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This article Is a qualitative account of some aspects of
physics In few dimensions, and Its relationship to nonlinear
field theories. After a survey of materials and some of the
Models that have been used to describe them, tht various
methods of solution art compared and contrasted. The roles
of exact results, operator representations and the renormali-
zation group transformation *n described, and a uniform
picture of the behavior of low-dimensional systems 1s
presented.

I . INTRODUCTION

Many of the fundamental problems of condensed matter physics may be regarded as
examples of nonlinear field theories. This point of view has been advantageous
for the quantum-mechanical many-body problem and for the modern theory of phase
transitions, leading to successful theories of single-particle and collective
phenomena in a wide variety of physical systems. I t Is the basis for our
current understanding of superconductivity and superfluidity, and has led to a
deeper understanding of the universal cooperative effects which are observed in
the neighborhood of a critical point. Host of these (level ooronts have relied
upon the techniques of quantum field theory, and have marie l i t t l e reference to
concepts that have arisen in a purely classical context. More recently,
however, this s1tu?Mon his chanqed, and some of the approaches to physics in
one and two soact -tensions have been much closer In spirit to the Ideas of
classical non11ned> •teld theory; rt.erences to the sine-Gordon equation,
solitons, breathers, inverse scattering, etc., have become relatively
commonplace in the literature of elementary particle and condensed matter
physics.

A feeling for the relevance of these concepts and their supplementary
relationship j the rare "conventional* approach may be obtained by considering
several examples from con'-ised matter physics, tn what follows, there will be
no reference to the tht- of non-1ntegrable systems, although its influence is
beginning to make Itself ielt , for example, in attempts to understand some
aspects of tht theory of incommensurate structures1.

The systems of Interest are quite diverse In their physical characteristics.
Some arc quantum mechanical and one dimensional, others are classical and
two dimensional. Sut I t turns out that there is a common thread to their
mathematical formulation: a remarkably large number of models are equivalent Co
each other, either exactly or In the asymptotic properties which govern the
kinds of lonq-ranged order that might be established. All bear some
relationship to the sine-Gordon equation.

The impetus for these developments has come from both theory and experiment,
from the desire for a unified view of two-dimensional models as well



as a need to understand a number of unusual observations. The Ingenuity of the
synthetic chemist and the experimental physicist has been a continual driving
force in the whole field, and it is appropriate to start out with some brief
mention of the materials they have Investigated, before going on to describe the
nathenutical models, and the methods that have been devised in order to solve
them.

II. MATERIALS

Low-dimensional behavior arises in two principal ways. Some materials are
extrenely anisotropie, consisting of atoms, molecules or ions arranged in chains
o;* in layers, which are weakly coupled to their environment, and act
Independently over a wide range of temperatures. The structure imposes Its own
constraints on the motion of electrons, and this leads to characteristic
low-dimensional behavior of the electrical properties. The alternative Is to
have a restrictive geometry; a free film or a film adsorbed on a surface are
essentially two dimensional, whereas particles confined to narrow channels may
have a one dimensional character. In most cases there an circumstances In
which the true three-dimensional nature of the system makes itself felt , and
understanding the crossover to this regime is part of the Interest In the
problem. The purpose of studying these systems is to look for phenomena that
may not occur, or may be difficult to produce in more isotropic materials:
effects of disorder art expected to be more pronounced, and certain kinds of
phase transition may take place more readily. It has long been a hope to find
superconductivity at relatively hiqh temperatures in anisotropic organic
materials, where strong electron-electron interactions may he produced by an
excitonic mechanism2.

All of these effects are likely to Involve an Interplay between the many degrees
of freedom which reside In a molecular crystal—the spin and translation of
electrons or the spin, orientation, vibration and translation of the molecules.
For this reason, i t Is often quite difficult to extract, from rather indirect
experimental information, the primary mechanism which drives the behavior of a
particular physical system. The common approach has been to solve a number of
simplified models, in order to discover the particular effects to look out for
and to limit the possible ran?* of explanations of a given experiment.

