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This article is a qualitative account of some aspects of
physics in few dimensions, and its relationship to nonlinear
field theories. After a survey of materials and some of the
models that have besn used to describe them, the various
methods of solution are compared and contrasted. The roles
of exact results, operator representations and the renormali-
zation group transformation are described, and 2 uniform
picture of the behavior of low-dimensional systems is
presented.

I.  INTRODUCTION

Many of the fundamental problems of condensed matter physics may be regarded as
examnles of nonlinear field theories. This point of view has been advantageous
for the quantum-mechanical many-body problem and for the modern theory of phase
transitions, leading to successful theorfes of single-particle and collective
phenomena in a3 wide variety of physical systems. It is the basis for our
current understanding of superconductivity and superfluidity, and has led to 2
deeper understanding of the universal cooperative effects which are observed in
the nefghborhood of a critical point, Most of these revelopments have relied
upon the techniques of quantum field theory, and have made 1ittle reference to
concepts that have arisen in a purely classical context. More recently,
however, this situz*ion has chariqed, and some of the approaches to physics in
one and two space iensions have been much closer in spirit to the ideas of
classical nonlinea. .ield theory; rc.erences to the sine-Gordon equation,
solitons, breathers, inversa scattering, etc., have become relatively
commonplace in the 1fterature of elementary particle and condensed matter

physics.

A feeling for the relevance of these concepts and their supplementary
relationship o the more "conventional® approach may be obtained by constdering
several examples from corn” ‘nsed matter physics. In what follows, there will be
no reference to the the. of non-integrable systems, although its influence is
beginning to make itself ielt, for example, in attempts to understand some
aspects of the theory of incommensurate structures®,

The systems of interest are quite diverse in their physical characteristics.
Some are quantum mechanical and one dimensional, others are classical and

two dimensional, But it turns out that there is a common thread to their
mathematical formulation: a remarkably large number of models are equivalent to
each other, either exactly or in the asymptotic pranerties which govern the
kinds of long-ranged order that might be estahlished. All bear some
relationship to the sine-Gordon equation.

The impetus for these developments has come from hoth theory and axperiment,
from the desire for a unified view of two-dimensional models as well



2s 2 nsed to understand a number of unusual ohservations. The ingenuity of the
synthetic chemist and the experimental physicist has been a continual driving
force in the whole field, and it is appropriate to start out with some brief
mention of the materfals they have inwestigated, before going on to describe the
mathematical models, and the methods that have been devised in order to solve

Il. MATERIALS

Low-dimensfonal behavior arfises in two principal ways. Some materfals are
extremely anisotropic, consisting of atoms, molecules or fons arranged in chains
or in layers, which 3re weakly coupled to their environment, and act
independently over a wide range of temperatures. The structure imposes its own
constraints on the motion of electrons, and this leads to characteristic
Tow-dimensional behavior of the eiectrical properties. The alternative is to
have a restrictive geomatry; a free fi{lm or a film adsorbed on a surface are
essentially two dimenstional, whereas particles confined to narrow channels may
have a one dimensfonal character. In most cases there are circumstances in
which the true three-dimensional nature of the system makes itself felt, and
understanding the crossover to this regime is part of the interest in the
problem. The purpose of studying thase systems fs to look for phenomena that
may nat occur, or may be difficult to produce in more isotrapic materfals:
effects of disorder are expected to be more pronounced, and cartain kinds of
phase transition may take place more readily. It has long been 2 hope to find
superconductivity at relatively high temperatures in anisotropic orqanic
materials, where strong electron-electron interactions may be produced hy an
excitonic mechanism?,

All of these effects are likely to involve an interplay between the many degrees
of freedom which reside in a melecular crystal--the spin and translatior of
electrons or the spin, orientation, vibration and translation of the molecules.
For this reason, it is often quite difficult to extract, fram rather indirect
experimental information, the primary mechanism which drives the behavior of a
particular physical system, The common approach has been to solwe a number of
simplified models, in order to discover the particular effects to look ocut for
and to 1imit the possible ran2e of explanations of a given experiment.

A few examples will 1llustrate the nature of the systems which have basn
investigated. One-dimensional materials fraquently contafn rather flat organic
molecules® such as TTF (tetrathiafulvalene), TSeF (tetraselenofulvalene), TCNQ
(tetracyanoquincaimethane) and TMTSF (tatramethyltetraselenofulvalene), all of
which may be arranged in closely packed stacks. In TTFCuBDT, long-ranged
correlations in chains of localized spins conspire with peculiarities of the
lattice vibrations to produce a dimerized state® (spin-Peferls transition). The
organic metals TTF-TCNQ, TSeF-TCNQ and (TMTSF) PFg are electrical conductors
becausa charge transfsr from donor to acceptor molecules leaves a partially
filled band of states®, The conductivity of these systems increases to a quite
high value as the temperature is lowered, hut ultimately this is reversed by a
metal-insulator transition, However, at sufficiently high pressure, (TMTSF),PF¢
becomes a superconductor. An example of a so-called molecular metal is
Has_gAsFg, which consists of chains of Hg fons arranged in planes and
interspersed with Asfg~ fons, Its peculiar properties are a consequence of the
lack of commensurability between the Hg chains and the AsFc~ lattice (& is a
function of temperature and is about 0,2) At rcom temperature, the wezkly
coupled Hg chains form one-dimensional liquidsS, but they freeze at about

