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EVIDENCE CONCERNING CRACK TIP CONSTRAINT AND STRAIN RATE
EFFECTS IN FRACTURE TOUGHNESS TESTING*

J. G. Merkle

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

ABSTRACT

The procedures for measuring the plane strain fracture toughness, KI , of
metals were originally developed for relatively high yield strength mate-
rials, the toughnesses of which were not affected by strain rate. The
application of these procedures to lower vield strength and higher tough-
ness structural and pressure vessel steels have since revealed a perplexing
combination of problems involving the eifects of geometry, stable crack
growth and strain rate on the measured values of toughness. Only the
geometric problems were euncountered in the development of the procedures
for measuring Kree For fracture in the linear elastic range of the load-
displacement cnrve, these problems were overcome by specifying specimen
dimensions sufficiently large with respect to the plastic zone size at
fracture. However, in the case of structural and pressure vessel steels,
it is not always possible to test specimens large enough for fracture to
occur prior to general yielding. Therefore, in these cases, the effects of
large~scale yielding prior to fracture cannot be avoided, but since they

presently have no analytical explanation they are being treated empiri-
cally.

The empirical treatments of size effects on fracture toughness are of two
types, statistical and phenomenological. The statistical treatments are
based on the assumed existence of small~scale inhomogeneitles that control
the initiation of cleavage fracture. The resulting parameters are not
necessarily independent c¢f temperature, and for accuracy the procedures may
require more than the available pumber of specimens. The phenomenological
approaches are based on the knowledge that yielding precedes the occurrence
of cleavage microcracks and that the tensile ductility increases with de-
creaasing hydrostatic stress. In addition, it is assumed that the hydrosta-
tic stress decreases as the crack-tip plastic zone size increaszs with
respect to the distance to a free surface.

Early observations of size effects were made with center-cracked and edge-
cracked plates, center notched spin discs, notched beams and circumferen-
tially notched round bars. Using circumferentially notched round bar data

*Research sponsored by the Nffice of Nuclear Regulatorv Research, U.S.
Nuclear Regulatory Commission under Interagenzy Agreements 40-551-7% and
40-552~75 with the 11.S. Department of Energy under Contract DE-ACOS5-
840R21400 with Martin Marietta Fnergy Svstems, Inc.



to estimate KIC’ Irwin developed an empirical equation based on the param-
eter 3 to estimate size effects in planar specimen data. However, the
notchegcround specimen was not adopted for general use because of problens
concerning precracking, eccentricity, wmachire load capacity and analysis.
Planar specimens loaded primarily in bending were found most practical, and
size effects were avoided, at least for high vield strength low-toughness
materials, by applying conservative specimen size requirements.

Recent applications of the Irwin 8 c equation to small specimen fracture
toughness data in the plastic range Emve shown that when using the onset cf
unstable cleavage as the measurement point, the equaticn eliminates size
effects and reduces data scatter, but only if stable crack growth does not
precede cleavage. When stable crack growth occurs first, sizes effects
tend to be diminished and mav even be reversed, with measured large speci-
men toughness values exceeding small specimen values. Because even a small
amount of crack—-tip forward motion generates high crack-tip strain rates,
stable crack growth in a strain rate sensiti= material can reduce the mea-
sured fracture toughness values, thus producing an effect opposite to that
of specimen size alone. An analysis of combined strain rate and size
effects indicates this possibility.

Two physical quantities that exert a controlling influence on the state of
stress near a crack tip are the strain at the blunted crack tip normal to
the plane of the crack and the strain in the perpendicular direction tan-
gent to the crack fromt. Althecugh it is commonly assumed that crack tips
always create piane strain, this is not so, and this important fact can be
demonstrated analytically for some geometries and numerically for others.
Thus specimen geometrty can have a significant effect on the degree of tri-
axial constraint that develops near a crack tip. The mode of loading can
also have an effect on the near crack-tip stress state, with bending pro-
ducing greater constraint than tension.

The problems of geometry and strain rate effects on toughness discussed
herein are complex and difficult to solve. However, taking advantage of
the improvements that have recently been made in the hardware and software
available for performing three-dimensional elastic-plastic and viscoplastic
stress analysis, it should be possible to significantly improve the analy-
sis of small-specimen, elastic~plastic fracture toughness data.



LAMINATED SPECIMENS DEMONSTRATE THAT LOSS OF
TRIAXIALITY CAUSES INCREASED TOUGHNESS
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THE DELAY TIME FOR Y!ELDING DECREASES BY ORDERS
OF MAGNITUDE WITH INCREASING TEMPERATURE
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TENSILE LOADED WIDE—-PLATE SPECIMENS HAVE
ELEVATED INITIATION-TOUGHNESS VALUES
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TENSILE LOADING CAUSES CRACK-TIP-STRESS MAGNITUDES
AFTER YIELDING TO BECOME LESS THAN UNDER
BENDING FOR THE SAME APPLIED J
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THE ANGULAR VARIATION OF PLASTIC STRAIN BECOMES
NEGLIGIBLE NEAR A BLUNTED CRACK TIP
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UNDER TENSILE LOADING, SMALL-SCALE-YIELDING
CRACK-TIP STRESSES DECREASE WITH RESPECT TO
THE HAR SOLUTION WITH DECREASING
STRAIN HARDENING
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UNDER BENDING LOADING, SMALL-SCALE-YIELDING
CRACK-TIP STRESSES APPRCACH THE HRR
SOLUTION NEAR THE CRACK TIP
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CRACK TIPS DO NOT NECESSARILY GENERATE
PLANE STRAIN
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TRANSVERSE STRAIN AT CRACK TIPS CAN BE CALCULATED
FROM NUMERICAL AND ANALYTICAL RESULTS
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EARLY ESTIMATES OF CONSTRAINT EFFECTS WERE MADE
iIN TERMS OF THE PARAMETERS a AND §,
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