A few examples will Illustrate the nature of the systems which have been
investigated. One-dimensional materials frequently contain rather flat organic
molecules3 such ss TTF (tetrathiafulvalene), TSeF (tetraselenofulvalene), TCNQ
(tetracyanoquinooimethane) and TMTSF (tetramethyitetraselenofuivalene), all of
which may be arranged in closely packed stacks. In TTFCuBDT, long-ranged
correlations in chains of localized spins conspire with peculiarities of the
lattice vibrations to produce a dimerized state" (spin-Peierls transition). The
organic metals TTF-TCNQ, TSeF-TCNO and (TMTSF)ZPF6 are electrical conductors
because charge transfer frcm donor to acceptor molecules leaves a partially
filled band ef states3. The conductivity of these .systems increases to a quite
high value as the temperature Is lowered, but ultimately this is reversed by a
metal-Insulator transition. However, at sufficiently hiqh pressure, (TMTSF)2PF6
becomes a superconductor. An example of a so-called molecular metal is
Hq3_jAsF(, which consists of chains of Ho. ions arranged in planes and
interspersed with AsFg" ions. Its peculiar properties are a consequence of the
lack of commensurabiiity between the Hg chains and the AsF6* lattice (& is a
function of temperature and is about 0.2) At ream temperature, the w»skly
coupled Hq chains form one-dimensional Tiauids , hut they freeze at about
120 K. This transition is unusual in that I t is an example cf continuous
freezing. At much lower temperatures the material becomes a superconductor8,
but the origin and properties of this state are not fully understood. An entire
session of this conference is concerned with the properties of polyacetylene, a
linear system which is thought to form a dimerized chain with soliton
dislocations.



Much of the recent Interest In two-dimensional materials has been centered upon
a class of systems which have a phase transition but are unable to establish the
related long-ranged order because of the destructive effect of thermal
fluctuations. They accomplish this as the temperature Is decreased below a
certain value, by remaining on the verge of a transition to an ordered state:
every point Is cr i t ical . Solids, superconductors, superfiuids and some phases
of liquid crystals are expected to have this behavior 1n two dimensions, and
verification has been sought In adsorbed layers or freely-suspended films.
Another interesting property of overiayers Is the existence of periodic
structures that may be commensurate or Incommensurate with the substrate
lattice. This problem has been investigated by the scattering of neutrons,
x-rays and electrons as well as by photoemission experiments, and, although a
picture of what is going on has steadily been developed, I t Is s t i l l far from
complete. Other two-dimensional forms of spin ordering, displacive phase
transitions and charge-density wave states are to be found in bulk materials
with a layered structure. A more extensive review of thi's whole subject may be
found In the proceedings of the 1979 Kyoto summer school7 and the 1980
Lake Geneva, Wisconsin conference8.

I I I . MODELS

At first sight it seems inappropriate to pay so much attention to cyrstalline
solids and lattice models in a discussion of nonlinear field theories, but there
Is much to be gained from relating one to the other by taking the continuum
limit.

The location of a point in a simple cubic lattice is specified by a vector
r • sn, where n has integer components and s is the lattice spacing.
Correlation functions have a characteristic length scale s£, where ?, the
coherence length of the lattice model, is a pure number. A field theory is
obtained by taking the continuum limit s*0, in which finite differences become
derivatives, and lattice sums become Integrals. The advantage of considering
this limit, which is clearly ficticious for a real solid, is that It focuses
attention on the asymptotic properties of correlation functions, and forces us
to consider behavior at a critical point. For if the length scale S5, and
position vector r are to remain finite as s*0, it is necessary that 5*» (which
is the case at a critical point) and |n|— (which is the asymptotic limit).
Equally, the continuum limit Is useful for a field theory when the critical
properties of the corresponding lattice model are known.

