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ABSTRACT

We report on the status of our investigations of the effects of systematic
errors upon the practical merits of Langevin updating in full lattice QCD.
We formulate some rules for the safe use of this updating procedure and
some observations on problems which may be common to all approximate

fermion algorithms.
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We report on the status of our invesiigations of the efects of sys-
tematic errors upon the practical merits of Langevin upcaiing in full lattice

QCD. Ve formuizie some rules jor the saie use
a2nc some observations on probiems which mey

Trgie Iermmien 2igorithoms.

NTZRODUCTION AND SUMMARY

Lagersien
.. . . . . . -
goriinmms vsed for the numerica! simuiation of

recogni

suiteé for such studies, because the origin of

cing the origins and effecis of sysieme

zeC as one of the mejor probiems in the field i1i. The upde

of this updating procecure

be common 1o 2!l approxi-

tic erreos i

QCD is

lattice

-~ 0

SVEUE€INETIC £ITOoTs IS

tnderstood (3,4) and because the leading errors 2re under anaiytic conirel

2-5. Since Langevin updating can be connected to microcznenica: updai-

ing viz “nydrid” ezigosithms 16] and to pseudo-fermicn updating (7. vie the

procedure suggested in Ref. I8!, any fndings on Langevin systexatic errers
2!so Turn out 10 be relevent to these other procedures, Thisi

w ‘saafofdura

‘fiuelrem Kue saye

SS€ 10 ‘pandunt Io ssaidyy

JANIVTIOSIq



Our numerical study of the systematic errors in Langevin algorithms
for QCD with dynamical quarks 9,10} is restricted to basic (non-hybrid,
real-action, non-Fourier-accelerated) updeting. It takes place on a 4* lattice
having periodic boundary conditions in . directions and antiperiodic ones
in the fourth. The coupling is fixed to § = 4.8; we simulate four flavors of
Kogut- Susskind quarks of masses ma = 0.1 and ma = 0.05 using the Cornell
group’s bilinear noise approach [2].

We measure planar Wilson loops at various values of the discrete step
size in Langevin time. The systematic error originates in the finite value of
this step size and becomes worse as the step size increases. It is interesting
to assess the effect of the bias uporn planar Wilson loops, because these
are the fundamental building blocks of most lattice observables. Therefore,
the errors on the fundamental Wilson loops will in general propagate non-
trivially to plague the eventual phvsical quantities one wants to extract.

As 2 benchmark 10 assess the effects of the error, we use the measure-
ments of the same loops performed with an algo:;t“m which computes the
fermion determinant directly {11}. We aiso compare the Langevin results 10
those odtained with the pseudo-fermion method at verious acceptances i11].
Since the number of iterations necessary for equilibrztion and the size of time
correietions in eguilibrivm are imporzanz in determining the toial cos: of 2
numerical experiment which aims for a given statistical error, we ziso moxni-
tor these quantities by various methods. Note that these guantities decrease
as the time step increases. What we require is 2 procedure which allows us
10 run 21 the lacgest possible step size with an accepiable systemaiic error.

The mezin result we want to present here is 2 sei of
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ones obtained by method A; time correlations will be smalier
but the overall cost is slightly larger because this algorithm
requires two conjugate gradient inversions instead of one.

2. For the values of the step size mentioned above, the non-integrable
contribution to the leading systematic error is numerically unimpor-
tant.

3. There are physically important problems of a qualitative nature, such
as the presence or absence of a first-order phase transition, which can
be investigated without worrying about the systematic error. One
can study these using either first order or second order algorithms,
with a step size (say, ¢ = 0.01) which should still be small enough
that the absolute values of the monitored quantities (plaquette,XX,
Polyzkov line) are reasonzble. When using the Euler algorithm, one
should shift the coupiing, number of fiavors and mass according to
the formulae given in Refs. {2,5.10..

4. Theeffect of the systematic error becomes more severe when the guark
mass is decreased 1o me = 0.05. In this case, runs at € = 0.001 are
no longer sufficient: one shoulé go to still smalier siep sizes.

