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ABSTRACT

This paper discusses some solutions to problems common to the design,

management and maintenance of a large high energy physics spectrometer

software system. The experience of dealing with a large, complex program

and the necessity of having the program controlled by various people at

different levels of computer experience has led us to design a program

control structure of mnemonic and self-explanatory nature. The use of this

control language in both "on-line" and "off-line" operation of the program

will be discussed. The solution of structuring s. large program for modu-

larity so that substantial changes to the^ program can be made easily for a

wide variety of high energy physics experiments is discussed. Specialized

tools for this type of large program management are also discussed.

1. INTRODUCTION

The trend in high energy physics has been toward larger and more

complex experiments which require large and complex software systems for

monitoring and data analysis from these experiments. The sheer size of
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some of these programs can sometimes overwhelm the often limited staff of

physicists needed to run these experiments. Even in the case where the

manpower is not a basic limitation, the problems of putting together con-

tributions from several people and making it a well-functioning, easily-

maintained software system can overwhelm any experimental group, unless new

tools and computer techniques are adopted by the physicists. In this paper

I will attempt, to describe some of the solutions to some of the problems

encountered in the development of the MPS software. Our solutions may not

all be original or unique, but they may be of interest to others. The

discussion that follows is. based on the contributions from several members

of the MPS group [1], The MPS program is coded in Fortran IV, except for a

few computer-dependent machine-language routines.

2. PROGRAM STRUCTURE

The BNL Multipartiele Spectrometer (MPS) data-reduction program is

well-suited for structuring as a set of tasks performed seiially. This is

probably true for most large high-energy physics experiments. Most spec-

trometers produce information from the various detectors in a form of

encoded strings of bits as input and the .task of the program is to produce

a table of numbers summarizing the physics results as output, after going

through a long chain of calculations. I don't mean by this that this type

of program would not be well-suited for computers with parallel architec-

ture when they come into existence.

This chain usually consists of a series of links of tasks to be per-

formed on the data. An example of a task would be the unpacking of data

from the various detectors and converting it to coordinates in the lab.

Another task would be to recognize a pattern in the data from the detector

which constitutes the sought-after signal which is selected from the



detector background. As one continues through the analysis chain, other

obvious well—defined tasks come up.

These types of analysis requirements lead to obvious program modules

for each detector or group of detectors. But as experimental requirements

change, so do the requirements for different types of detectors. In order

to facilitate easy changes in the software from experiment to experiment,

the modularization by detector is also desirable. These requirements have

led us to modularization of our software in a matrix form. The tasks for

each device form the matrix elements.

We have implemented this scheme in what we call the ROUTE structure.

Each task is assigned a number code, and each detector (or device) is as-

signed a bit position in a word. This assignment occurs automatically at

program Initialization using a master list of devices. For convenience, we

have extended the definition of a device in our scheme to some well-defined

tasks as well, e.g. pattern recognition. The connection of each device to

the analysis chain is by a

GALL ROUTE (I.DEV)

where I is the task number, and DEV is a string of bits, where each bit

position signifies a particular device. Some of the task number defini-

tions are shown in Table 1.

The subroutine ROUTE itself is nothing but a switchyard for "dispatch-

ing" routines located in each device-dependent module of code. Typically,

two lines of code look like:

IF((DEV.AND.IRDRI).NEoO)CALL DISDRl(l)

IF((DEV.AND.IRPWC).NE.O)CALL DISPWC(l)

Subroutine DISDRI is the dispatching routine for drif t chambers and DISPWG

is the dispatching routine for proportional wire chambers. The dispatching



routines respond to the value of the task number, I, to call the routines

within the separate modules of code to perform the task itself. The con-

nection of the device-dependent code is through the dispatching routines

only. Therefore the addition or removal of device-dependent code is very

simple. Also, on the dynamic scale, the selection of devices to perform a

particular task is a matter of setting a bit mask. That is, the argument

DEV in the call to RODTE can select different devices on each call by

turning the corresponding bits on or off.

3. CONTROL LANGUAGES

Another problem faced by most large high-energy physics programs is

the ability to select and control the execution of the various tasks in the

data analysis chain by a substantial number of different people who may

have a limited knowledge of the internal structure of the program. This

means the adoption of an easy-to-use, yet flexible, control language.

We have adopted a mnemonic character-oriented series of commands to

specify the execution of a well-defined task in the program. Our acronym

for this control language is COMAC. It recognizes a set of commands, each

of which can be up to 5 characters long and may be abbreviated to the first

3 or 4 letters if there is no ambiguity. Each command branches to a well-

defined task which may need an additional set or sets of commands to select

a particular set of branches to subtasks.

A sample dialogue is shown in Figure 1. The operator replies to the

computer prompts are shown in boxes (except for two blank responses). In

Figure 1 on the first line the program prompts the operator for the next

command. He replies with a request for his options by typing OPT. The

command OPT or an unknown command at any level in the command string will

list the options available to the operator. On the-next two lines the



computer answers with the list of recognized commands and comes back with a

prompt for the next command. Note that in Figure 1 the list of commands

contains only the characters against which the commands are tested by the

program. Longer commands can be typed for mnemonic value, but only up to

first 5 characters are tested. Unfortunately, at our current level of

implementation, these lists are the actual mnemonic commands without any

further explanation. This requires the operator to have some familiarity

with functional meaning of these commands.

