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ABSTRACT

An analytical procedure has been evaluated to determine whether low and
high cycle fatigue testing techniques may be correlated in the 10s cycle region
where the data overlap. The procedure, which is based on the use of cyclic
stress-strain curves to convert high cycle fatigue stresses to equivalent
strains, is shown to be acceptable for Incoloy 800H, Hastelloy X, Type 304
stainless steel and 2l-sCr-LMo steel in the ranges of temperature for which data
are available.

1. INTRODUCTION

Most fatigue work currently being carried out in the power industry is
focused on the low cycle fatigue (LCF) regime where the cycles to failure
(Nf) are typically less than 105. Such information is used to estimate the
degree of fatigue damage accumulation in components which are subjected to
large cyclic strain changes brought about by thermal transients. Relatively
little attention has been paid to the high cycle fatigue (HCF) area for which
Nf may be considerably greater than 10s. Examples where this class of fatigue
behavior occurs are in vibrating heat exchanger tubes, large rotating apparatus,
and in tee joint locations where cyclic stressing may result from rapid thermal
fluctuations caused by the mixing of fluids at different temperatures. To
obtain meaningful HCF data the cycling rates should be in the 10-50 Hz range
to simulate prototypic strain rates and attempts must be made to simulate the
stress-strain history of components which are subjected to HCF deformation.

Since low cycle testing is usually carried out under strain control and
slow cycling rates, and high cycle testing under load (stress) control at much
faster rates of cycling, the question arises whether the two test procedures
may be correlated in the 103 cycle range where they overlap. This is not a
trivial question since differences in cycling rates could be important as could
be the differences in early stress-strain history for strain controlled and
load controlled tests. If, however, a correlation can be obtained then a single
fatigue curve may be specified for the 102-103 cycle. Below is described an
attempt to define a useful correlation technique for high and low cycle test
procedures.

2. EXPERIMENTAL PROCEDURES

All of the HCF results were obtained for an air environment on Materials
Test Systems (MTS) closed loop electrohydraulic fatigue units operating in the
push-pull mode with a sinusoidal load controlled waveform at a frequency of
40 Hz. Specimens were heated with a resistance type furnace controlled to
+ 2°C (4°F).

*This work was performed under the auspices of the United States Nuclear
Regulatory Commission.



3elow ars given the materials examined together with the chemical compo-
sitions. In some cases two heats of the same material were used.

Table 1

Composition of High Cycle Fatigue Test Materials

Concentration ("eight %)
Material

T304 SS
T304 SS
I-300H
1-3OOH
Has celloy X

Heat

Esocl.
55697
3NL Heat
HE 3113A
KK 7427A
4-2309

C

0.12
0.06
0.08
0.06
0.05
0.11

Ni

0.21
9.38
9.55

32.11
32.17
Bal.

Mn

0.44
0.91
1.74
0.90
0.67
0.50

Cr

2.20
13.50
13.68
20.35
19.83
20.67

0
0
0

3

Mo

.91

.05

.25
-
—
.86

0.
0.
2.

Others

—

-
-

39 Ti, 0.36
43 Ti, 0.39
1 Co, 0.66 \

Al
Al

Fe

3al.
Bal.
Bal.
45.2
45.4
13.7

The^iCr-lMo steel was austenitized at 916°C (1700°F) for 1 hour, then held at
704 C (1300°F) for 2 hours and slow cooled; the Tyae 304 stainless steel, Incoloy
300H and^-iastelloy X were solution treated at 1066 C (1950°F), 1149 C (2100 F)
and 1177 C (2150 F ) , respectively, and all were then water quenched.

All specimens were surface ground to an hourglass configuration. The
Hascelloy X specimens had a 0.64 cm (G.25 in.) minimum diameter whereas all
others had a 0.32 cm (0.125 in.) diameter.

In a recent paper by Jaske it was suggested that high cycle data be gener-
ated using one of the following procedures:

a) Performing the entire test under strain control while measuring the load.

b) Performing the initial portion of the test under strain control and
switching to load control aftar steady state deformation has been
achieved.

c) Performing the entire cast under load control while monitoring the
strain response to estimate the extent of initial transient deformation.

The current work was conducted using essentially the last procedure with
slight modifications. Firstly, the unavailability of strain gauges to monitor
deformation at the high cycling rates used precluded any measurements of the
transient strain levels. Secondly, it was deemed unwise to begin the test under
load control since the very large initial strains involved could lead to pre-
mature failure or specimen distortion. Instead, the load was increased from zero
to the required value in about 10 seconds (400 cycles). It can be seen that this
type of stress ramping is basically similar to that which would actually exist
in cyclically stressed components during a reactor startup phase.

