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ABSTRACT 5|-||f

We report on the status of our investigations of the effects of sys-
tematic errors upon the practical merits of Langevin updating in full lattice
QCD. We formulate some rules for the safe use of this updating procedure
and some observations on problems which may be common to all approx:-
*r?E.te fermion algorithms.

. . INTRODUCTION AND SUMMARY

Understanding the origins and effects of systematic errors in the al-
gorithms used for the numerical simulation of lattice QCD is increasing:}"
recognized as one of the major problems in the field (li. The updating pro-
cedure based on the discretized version of the Langevin equation [2--=̂  is well
suited for such studies, because the origin of its systematic errors is well
understood [3,4] and because the leading errors are under analytic control
^2-5;. Since Langevb updating can be connected to microcanonical updat-
ing via "hybrid" algorithms j6j and to pseudo-fermion updating [7] via the
procedure suggested in R.ef. [8]. any findings on Langevir. systematic errors
may also turn out to be relevant to these other procedures. This is especially
likely for the specific effects of the fermion determinant.



Our numerical study of the systematic errors in Langevin algorithms
for QCD with dynamical quarks [9,10] is restricted to basic (non-hybrid,
real-action, non-Fourier-accelerated) updating. It takes place on a 44 lattice
having periodic boundary conditions in li directions and antiperiodic ones
in the fourth. The coupling is fixed to 0 — 4.8; we simulate four flavors of
Kogut- Susskind quarks of masses ma = 0.1 and ma = 0.05 using the Cornell
group's bilinear noise approach [2j.

We measure planar Wilson loops at various values of the discrete step
size in Langevin time. The systematic error originates in the finite value of
this step size and becomes worse as the step size increases. It is interesting
to assess the effect of the bias upon planar Wilson loops, because these
are the fundamental building blocks of most lattice observables. Therefore,
the errors on the fundamental Wilson loops will in general propagate non-
trivially to plague the eventual physical quantities one wants to extract.

As a benchmark to assess the effects of the error, we use the measure-
ments of the sane loops performed with an algorithm which computes the
fermion determinant directly jllj. We also compare the Langevin results to
those obtained with the pseudo-fermion method at various acceptances ill ' .
Since the number of iterations necessary for equilibration and the size of time
correlations in equilibrium are important in determining the total cost of a
numerical experiment which aims for a given statistical error, we also moni-
tor these quantities by various methods. Note that these quantities decrease
as the time step increases. What we require is a procedure which allows us
to run at the largest possible step size with an acceptable systematic error.

The ~air. result we want to present here is a set of "safety rules" for
Langevin updating:

1. IT. order to obtain Wilson loop measurements is. reasonable agreement
with the benchmark for quark mass ma = 0.1. one may choose out of

A. One run with the first-order (Euier) algorithm using a time
step £ £ 0.001. Since time correlations are rather large with
this method, the run must be sunicientiy long.

3 . Use the Su'ier algorithm, but do 2 cr 3 runs in the step size
interval £ € [0.005,0.0l\ A linear extrapolation to £ = 0 gives
a good central value for your ioc?.

C. One can do one run with the second-order (S.unge-Kutta) al-
gorithm with ^ 0.001. This will give results similar to the



ones obtained by method A; time correlations will be smalier
but the overall cost is slightly larger because this algorithm
requires two conjugate gradient inversions instead of one.

2. For the values of the step size mentioned above, the non-integrable
contribution to the leading systematic error is numerically unimpor-
tant.

3. There are physically important problems of a qualitative nature, such
as the presence or absence of a first-order phase transition, which can
be investigated without worrying about the systematic error. One
can study these using either first order or second order algorithms,
with a step size (sa}-, e = 0.01) which should still be small enough
that the absolute values of the monitored quantities (plaquette.X'X,
Polyakov line) are reasonable. When using the Euler algorithm, one
should shift the coupling, number of flavors and mass according to
the formulae given in Refs. 12.5,10,.

4. The effect of the systematic error becomes more severe when the quark
mass is decreased to me = 0.05. In this case, runs at e = 0.001 are
no longer sufficient: one should go to still smaller step sizes.

2. ALGORITHMS

We shai: begin by briefiy reviewing the basic notations and formalism
of discrete Langevin diffusion processes in 5U(3) group space, the origin of
systematic errors in Langevin updating and the algorithms we have been
testing. Any SU(3) lattice link variable Uli(z,r) (z runs over lattice sites
and u runs over Euclidean directions) is updated frcn Langevin time r_y to
"v_- by the formula

^ ( - - . v - i ) = l'ni=:'x)^'?i-ifz~z) (I)

where T.- are the generators of SU(3) (c = 1.2,...5; rrJ-T; = cs;/2) and
/ ; = fz. <U. r,-} is called the driving force. The driving force is built out
of link matrices and out of S SU(3}-matrices rlc which generalize the white
noise of stochastic quantization \2] (c = 1, 2 , . . . S:- \r,z) = 0, (rj-^j) = 2ccj).
It contains the discrete time step of the Langev-n s:—uiatior.. t = r.y-i — r.y.

