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SUMMARY 

The fuel elements of a High-Temperature Gas-Cooled Reactor (HTGR) consist of monolithic 

graphite moderator blocks that are drilled with a pattern of holes having various diameters. 

The stress analysis of this structure is demanding from a computational standpoint. The 

geometry, even with a two-dimensional approximation, is sufficiently complicated that an 

accurate representation requires several thousand finite elements. A two-dimensional stress 

analysis could require a stiffness matrix containing 50,000 degrees of freedom. This was 

beyond the capability of most finite element programs. As a result, stress analysts sought 

various modeling approximation techniques including a method of local mesh refinement and 

homogenizing the holes with an equivalent solid material. These methods were employed 

largely without verification because a complete fine mesh analysis was not economically 

feasible. 

Two steps have been taken to quantify and improve the accuracy in the analysis. First, 

the limitations of various approximation techniques have been studied with the aid of smal

ler benchmark problems containing fewer holes. Second, a new family of computer programs 

has been developed for handling such large problems. 

This paper describes the accuracy studies and the benchmark problems. A review is 

given of some proposed modeling techniques including local mesh refinement, homogenization, 

a special-purpose finite element, and substructuring. Some limitations of these approaches 

are discussed. The new finite element programs and the features that contribute to their 

efficiency are discussed. These include a standard architecture for out-of-core data 

processing and an equation solver that operates on a peripheral array processor. 

The central conclusions of the paper are: 

1. Modeling approximation methods such as local mesh refinement and homogeniza

tion tend to be unreliable, and they should be justified by a fine mesh 

benchmark analysis. 

2. Finite element codes are now available that can achieve accurate solutions at a 

reasonable cost, and there is no longer a need to employ modeling approxima

tions in the two-dimensional analysis of HTGR fuel elements. 

» 
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1. Introduction 

The fuel elements of a High-Temperature Gas-Cooled Reactor (HTGR) consist of hexagonal 

prismatic blocks of graphite that are drilled with a triangular pattern of holes having dif

ferent diameters. In the standard fuel element, shown at the bottom of Fig. 1, about two-

thirds of the holes contain fuel rods, and about one-third are coolant channels. In the con

trol element, top of Fig. 1, the typical pattern is interrupted by three or four larger 

channels for control rods and reserve shutdown material. The purpose of this paper is to 

describe some recent benchmark studies pertaining to numerical accuracy (defined below) in 

the stress analysis of HTGR fuel blocks. The current studies are limited to a two-dimen

sional, linear, static analysis, although the final application is more complex. 

The loads on the block include spatially varying thermal and irradiation-induced strains 

plus seismic loads. The temperature fields, the stress fields, and the geometry of the block 

have both local and global characteristics. In addition, the graphite material is non

linear and viscoelastic, and its properties are functionals of the temperature and irradia

tion history. 

These circumstances result in a large numerical analysis problem. Even with a two-

dimensional approximation, a significant number of finite elements is required to model the 

geometry and to resolve the local and global aspects of the stress field. An example of a 

fuel block mesh is shown in Fig. 2. This mesh contains 3774 eight-node isoparametric ele

ments with 13976 nodes total. The stiffness matrix has 27955 degrees of freedom. 

Until recently, the solution of such a problem, particularly in a nonlinear time-

dependent case, was not economically feasible with the available finite element codes. As 

a result, analysts sought various modeling approximation techniques, including a method of 

local mesh refinement [1] and homogenizing the holes with an equivalent solid material [2]. 

These methods were employed largely without verification because a complete fine mesh 

analysis would have been too costly. 

In the stress analysis of a safety-related component there is a need to quantify errors 

from all sources. Therefore, two steps have been taken to resolve the question of numerical 

accuracy. First, limitations of various approximation techniques have been studied with 

the aid of smaller benchmark problems containing fewer holes. Second, a new family of com

puter programs has been developed that is capable of efficiently solving very large problems. 

This paper reports the results of these activities. Section 2 contains a brief review 

of modeling techniques that have been considered. The limitations of these techniques are 

discussed along with reasons why they have not been adopted. Section 3 describes the fea

tures of our latest finite element codes. Finally, Section 4 summarizes the results of the 

small problem benchmark studies, which were used to compare the efficiencies of various 

element types and to estimate the numerical accuracy achievable with full-sized problems. 

Two sources of numerical error are considered. The first is discretization error, which 

is the theoretical difference between a finite element solution and an exact solution. 

The second is roundoff error, caused by the finite precision of the computer. 