In the present context, however, there Is a further important reason for takinq
the continuum Unit—It is crucial for establishinq the relationship between
models and obtaining a unified picture of physics In two dimensions. Space does
not permit an account of the technical developments necessary fc the
Implementation of this program, but a survey of some of the fnte-.si.ing
Hamilton-fans should give at least some Idea of the kinds of system under
consideration. Classical, two-dimensional models will be described first.
Potts Models9

" nn V i
n.n. i j

with S.|«l,2,...q. Here, the summation is carried over near-neighbor sites i . j
on a square lattice. The state of lowest energy has all spins equal and is
q-fold degenerate. This Hamiltonian is relevant for adsorbed films9 and for
magnetic systems. (q*2 is Identical to the Ising model)



Ashkin-Teller Model1"
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where 5i*±l» Tj«±l. This is a two-component lattice gas and. for
I t is identical to the 4-state Potts model.

Interface Roughening-11

HR " " I

with h{*O,±l ,±2, . . . , Is a cell model of crystal growth. The constituents are
assumed to f i l l a column of cells to a height h< at lattice site 1. For the
physical model, f(h) - | h | (solid-on-solid model), hut another case of particular
Importance Is f(h)»h (discrete Gaussian model) which is directly related to the
Coulomb gas and the xy-modei, as will be seen.

Vertex Models12

I t is Imagined that every vertex in a square lattice is connected to Its four
neighbors by a link, which has a sense (right or l e f t , up or down) specified by
an arrow. There art sixteen different kinds of vertex (four links, each with
two senses) and each Is assigned a different weight. The problem is to sun over
a l l configurations of links. The eight-vertex problem (In which each vertex has
an even number of incoming and outgoing arrows) has been solved exactly by
Baxter12. I t Is also of interest to consider a more general staggered version
of this model with two sets of weights, one for each of two interpenetrating
subiattices. Such a model has been shown to be equivalent to the Potts models13

and to the Ashkin-Teller model10.

The xy-Model**»

which has a Hamiltonian given by

n.n.

where V< is a unit, two-dimensional vector, differs from the preceding models

by having a continuous variable at every site. This is clear I f V^.Vj is
rewritten In the form cos(8f - 3f) where 8j and 9f are the polar

angles of Vj and V^. This Hamiitonian describes a magnetic system, but I t
has also been used'for the suoerfluid transition in He1* films, for which 8} is
the phase of the order parameter. The dual l" of Hxv is a special case of
HR.

 Xy

Coulomb Gas1**

Here the summation over 1 and j extends to all sites (not only near neighbors),
and the charges Qi have values 0 , ± l , ± 2 , . . . . This model 1s equivalent11*,'6 to
the discrete Gaussian version of HR, as mentioned earlier.



I t Is a remarkable fact that these apparently quite different models are closely
related: the partition function of one may be transformed Into the partition
function of the other, with an appropriate redefinition of "parameters. In some
cases, the transformation Is exact In others I t 1s asymptotically correct for
the critical prooerties9"1*. It Is often possible to find further equivalences
between correlation functions. However, the transition to field theory Is most
directly made via the transformation of all of these models Into one-dimensional
quantum mechanical systems. The link Is provided by the transfer matrix1 T.

The partition function Z Is a sun over all configurations of variables on the
lattice. The elements of T consist of the contributions to this sum from pairs
of configurations of two neighboring rows of the lattice, and

Z - Tr T* (6)

where N Is the number of rows. In the thermodynamic limit (N*»), Z Is dominated
by the largest eigenvalue of T. The configurations of a row may also be
regarded as states of a one-dimensional quantum system, with T" playing the
role of a transition matrix. In this Interpretation, 1f T Is written in the
form11 exp(-H), then H Is the corresponding quantum Hamtltonian, and Its ground
state gives the largest eigenvalue of T. It may appear that one of the original
space dimensions has been lost, but actually It has been replaced by (Imaginary)
time which. Implicitly or explicitly, plays an unavoidable role In quantum
mechanics. Following this procedure, every one of the models listed above may
be related to the spin Hamiltonian1'