In this example, the operator wishes to assign the physical device LPP

as his printer. He therefore requests for the ASSIGN task (with options)

and continues with the dialogue until *the device LPP is assigned. He then

supplies two blank commands to return to the request for the next command.

A blank response to a prompt for input signifies the preservation of the

current value of a parameter and continuation to the next prompt. At the

termination of any command level a blank response returns to the previous

level. A blank response at the COMMAND level continues the execution of

the analysis program.

A series of commands to subtasks can be strung out on one line sepa-

rated by commas. This is shown in the last box in Figure 1. The semicolon

termination (;) prompts the program to return for a request of a new com-

mand for a new task. A termination with a colon (:) ends the command

string and initiates program execution. This feature of COMAC, allowing

command input as a string of commands, leads to its easy implementation in

the "off-line" batch mode of operation of the program. Each command string

becomes an input data line which is read before the execution of the pro-

gram is initiated.



The program is initialized with a default set of parameters. There-

fore a dialogue with the program is necessary only if a change is needed.

Very commonly used strings may be assigned a synonym equivalent of the

string. The program compares all commands shorter than three characters to

a table of synonym strings. For example, to suppress an error message, the

command ES is equivalent to supplying the following string of commands:

ONOFF ,,FAC .ERRMESS, SUPR

4. SOFTWARE MANAGEMENT TOOLS

The complexity, size, and the necessary modularity of programs for

high energy physics experiments produce management problems not unlike

encountered by systems programmers. These large software systems require

constant modification of some parts by any of a number of people in a group

without producing chaos in the system as a whole. This requires adequate

management tools to monitor the system as a whole. Considering the scope

of this paper, I can only mention a few that our group has developed.

FORTRAN code leads to easy modularity if some self-discipline is

adhered to^ but it can lead to rather huge volumes of undocumented code if

it is not. We have developed character manipulation code which will scan

the source code for comments immediately after the subroutine statement and

tabulate alphabetically all subroutine names with their corresponding com-

ments. It will also indicate the code module name where the subroutine

resides. We call this documentation program SDCOM. If the coder of the

subroutine has briefly documented the purpose and function of his code,

then we can obtain an up-to-date documentation of all our software

libraries by running all the sources through SUCOM. In this way we reduce

thf! amount of work necessary to obtain up-to-date documentation of our

libraries.



FORTRAN code also allows the labeled common data storage structure.

Again, this helps modularity, but it can produce chaos in allocating the

variable positions and names within the common block. We have adopted a

. scheme based OD a feature of the CDC UPDATE utility [2] for program library

maintenance^ This feature allows the separation of the code and the defi-

nition of tha r of labeled commons into two different files. The

common bloĉ r ide is replaced by a statement

*CALL NAME

where NAME is .the labeled common name. The contents of the common blocks

are kept in a separate file with each one preceded by statement

*COMDECK NAME.

At the time of compilation, the two files are "merged and the *CALL state-

ments are replaced by the actual contents of the common block. The advan-

tage of this scheme is that the common block is defined in only one place

and yet it can be used by many subroutines. Of course, this imposes the

rigidity of using specific variable names as defined in the common block

when writing the code, but it is a small price to pay for the flexibility

in making changes in the code. To those of you using CDC software this

probably is a familiar scheme, but we felt that it has a great enough

advantage that we have implemented this on two other computers: DEC PDP-1O

and DEC VAX 11/780. Commercially developed code management systems [3] are

also currently becoming available that have this COMDECK feature. They

have been also implemented on several different computers.



5. CONCLUSIONS

In this brief paper I have discussed some of the solutions to problems

raised in the design, management and operation of a large high-energy

physics spectrometer software system. In particular, I have discussed the

ROUTE matrix modularization scheme, the COMAC control language, the SUCOM

documentation program and the COMDECK labeled common block management

system as implemented in the MPS software system.



TABLE 1

Some examples of task definitions

1 = 1 Read-in program parameters; called by PARFRW(CONTRO)

1 = 2 Write-out, same file read in under 1; called by PARFRW(CONTRO)

1 = 3 Initialization; called by CONRUN(CONTRO)

1 = 4 Unpack and store coordinates; called by CONVNT(CONTRO)

1 = 5 Local pattern recognition; called by CONVNT(CONTRO)

1 = 6 Print the coordinates for this event; called by EDUMP(FACLIB)

1 = 7 Print pattern recog. results for this event; called by

EDDMP(FACLIB)

1 = 8 Print totals of error conditions; called by OUTPUT(CONTRO)

1 = 9 Print other totals and statistics; called by OUTPUT

I = 10 Print parameters; called by OUTPUT
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FIGURE CAPTION

F i g . 1 COMAC dialogue with on - l i ne program. Operator r e p l i e s are shown

i n boxes.
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COMMANDS ARE ASSIG, DDT , ERASE, LOOP , OPT , PARAM, PATH ,
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