Any given choice of the driving force deir.es a Langev-- updating
algorithm for the theory. One can then use the Foiker-Pianc:-: equation
associated to (I) to determine the equilibrium action 5 of the Langevir:
difrusicr. as a. function of the QCD action 5. The rssuh :s cf the form ;5-5;

S = ST0[en), ( » = i , 2 , . . . ) (2)



This difference between 5 and S is the origin of the systematic error in
Langevin updating. The explicit form of the relationship (2) can be used
to engineer fa such that the error be minimal (n in Eq. (2) maximal). Un-
fortunately, (2) can be worked out analytically (so far) only to first order
in £, so that algorithms can only be improved to yield n = 2 12-5]. There-
fore, numerical experiments remain the only way to assess the effects of the
systematic bias upon lattice observables.

We Teport here on the performance of the following Langevin algo-
rithms for. full QCD:

1. First-order (Euler) QCD with fermionic noise. The driving force is [3]

fa = e (daS, [U] - i*tyiB [U] A - ^ (3)

where Sg is the usual Wilson action.

Aa \U\ = AT1 \U) da (M'M) AT1 [U], (4)

M = D — ma such that S = Ss — (1/2) Tr ir.M'M for 4 Savors of
staggered quarks and £ is & bilinear noise, normalized like the rlc

:s,.
This ieaves 5 — S of order of order e [3.51.

2. "Naive" second-order (Rungs-Kutta) Q CD with, fennionic noise. This
is denned by the driving force [5]

- \?-Az\U\* - J*ACV]X) - vlr,, (5)

where U ~ U (r,7_v_;/2) represents an iriterrnediate update obtained
by Zqs. (l) and (3) ar.d X in a. second bilinear noise. The difference
between S and 5 is now of order r. up to a sc-calied uncri-integrabie
lemr which arises from averaging over the bilinear noise and which
is o: oraer C~ ;o;.

A "traer second-order algorithm., which leaves only errors of order
2 and higher, can be obtained by cancelling the non-imegrab-e term
explicitly |5]. This is done by replacing ric in Zq. (5) by

£

Vc = [Csb ~ T^3-e{rA~XX~Abi}]r]b (6)
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Fig. 1: Performance of the Euler algorithm for Langevin QCD. The full cor-
ridor indicates the benchmark result [ll]. Error bars are corrected for
time correlations in equilibrium [12]. Straight iines represent possible
extrapolations.

3. THE EL'LER ALGORITHM

Figure 1 presents the dependence of the 1 x 1 Wilson loop on the step
size. It has been obtained by using the Euler algorithm under the following
conditions: 3 = 6/g' = 4.8, the quark mass in lattice units ma = 0.1, four
flavors of Kogut-Susskind quarks. The inversion of M was done by conjugate

gradient. We imposed the stopping condition r = MjAff — ;|; :J < 0.G5.
Note that our definition of the residue differs from other popular definitions
by not dividing out the length of the vector £ (our r = 0.05 is of the order
10~s in the other normalization). In the mean, the required accuracy was
reached after 65 conjugate gradient iterations. The updating time per link



resulted to be about 0.88 milliseconds on the CRAY X-MP 22 at NMFECC
(as compared to about 0.77 milliseconds for a similarly optimized pseudo-
fermion code). Equilibration was checked in all cases by comparing averages
over successive batches of 3000 iterations, for all Wilson loops up to 3 x 3.
At e = 0.01 we also checked that hot and cold starts converge to the same
average plaquette. The final averages were then obtained over 3000 iterations
at equilibrium.

The corridor in Fig. 1 represents the result of the recent direct com-
putation of the fermion determinant [11], which was done under exactly the
same conditions as the present study. We see that we can come close to the
benchmark either by running at sufficiently low e (e ^ 0.001) or by doing two
runs in the interval e € (0.005,0.01] and extrapolating linearly to t — 0. An
extrapolation based on runs below £ = 0.01 would underestimate the value
of the plaquette by far.
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Fig. 2: Performance of Runge-Kima algorithms for Langevin QCD. Ooen
circles represent the results of the algorithm of Eq. (5) and crosses
represent the results of Ec. (6). The full corridor shows the result of
the exact commutation fll'l.



TABLE I: Relative performance of Langevin and pseudo-
fermion algorithms (ma = 0.1). Algorithm D is the direct
computation [11], P reproduces the relevant pseudo-fermion
results of [11] and L is the Runge-Kutta algorithm of (5).

Alg.j

D

P

L

P

L

.001

.01

Ace.