3. EXPERIMENTAL RESULTS AND AilALYSIS

Figures 1 through 4 show the basic high cycle data obtained for the load
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(scrass) controlled condition. It seems that those materials which are known
to exhibit thermally induced strengthening (Type 304 stainless steel and Incoloy
800H) show a well defined endurance limi; except at very high test temperatures
where precipitation strengthening is much smaller.2'3 Hastelloy X and 2kCr-"Dla
are not thermally strengthened at the test temperatures used2,4 and endurance
limits are not achieved even after 103 accumulated cycles.

In order to correlate these deta with low cycle results, low cycle informa-
tion was obtained from the open literature.5-10 The data were from Argonne
National Laboratory (ANL), Battelle Memorial Institute (SMI) now Battelle
Columbus Laboratories, General Atomic Company (GA), General Electric Company (GE),
Aerojet Nuclear Corporation (ANC) now EG&G Idaho, Inc., Martesc Company, and Oak
Ridge National Laboratory (OP^IL). These organizations are referenced in the
appropriate figures. For the low cycle results, only data obtained for a strain
rate of 4 :< 10"3 sec"1 were considered since this represented the predominant
straining condition.

Figure 5 is a schematic of the stress-strain responses for low cycle and

HYS"=ESiS :
LOOP AS I STABLE -i''STi=f£3iS

LOOP A3

Figure 5. Schematic of high cycle and low cycle fatigue test conditions.



high cycle test procaduras. In Che low cycle case straining is sufficiently slow
for the scrass-strain curves Co be continuously monitored. For the high cycle
case, in which the cycling rate is extremely high and the strains are low, it
is practical only to monitor the load (stress). Nots that significant differ-
ences may occur in the initial stress-strain responses for the LCF and HCF
testing depending on the stress (strain) levels selected. These differences
disappear as soon as a steady state hysteresis loop is established at which
point load and strain control occur simultaneously.

Figures 6 through 9 shew that a good correlation may be obtained for LCF
and HCF data in which stress is the dependent variable, provided a suita-.."-*
choice is made for an "average" stress for the strain controlled LCF tests.
In this case the value is arbitrarily taken to be the measured stress level
at half the fatigue life, i.e. at 0.5 Sf. This appears to be a logical choice
since data for several austenitic materials show that after an initial period
of cyclic work hardening the stress level approaches a relatively stable value
which is maintained over a large proportion of the remaining fatigue life."
For all materials and test temperatures single curves may be drawn through the
low and high cycle data. The implications of these good correlations are:
(a) the difference in the strain rate for the two tjroes of test, which could
amount to 1-2 orders of magnitude, is relatively insignificant, (b) the
differences in the stress-strain history prior to the establishment of stable
hysteresis loop conditions also does not seen to be important. Strain rate
differences, however, could become important for very slow LCF test conditions
if time dependent (creep) deformation becomes pronounced.

In order to correlate the data using strain as the dependent variable
a means must be devised to convert the KCF stresses to equivalent strains.
Previous workers often assumed that the deformation in HCF is purely elastic
so that a direct stress to strain conversion may be made using Young's modulus.
This was found tc be invalid for the four materials tested. Figure 10 illus-
trates this for Incoloy 800H. Clearly, the strains are greatly underestimated
since significant plasticity is associated with the current HCF tests in the
10k cycle range. To circumvent this problem cyclic stress-strain curves were
constructed from the data in references 5 through 10. These curves, an
example of which is given in Figure 11, relate the steady state stress and
strain levels at 0.5 Nf and account for both elastic and plastic strain compo-
nents. Using these curves to convert the HCF stresses to equivalent strains
it may be shown that a good correlation is obtained as shown in Figures 6, 9,
12 and 13. The use of cyclic stress-strain curve data thus appears to be an
acceptable procedure for correlating HCF and LCF data. In addition, Che correla-
tion obtained between the two test procedures indirectly validates one of the
HCF test procedures recommended by Jaske.-

&. CONCLUSIONS

The above results and analyses for i3othermally annealed 2l-cCr-L>!o steel,
Type 30<i stainless steel, Incoloy 300H, and Hastalloy X strongly indicate
that the cyclic stress-strain curves nay be used as an acceptable means for
correlating HCF and LCF data. For the data evaluated, the analyses show that
differences in strain rate and earlv stress-strain history for the two tytses
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of test are not significant. Because of this the HCF procedure, which is
usually used to obtain data for the analysis of rapidly stressed components,
may also be used as a time saving procedure for extending the LCF curve from
about 10s to 103 and beyond. However, additional work along the lines suggested
» T=>skê - should be conducted to compare other test procedures.

The above results are more comprehensively described in references 11
through 14.
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