Smith, P. D. -3- Dl/8 

2. Review of Modeling Techniques 

2.1 Local Mesh Refinement 

A popular method to solve complicated structural problems is to first employ a coarse 

model to determine displacements or forces in a global sense. The coarse model results are 

then used as boundary conditions for a fine mesh analysis of a local region. Such a method 

was proposed in Ref. [1] for the analysis of HTGR fuel blocks. However, an evaluation of 

this method by Sullivan [3] indicates that it must be used with extreme caution. 

Local mesh refinement is accurate only to the extent that the global response is well-

approximated by the coarse model analysis. A coarse mesh of finite elements may be too stiff 

for modeling a multiple-holed structure, and, as a consequence, the displacements and stres

ses may be underestimated. It is possible to gain some efficiency by reducing the error in 

the stress to the same magnitude as the error in the global displacements, but the gain is 

problem-dependent. Sullivan [3] reported one case in which the coarse mesh was responsible 

for errors of 39% in the displacement and 65% in the peak stress, yet local mesh refinement 

had essentially no effect on the calculated peak stress. 

It was concluded that local mesh refinement must be separately justified for each case 

to which it is applied, and for this purpose a globally fine mesh is desirable. 

2.2 Equivalent Homogenous Material 

J The "equivalent solid plate" method is recommended by the ASME for the stress analysis 

of tube sheets [4]. In this method the holes are replaced by a homogenous material having 

an equivalent stiffness. Smeared stresses are readjusted using stress concentration factors. 

As explained in Ref. [4], the equivalent plate method is intended for the elastic anal

ysis of an extensive repeating hole pattern subject to in-plane mechanical loads. A similar 

method was used by Gwaltney and McAfee [2] for the thermal-stress analysis of an HTGR con

trol block subject to a cure-in-place furnace cycle. However, to perform an accurate stress 

analysis under reactor conditions some additional complicating factors must be considered: 

1. The material is nonlinear and viscoelastic, 

2. The stress field includes local and global, thermal and mechanical contributions 

in varying proportion, 

3. No portion of a control block hole pattern is far from an edge or discontinuity. 

In our judgment the effort that would have been required to account for these factors in the 

equivalent plate method would have been excessive. A fine mesh analysis would be required 

as a benchmark in any event. 

2.3 Hybrid Super-Element 

Tzung [5] proposed the use of a hybrid super-element to achieve an improved accuracy 

with fewer degrees of freedom. The element had the shape of a hexagon with one central 

circular hole. A triangular pattern of holes could be spanned by a combination of these 

super-elements with standard solid elements around the rim. 

Tzung's super-element was derived using a complementary energy formulation, using stress 

functions to satisfy internal equilibrium along with a condition of zero traction on the 

* 
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surface of the hole. Displacement mismatch with adjacent elements was minimized using an 

auxilliary variational principle. 

This element was developed through the trial phase, but the effort was discontinued. 

Owing to algebraic and numerical complexities, this would have been a long-term effort, 

whereas a short-term solution was desired. Continued development may be warranted. 

2.4 Substructuring 

An alternative way to reduce the number of degrees of freedom is to use substructuring 

to construct a super-element from an assembly of simpler elements. The interior degrees of 

freedom are eliminated prior to the assembly of the super-element stiffness into the global 

Stiffness matrix. 

Substructuring is beneficial only to the extent that it avoids repetitive calculations. 

It can be shown that, for nonlinear analysis or problems with spatially varying properties, 

the number of arithmetic operations in the equation solving is not reduced by substructuring. 

Accordingly, substructuring was also abandoned. 

3. Efficient Finite Element Codes 

From the above considerations we concluded that the first priority was to develop the 

capability for a fine mesh benchmark analysis of the complete problem. Accordingly, a new 

family of two-dimensional finite element codes was developed with the objective of effi

ciently solving large problems. It is recognized that some good general purpose programs 

such as MARC and ADINA are available. However, better performance can be achieved using 

streamlined programs that are optimized for a particular class of problems and that take 

advantage of specific computer hardware. 

The new programs, TWOD and HEAT2 [6], are patterned after similar codes developed at 

General Atomic Company for three-dimensional analysis. Some of the features that contribute 

to their efficiency are summarized below: 

1. Separate driver programs are used for each class of problem such as 2-D, 3-D, 

heat transfer, static analysis, or dynamic analysis. These draw on a common 

library of utility routines such as the matrix solver or assembler. 

2. Linear triangular elements have been discarded in favor of isoparametric 

quadrilateral elements. 

3. An efficient algorithm for solving nonlinear problems, based on Newton's 

method, is employed. The details are given in [7]. 

