the

brain criticality [91]. This is a consequence of the fact that it is sufficient to count how many

electrodes undergo RTP’s at the same times. However, the detailed illustration of Section

6.2 shows that the procedure to establish the occurrence of an RTP is not straightforward

and we think that it may be replaced by the adoption of a cross-correlation function between

the EEG generated by different electrodes. But this remains to be verified.

6.6.1. Self-Organized Temporal Criticality (SOTC)

The sausage-like structure of the model studied by Bologna et al [101] has a surprising

similarity to the second panel from the top of Fig. 6.1. This is not accidental. In fact, the

theory adopted by Bologna et al [101] is a phase transition obtained by assigning to the

control parameter K the critical value K = 1.5. At criticality the oscillators are no longer

independent of the others and as a result of highly correlated motion they generate a regular

non-harmonic oscillation.

The SOTC is a new form of self-organization suggested by the observation Beig et al.

[114]. When a system at criticality is assigned a distribution different from the equilibrium

distribution, the system is expected to relax back towards equilibrium with infinitely slow

motion, referred to as critical slowing down. At equilibrium, however, the mean field retains a

fixed mean value. These observation apply when the system has an infinitely large number of

units. When the number of units is finite the mean field fluctuates around the mean value. In

the special case studied by Bologna et al. [101], when the mean field has a regular oscillation,

the intensity of these oscillations and their frequency are modulated in time generating the

sausage-like structure of the second panel from the top of Fig. 6.1. Subordination theory

affords a simple way of mimicking this process of organization, introducing ad hoc the crucial

events, which actually are the results of a spontaneous self-organization.

The processes of phase transitions are characterized by power laws with indices ex-

pressing the universality of criticality. The construction of renormalization group theory
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made it possible to determine without a detailed knowledge of the the micro-interactions of

the system, the scaling nature of phase transitions. In the case of the brain the micro-units,

whose dynamics depart from the erratic behavior of independent units to collective behavior

at criticality, are neurons. However, in spite of the frequent use of the term SOC these model

rest on tuning a control parameter to critical value that establishes global properties mak-

ing the micro-dynamics unimportant in favor the macro-dynamics of criticality. If a neuron

fires all the neurons linked to it makes a step ahead towards the firing level. Criticality is

a condition generated by a suitable value of the control parameter that establishes a com-

plex dynamics characterized by temporal complexity, namely, the crucial events defined in

Section 6.1. An interesting example of ”Self-organized criticality” is given by Levina et al.

[97]. They propose a very interesting model generating super-criticality and sub-criticality

as well as criticality, a puzzling result because we expect that a process of self-organization

may lead only to criticality. We make the conjecture that SOTC may realize this wide set

of condition depending on how the process of self-organization is realized.

This work has been submitted to Frontiers in Physiology for the publication.
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

In conclusion, we have analyzed the human heartbeat time series and established that

in fact the heartbeats are characterized by the occurrence of crucial and Poisson events. An

increase in the percentage of crucial events makes the multifractal spectrum broader, thereby

establishing the connection between crucial events and multifractality.

These results led us to focus our analysis on the statistical properties of crucial events.

We have adopted the same statistical analysis to study the statistical properties of the heart-

beat dynamics of subjects practicing meditation. The heartbeats of people doing meditation

are known to produce coherent fluctuations. In addition to this effect, we made the surpris-

ing discovery that meditation makes the heartbeat depart from the ideal condition of 1/f

noise.

We oberved that meditation does not suppress the occurrence of crucial events along-

with the well known fact that it creates “exaggerated heart rate oscillations” [73]. We already

figured out in an earlier publication [65] that these crucial events are often embedded in a

billow of uncorrelated and irrelevant events. This leads us to introduce the notion of dressing.

Meaning of dressed crucial event is that the time interval between the crucial events are filled

with poisson events. The exaggerated heart rate oscillations are the type of dressing induced

by meditation. The selection of the strip method [65] facilitated the evaluation of the level

of dressing by means of the measure ∈2. This allowed to illustrate 1− ∈ is the percent of

Poisson events which affect the HRV time series. Allegrini et al. [28] conjectured that the

Poisson events are the source of stress and the large quantity of such events as quantified

by ∈2, i.e., stress, might be the reason for heart failure. According to this interpretation,

one can conclude that the results of Fig. 5.7 demonstrate that Kundalini Yoga meditation

significantly diminish the level of stress. Therefore, this study provides a method of analy-

sis of HRV that might be utilized directly to evaluate the advantage of meditation, which

are currently examined indirectly, through the observation of psychological health [74]. We
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found also that the long-term practice of meditation has the effect of making permanent the

meditation-induced physiological changes.

We also discussed how to combine the wave-like nature of the dynamics of the brain

with the existence of crucial events that are responsible for the 1/f noise using subordination

theory. Crucial events correspond to abrupt transitions in the wave-like structure of EEG’s,

requiring a complex procedure for their detection. We showed that that the anomalous

scaling generated by the crucial events can be established by means of a direct analysis of

raw data. The efficiency of the direct analysis procedure is made possible by the fact that

periodicity and crucial events are the product of a spontaneous process of self-organization.

We argue that the results of this study can be used to shed light into the nature of this

process of self-organization.

Based on this examination, we intend to address the issue of heart-brain commu-

nication. We would bring up that our theoretical approach may make it conceivable to

clarify why meditation has the impact of enhancing the energy of EEG alpha waves, as per

observation [115], using Kriya Yoga, which is not the same as Kundalini Yoga.

Kundalini Yoga is known to be an efficient way to treat certain psychiatric disorders

[116], but the therapists using this technique are looking for further improvements [117].

Varela and his co-workers according to which Buddhist philosophy, a source of meditation

techniques is of fundamental importance in dealing with the ambitious field of cognition

[83], which is similar to those examined in this study. Therefore we believe that this research

approach plays an important role to the advancement of cognition science.
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