H • H + H + H (7)
0 1 2

where

and

Here a j x , at* and OJZ are Pauii o
describes the Heisenberg-Ising model, H1 gives an anisotropy in the xy plane of
spin space and H2 is a dimcrization that 1s related to the staggering of weights
In the Baxter model. This Is the central model of the field to which all others
may be reduced, at least asymptotically19. The spin representation (8)-(10) Is
only one way of writing H. Other useful forms In terms of fermion or boson
variables will be introduced later. The parameters, g, Y, A, g ' , hs are known
functions of the temperature and the parameters (J, <t, etc.) of the original
models. It will be seen that Ho Is the critical Hamiitonian while Hx and H2 give
thermal or field perturbations away from the critical points of the original
models.

It is now possible to state how the quantum models, mentioned fn Section 2, may
be fitted into the picture. The Hamiltonian for a spin-Peierls system" 1s
Ho+H2, where Ho refers to localized spins in a uniform lattice, and H2 describes
the effects of dimerization in the low-temperature phase. The motion of the
mercury Ions in Hq3-jAjF(, and the spin or charqe degrees of freedom of
electrons In oraanic conductors are related to Hj-tHi, but, to show more



explicitly how this comes about, i t is necessary to know something about
transformations between spins, bosons and fermions. This Is described In the
next section.

IV. METHODS OF SOLUTION

I t Is a remarkable feature of one-dimensional physics that, for a number of
models, eigenstates and eigenvalues are known exactly. They have been obtained
In various equivalent forms—Bethe's amsetz for the wavefunction (see Dr.
Andrei's t a l k ) , quantum Inverse scattering20 and the semiciassical method for
f ield theory21. This whole approach 1s closely related to the Ideas of
classical nonlinear physics, and I t works for systems which are exactly
Integrable.

Once an exact solution is available. I t might seem that there is l i t t l e more to
be said. However i t Is not easy to work with the wavefunctions and, with one
exception22, i t has not been possible to evaluate correlation functions which
• r t required In order to assess the prospects for various kinds of long-ranged
order. Furthermore, the method has not so far succeeded for the most general
HNiltonian of Eqs. (6)- (10) , including dimerization, and hence there Is eMery
reason to seek alternative approaches, even approximate ones, that are not so
specific. Two are of particular Importance—operator representations, and the
renormalizition group method.

Tin idea of using operator representations Is that there are exact relationships
betwean spin, fermton and hoson operators, and I t may happen that d problem is
intractable In one representation but may he exactly soluble In another.
Perhaps the best-known example Is the Jordan-Wigner transformation

+ m-I ^ ^

C l cj ) cm

where

and c+
mt Cpi a r e fermion creation and annihilation operators. This

transformation is used In solving the two-dimensional tsing model23, and I t may
be used for any latt ice model. On the other hand the boson representations of
spin or fermion operators21* rely on the continuum lim1t2S. For fermions in one
dimension, i t is possible to distinguish between riqht-going and Ieft-go1nq
particles, with fisld operators <i+(x) and * . (x) respectively. Then t*(x) may
be written2*

•±(x) - const exD[-1(ir/u)l/2 / d c »(O ± 1(n.)1/2»(x) J (U)

where *(x) is a Bose Field and »(x) 1s its conjuqate momentum. This
transformation is particularly useful, because i t Is rather easy to evaluate
correlation functions when the operators consist of exponentials of Bose
Fields2". Equations (11)-(14) are given in order to show the form of the
transformations. More detailed discussions and applications to a number of
problems may be found in the literature or in reviews23»2<*»2S.



The operator representations give the connection between the spin chain and
other one dimensional materials, and also show how the sine-Gordon equation
comes Into the picture. In the continuum limit, the charge- and spin-degrees of
freedoi of the conduction electrons are decoupled2*, and each nay be regarded as
a set of spiniess fermions which. In turn, are related to Ho + Ht by a
Jordon-Wgner transformation. The Hamiitonian contains products of t±M *"<*
•± f(x) and. Introducing the boson representation (14), 1t Is found that the
contribution from tin Integral of »(c) cancels out leaving a factor oroportional
to cosC(*u)*'z*(xn, which Is the potential energy density of the sine-Gordon
system. Thus, all of these problems, as well as the ordered phase of mercury
Ions In Hg3.,jAsFs (another sine-fiordonn system') are related to the spin
chain.