4. A Univac 1100/82, with two million words of high-speed memory, is used as 

a host computer. This provides powerful file management and data storage 

capability. 

5. A Floating Point Systems array processor, model AP 190L, is used for vec

torized "number crunching" operations such as equation solving. The AP 

uses a combination of parallel processing and pipeline processing to 

achieve a rapid throughput in repetitive computations. With its low 

capital cost, the AP is extremely cost effective in this application [8]. 

* 
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6. A special purpose matrix solver has been written for the AP. Computing 

and 1/0 are performed simultaneously, and the data storage is optimized 

so that computing is nearly continual. The method is an extension of 

that in [7]. 

7. Matrix operations are performed in single precision, and the nonlinear solu

tion algorithm is used to correct for roundoff errors. Rapid convergence 
to seven-place accuracy is achieved. 

At this writing, the AP routines are in the final stages of development, so no timing 

statistics are available. Without the AP an elastic analysis of the 27955 D.O.F. mesh shown 

in Fig. 2 can be achieved in about 1.5 Univac hours at a cost of about $1400. The AP should 

reduce the cost of solving such large problems by about a factor of ten. 

4. Small Problem Benchmark Studies 

Two benchmark studies have been performed to assess the accuracy of finite elements for 

modeling multiple-holed geometries. In the first, Sullivan [3] evaluated the accuracy of 

linear triangular elements using the SAFIRE code [9]. The test problem was a one-half 

sector of a seven-hole block, because this was the most complex geometry for which adequate 

convergence could be assured. Sullivan concluded that linear triangles were unacceptable 

for multiple-hole applications and that local mesh refinement did not offer much hope for 

improvement. The convergence characteristics of linear triangles, 1n comparison to isopara

metric quadrilaterals, are shown in Fig. 7. 

A second benchmark study was recently completed to assess the accuracy of isoparametric 

quadrilaterals using the TWOD code. Owing to the improved efficiency of TWOD it was pos

sible to evaluate a sequence of test problems with increasing numbers of holes (7, 19, and 

37). Two examples, the smallest and the largest, are shown in Figs. 3 and 4. As expected, 

it was concluded that the number of holes influences the size of the problem (hence, the 

roundoff error) but the discretization error is governed only by the nature of the discreti

zation in a typical ligament. 

The convergence characteristics of three element types are shown in Fig. 7. Here, the 

"number of nodes" refers to a quarter-section of a seven-hole block, as shown in Fig. 3, 

and the "error" is estimated by taking the finest mesh to be exact. It can be seen that 

the higher-order, eight-node quads are considerably more efficient than the four-node quads 

in this application. For the same level of accuracy, eight-node quads require a factor of 

4-10 fewer degrees of freedom, and the cost of using them is a factor of 10-100 lower, 

than four-node quads. Thus, four-node quads were ruled out, and the remainder of the study 

was completed using eight-node quads alone. 

Contour plots of the stress fields are shown in Figs. 5 and 6. The mesh of Fig. 5 has 

two subdivisions of 8-node quads across a mesh, and the mesh of Fig. 6 has eight subdivi

sions. The discontinuities in the two-division case portray the actual finite element 

discretization. The discontinuities are greatest in regions of small or slowly varying 

stress. The peaks are reasonably accurate. 

An alternative plot of the stress field shape is shown in Fig. 8. This plot is derived 

from the integration point stresses. It can be seen that the stress field shapes in all 



Smith, P. D. -6- Dl/8 

cases are nearly coincident. For the two-division case the 10% error (A) in the peak stress 

can be reduced to about 1% either by extrapolation to the hole surface or by a local mesh 

refinement. 

Finally, Figs. 9 and 10 permit one to distinguish between roundoff error and spatial 

discretization error. The curves labeled "1ST GS" are the result of the single-precision 

matrix solution, including roundoff error. The curves labeled "CONVER" are obtained after 

the roundoff error has been effectively removed using the nonlinear solution algorithm. 

Figure 9 is taken from a thick cylinder test problem. Comparison with an exact solution 

confirmed that seven-place accuracy was achieved for the finest mesh. Figure 10 was taken 

from the seven-hole, eight-node quad series. Convergence behavior was similar to the cylin

der, indicating that the multiple-holed configuration is also well-behaved. 

5. Conclusions 

Modeling approximation techniques tend to be unreliable, and they should be justified 

by a fine mesh benchmark analysis. The TWOD code is capable, without modeling approxima

tions, of calculating peak stresses with about 10% error and displacements with about 1% 

error in an HTGR fuel element. 
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