2. ALGORITHMS

We shall begin by briefy reviewing the basic notaiions zné formealism
of discrete Langevin diffusion processes in SU{3) group space, the origin of
systemeztic errors in Langevin updaiing and the algorithms we have been
testing. Any SU{3) lattice iink vasieble U, {=,7) (= zuns over iattice sites
and u runs over Euclidean directions) is updated from Langevin time 7x 10
Tx-.: DY the formula
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This difference between 5 and S is the origin of the systematic error in
Langevin updating. The explicit form of the relationship (2} can be used
to engineer f, such that the error be minimal {n in Eq. (2) maximal). Un-
fortunately, (2) can be worked out analytically (so far) only to first order
in €, so that algorithms can only be improved to yield n = 2 [2-5]. There-
fore, numerical experiments remain the only way to assess the eflects of the
systematic bias upon lattice observables.

We report here on the performance of the following Langevin algo-
rithms for. full QCD:

1. First-order {Euler) QCD with fermionic noise. The driving force is {3]
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Fig. 1: Performance of the Euler algorithm for Langevin QCD. The full cor-
ridor indicates the benchmark result [11]. Error bars are corrected for
time correlations in equilibrium [12). Straight lines represent possible
exirapolations.
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Tigure 1 presents the dependence of the 1 X I Wiison ioop oxn the step
size. It has been obtained by using the Euler algorithm under the following
condéizions: B = 6/g"’ = 4.8, the quack mass in lattice vnits ma = 0.1, four
favors of Kogut-Susskind quarks. The inversion of M was done by conjugate
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Notie that our definition of the residue differs from other popular definitions
by not dividing out the length of the vector f- (our r = 0.05 is of the order
10~% in the other normealization). In the meen, the required accuracy was
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resulted to be about 0.88 milliseconds on the CRAY X-MP 22 at NMFECC
(as compared to about 0.77 milliseconds for a similarly optimized pseudo-
fermion code). Equilibration was checked in all cases by comparing averages
over successive batches of 3000 iterations, for all Wilson loops up to 3 x 3.
At € = 0.01 we also checked that hot and cold starts converge to the same
average plaquette. The final averages were then obtained over 3000 iterations
at equilibrium.

The corridor in Fig. 1 represents the result of the recent direct com-
putation of the fermion determinant [11], which was done under exactly the
same conditions as the present study. We see that we can come close to the
benchmark either by running at sufficiently low ¢ (¢ < 0.001) or by doing two
runs in the interval ¢ € |0.005,0.01] and extrapolating linearly to ¢ = 0. An
extrapolation based on runs below ¢ = 0.01 would underestimate the value
of the plaquette by far.
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Fig. 2: Performance of Runge-Kutsa algo*nnm for Langevin QCD. Open
circles represent the resulis of the aigorithm of Eq. (5) 2nd crosses

represent the resuits of Tc. {6). Tae f:ll comridor shows the result of
the exact computation [11_1



TABLE I: Relative performance of Langevin and pseudo-
fermion algorithms (me = 0.1). Algorithm D is the direct
computation [11], P reproduces the relevant pseudo-fermion
results of [{11) and L is the Runge-Kutta algorithm of (5).

Alg. Acc. [ W(1,1) | W(1.2) | W(1,3) | W(2,2) |W(2,3) |WI(3,3)
D 042 | .039 .023 .016 .005 .001
(.003) [ (.003) | (.003) | (.003) | (.002) | (.002)

P .86 | .042 | .039 .024 017 .005 .001
' (.002) |(.002) | (.001) { (.001) | (.001) | (.001)

L |.001 039 | .038 024 .018 .004 .003
(.002) | (.002) | (.002) | (.002) | (.002) | (.002)

P .74 | .030 | .027 016 .010 .003 .001
(.002) | (.002) | (.001) | (.001) | (.001) | (.001)

L |.01 .031 | .029 .018 .011 | .002 | .002
(.002) |(.002) | (.001) ! (.001) | (.001) | (.001)

4. RUNGE-KUTTA ALGORITHMS

Figure 2 contains the same information as Figure 1 for the case of
the Runge-Kutta algorithms (5) and (6). Table I assesses the quality of
various planar Wilson loops measured using Eq. (5) with res;act to the
benchmerk set in Ref. [11] and with respect to the pseudo-fermion algorithm
at various accepiances {11]. Using Eq. (53), one must do 2 conjugate gradient
inversions per Langevin step; the updating time per link becomes about 1.65
miliiseconds and the memory. requirement becomes about 5/4 that for the
Tuler or pseudo-fermion-schemes. Eq. (6) requizes 3 inversions pe: time step
and takes abous 2.37 milliseconds per link update.