.86

.74

W(l,l)

.042
(.003)

.042
(.002)
.039

(.002)

.030
(.002)

.031
(.002)

W(l,2)

.039
(.003)

.039
(.002)
.038

(.002)

.027
(.002)

.029
(.002)

W(l,3) |W(2,2)

.023
(.003)

.024
(.001)
.024

(.002)

.016
(.001)

.018
(.001)

.016
(.003)

.017
(.001)
.018

(.002)

.010
(.001)

. Oil
(.001)

W(2,3)

.005
(.002)

.005
(.001)
.004

(.002)

.003
(.001)

. 002
(.001)

W(3;S)

.001
(.002)

.001
(.001)
.003

(.002)

.001
(.001)

.002
(.001)

4. RUNGE-KUTTA ALGORITHMS

Figure 2 contains the same information as Figure 1 for the case of
the Runge-Kutta algorithms (5) and (6). Table I assesses the quality of
various planar Wilson loops measured using Eq. (5) with res:- act to the
benchmark set in Ref. [11] and with respect to the pseudo-fermion algorithm
at various acceptances [11].. Using Eq. (5), one must do 2 conjugate gradient
inversions per Langevin step; the updating time per link becomes about 1.65
milliseconds and the memory, requirement becomes about 5/4 that for the
Euler or pseudo-fermion-schemes. Eq. (6) requires 3 inversions per time step
and takes about 2.37 miliiseconds per link update.

We see that the higher-order errors are still substantial unless e £
0.001, in which case both Erst-and higher-order errors are rather small. The
improvement gained by cancelling the non-integrabls term is seen to be in-
significant. There appears to be a correpondence between the Langevin and
the pseudo-fermion algorithms: Runge-Kutta at e = 0.001 is comparable to
pseudo-fermions at 86% acceptance and Runge-Kutta at e = 0.01 to pseudo-
femior.s at 74% acceptance. Time correlations and hence the corrected
statistical errors [12] are systematically smaller for the Runge-Kutta than
for the Euler scheme. However, the total run time required to achieve a
given accuracy would still be higher for the second-order scheme because of
the additional matrix inversion.
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Fig. 3: The Runge-Kutta algorithm for Langevin pure SU(3). All the runs
are on a 4* lattice with /? = 4.8. The benchmark is based on runs
with the standard Metropolis et al. method.

5. LOWERING THE QUARK MASS

Ref. [11] has observed that the pseudo-fermior. algorithm performs
less well with respect to the benchmark at quark mass ma = 0.05 than at
ma = 0.1. Would this also be the case for Langevin updating? We have
run the R.unge-Kutta algorithm based on Eq. (5) at ma = ̂ 0.05 in order to
answer this question. Using £ = 0.001 and a stopping residue of 0.2 (as in
(11]) which is reached after 121 conjugate gradient iterations on the average,
we spend about 2.13 milliseconds per link update and find

(W {!,!)) = 0.404 = 0.003

as compared to [11]

(W (1,1)) = 0.417 = 0.002 (DIRECT ALGORITHM)

(W (1,1)} = 0.410 = 0.00^ (PSEUDO - FERMIONS 86%)



We tried lowering the stopping residue to r = 0.01 (reached after about 189
conjugate gradient iterations: 3.32 milliseconds per link update) but all the
Wilson loops remained the same within errors (for instance, (W (1,1)) =
0.405 = 0.003).

It would seem that Langevin at e = 0.001 is still comparable to
pseudo- fermions at 86% acceptance and that the effective systematic er-
ror increases for both algorithms as the quark mass is decreased. That this
is indeed an effect of the non-linear fermion determinant can be seen by
comparing Fig. 2 to Fig. 3, which shows the e-dependence of V/ (l, 1) in
pure SU(3) [10]. The range of e where Langevin algorithms give good results
appears to shrink progressively as the quark mass decreases from infinity.
This tends to confirm the observation [13] that the residual systematic error
in Eq. (2), for fermionic schemes, is actually of the order e2/A4, where X is
some average over field configurations of the lowest eigenvalue of the lattice
Dirac operator. It is known that this average decreases with the quark mass.
It is tempting to speculate that the same effect is also seen in the pseudo-
fermion scheme.

6. CONCLUSIONS

Our numerical experiments have shown that the analytically intract-
able terms of order e2 and higher in Eq. (2) have substantial effects upon
planar Wilson loops in full QCD. Based on the known first-order correction
terms, one had hoped that all systematic errors could either be eliminated
by improving the naive Euler algorithm or they would be irrelevant in the
continuum limit. Even though the quantitative insignificance of the leading-
order non- integrable term is good news in this respect, the large effects of
higher- order terms mean that such an optimistic conclusion cannot be taken
f̂ r granted in the general case. One should therefore respect the "safety
r iiesr we recommended above.

A study such as the present one obviously depends upon the existence
of reliable and accurate benchmarks. It is therefore very important to pursue
the effort initiated in [11], to sake sure the direct algorithm: has no significant
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