The sine-Gordon equivalence suggests that there may be sol1ton and breather
excitations. However, the fields an quantized and. In contrast to the
classical ease21*1*, the solution depends on the value of u. Soiltons and
breathers exist when u Is less than a critical value, and then the mass of the
lowest excitation Is a measure of the coherence length in the disordered phase
of the corresponding two dimensional problem; since the mass governs the decay
In (Imaginary) time of a quantum-mechanical system. It Is In this region that
the sine-Gordon picture contributes most effectively to the solution of this
group of problems21*. I f u Is greater than the critical value, there an no
soiltons and the excitations are massless. This region corresponds to the line
of critical points in the two dimensional theories* , and Is more effectively
tackled by the renornalization group method.

One way of phrasing the renormalization group method28 Is to focus on some
quantity such as the coherence lengtn ?, and to study the variation of
parameters (such as 0) required to keep ss fixed, as s varies. From the
resulting flow equations, I t Is possible to evaluate the critical exponents.
Usually this procedure cannot be carried out exactly unless there fs a small
parameter in which an expansion may be made. It does, however, tell us which
are the relevant variables, the ones which must be taken Into account In order
to get a complete description. The method is most useful in the neighborhood of
a fixed point of the transformation, and I t Is usually necessary to resort to
numerical calculations or to some other method of calculation I f a more global
picture Is required. Navertheless I t can be applied in a relatively
straightforward way to more complex Hamiltonians, and to Include the
dimerization H2, which is quite difficult to deal *1th otherwise19.

Clearly, all of these approaches have their advantages and limitations, and i t
is necessary to resort to a combination of all of them, in order to build up a
complete picture of a given problem. The Bethe ansatz or the quantum versions
of the Inverse scattering method are directly related to classical nonlinear
theories. They give exact expressions for the energy spectrum, but i t is quite
difficult to evaluate correlation functions. The transformations between spins,
fermions and bosons may help to turn a problem Into a more easily soluble form
but, without further help, they do not always give a mass spectrum. They are at
their best near a critical point, where the boson form in particular Is useful
In giving the algebraic decay of correlation functions and expressions for the
associated critical exponents . The renormalization group was originally a
techique of quantum field theory. It Is versatile but does not give a complete
analytical solution to a problem 1f there Is no small parameter in which to
expand, or i f regions far from a fixed point cannot be disregarded.

Nevertheless, by assembling the contributions of all of these techniques, we
have come to a unified picture of a large class of one-or two-dimensional



models. The common feature 1s a l ine of c r i t ica l M i n t s , alonq which
correlation functions of the classical or quantun models decay algebraically;
with exponents that depend upon the position alonq the l ine . The boson
representations and renormaiization group equations lead to relationships
between c r i t i ca l exponents in what amounts to an extension of the exact results
to problems for which no exact solution ex ists 1 9 . Off the c r i t i ca l l ine .
I t Is necessary to know the mass spectrum or the coherence length and to make
use of a l l of the methods In order to obtain a solution. A survey of this
approach and a description of recent work Is given In reference 19.

A l l of these developments have been described In the context of condensed matter
physics, but many of the results have been discovered independently by
elementary part ic le theorists* Their objective has been to practice on models
showing confinement and asymptotic freedom 1n the hope that techniques may bs of
value for the more physical four dimensional theories. By now i t has the
appearance of a mature f i e l d . But I t is too much to expect that such a t idy
picture of low-dimensional physics w i l l persist. Already a number of models,
that cannot be solved Immediately by these methods, *n being Investigated—that
Is a symptom of a healthy f i e l d .
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