Ve see that the higher-order errors are still substantial unless ¢ S
0.001, iz which case both first-and higher-order errors are rather smell. The
improvement gained by canceliing the non-iniegrable term is seen to be in-
significant. There appears 10 be 2 correpondence between the Langevin and
the pseudo-fermion algorithms: Runge-Kuttz at ¢ = 0.001 is comparable to
pseudo—fe:-mions 21 86% accepiance and Runge-Kutiz at ¢ = 0.01 10 pseudo-
jermions zi 74% accepiance. Time correiztions ané hence the correcied
siatistical ecrors [12] are systematically smaller for the Runge-Kutta than
for the Euler scheme However, the total run time required to achieve 2
given accuracy would still be higher for the second-order scheme because of
the addizional matrix inversion.
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Fig. 3: The Runge-Kutta algorithm for Langevin pure SU( ). All the runs
are on a 4% lattice with 8 = 4.8. The benchmeark is based on runs

with the standard Metropolis et al. method.
5. LOWERING THE QUARK MASS

Ref. [11] has observed that the pseudo-fermion algorithm perfo"'":
less well with respect 10 the benchmark at qQuark mass ma = 0.03 then &
ma = 0.1. Would this also be the case for Langevin updating? We have

run the Runge-Kutta algorithm based on Eq. (3) at ma = 0.05 in order 10
answer this guestion. Using € = 0.001 and 2 stopping T residue of 0.2 {as in
{11]) which is reached aiter 121 conjugate gradient iteraiions on the average,
we spend about 2.13 milliseconds per link update and find

(W (1,1)) = 0.404 = 0.003
as cornpared to [11]
(W (1,1)) = 0417=0.002  (DIRECT ALGORITHEM)
(% (1,1)) = 0.410=0.006 (PSEUDO — FERMIONS 86%)



We tried lowering the stopping residue to r = 0.01 (reached after about 189
conjugate gradient iterations: 3.32 milliseconds per link update) but all the
Wilson loops remained the same within errors (for instance, (W (1,1)) =
0.405 = 0.003).

It would seem that Langevin at ¢ = 0.001 is still comparable to
pseudo- fermions at 86% acceptance and that the eflective systematic er-
ror increases for both algorithms as the quark mass is decreased. That this
is indeed an effect of the non-linear fermion determinant can be seen by
comparing Fig. 2 to Fig. 3, which shows the e-dependence of ¥ (1,1) in
pure SU(3) [10]. The range of ¢ where Langevin algorithms give good results
appears to shrink progressively as the quark mass decreases from infinity.
This tends to confirm the observation [13] that the residual systematic error
in Eq. (2), for fermionic schemes, is actually of the order €?/A*%, where X is
some average over field configurations of the lowest eigenvalue of the lattice
Dirac operator. It is known that this average decreases with the quark mass.
It is tempting to speculate that the same effect is 2lso seen in the pseudo-
fermion scheme.

6. CONCLUSIONS

Our numerical experiments have shown that the analytically intraci-
able terms of order c? and higher in Eq. (2) have substantial efiects upon
planar Wilson loops in full QCD. Based on the known first-order correction
terms, one had hoped that all systematic errors could either be eliminated
by improving the naive Euler algorithm or they would be irrelevant in the
continuum limit. Zven though the quantitative insignificance of the leading-
order non- integrable term is good news in this respes:, the large effecis of
higher- order terms mean that such an optimistic conclusion cannot bé taken
f~r granted in the general case. One should therefore respect the “safery
-:les” we recommended above.

A study such as the present one obviousiv cepends tpoz the exisiens
of relizble and accurate benchmarks. It is therefore very importani to pursue
the effort initiated in {11}, to make sure the direct algoriihzm has no significant

hidden bias of its own and to improve the statistics of these benchmeark runs.
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