120 K. This transition is unusual in that it is an example e¢f continuous
freezing. At much lower temperatures the material becomes a superconductorS,
but the orfgin and properties of this state are not fully understood. An ertire
session of this conference is concerned with the properties of polyacstylene, a
linear system which is thought to form a dimerized chain with solitun
dislocations.



Much of the recent intarest in two-dimensional materfals has been centered upon
a class of systems which have 2 phase transition hut are unable to establish the
related long-ranged order because of the destructive effect of tharmal .
fluctuations. They accomplish this as the temperature is decreased below a
certain value, by remaining on the verge of a transition to an ordered state:
every point is critical. Solids, superconductors, superfluids and some phases
of Viquid crystals are expected to have this behavior in two dimensions, and
verification has been sought in adsorbed layers or freely-suspended films,
Another interesting property of overlayers is the existence of periodic
structures that may be commensurate or incommensurate with the substrate
lattice. This problem has been investiqated by the scattering of neutrons,
x-rays and electrons as well as by photoemission experiments, and, although a
picture of what 1s going on has steadily been developed, it is still far from
complete. fither two-dimensfonal forms of spin ordering, displacive phase
transitions and charge~density wave states are to be found in bulk materfals
with a layered structure. A more extensive review of this whole sybject may he
found in the proceedings of the 1979 Kyoto summer school’ and the 1980

Lake Geneva, Wiscansin conference®.

II1. MODELS

At first sight it seems inappropriate to pay so much attention to cyrstalline
solids and lattice models in a discussion of nonlinear field theories, but there
;: lilluch to be gained from relating one to the other by taking the continuum

mit.

The lgcation of 2 point in a simpie cubic lattice is specified by a vector

r = sn, where n has integer components and s is the lattice spacing.
Correlation functions have a characteristic length scale s§, where £, the
coherence length of the lattice model, 1is a pure number. A ficld theory is
obtained by taking the continuum 1imit s+0, in which finite differences become
derivatives, and lattice sums become integrals. The advantage of considering
this 1imit, which is clearly ficticious for a real solid, is that it focuses
attention on the asymptotic properties of correlatiom functions, and forces us
to consider behayior at a critical point. For if the length scale sg, and
position vector r are to remain finite as s+0, it is necessary that f+e {which
is the case at a critical point) and |A|+= (which is the asymptotic limit).
Equally, the continuum 1imit is useful for a field theory when the critical
properties of the corresponding lattice model are known.

In the present context, however, there is a further important reason for taking
the continuum limit--{it 1s crucial for establishing the relationship between
models and obtaining a unified picture of physics in two dimensions. Space does
not permit an account of the technical devalopments necessary fc the
implementation of this program, but a survey of some of the inte' .s.ing
Hamiltonians should give at least some idea of the kinds of system under
consideration. Classical, two-dimensional models will be described first.
Potts Models®

Hy= = 65151 (1)

N.N.

with 54=1,2,...q9. Here, the summation is carried over near-neighbor sites t,j
on a square lattice, The state of lowest energy has all spins equal and is
q-fold degenerate, This Hamfltonfan is relevant for adsorbed fiims? and for
magnetic systems. (q=2 is identical to the Ising model)



Ashkin-Teller Model!?
Hy = -En {91545y %, Ty TyN35, Ty STy } 2)-

where Sy=tl, T;s2l. This is a two-component lattice gas and, for J;=J,=0,
it is identical to the 4-state Potts model.

Interface Roughening“
Hy & =« )} f(h,=h 3)
R ngn ( | j) (

with hy0,t1,22,... , is a cell model of crystal growth. The constituents are
assumed to f{11 a column of cells to a hefght hy at lattice site i, For the
physical model, f(h) =|h| (solid-on-solid mdels, but ‘another case of particular
importance 1s f(h)sh? (discrete Gaussian model) which is directly related to the
Coulomd gas and the xy-model, as will he seen.

Vertax Modelsi2

It is imagined that every vertex in a square lattice is connected to its four
neighbors by a 1ink, which has a sense (right or left, up or down) specified by
an arrow. There are sixteen different kinds of vertex {four links, each with
two senses) and each is assigned a different weight. The problem 1s to sum over
a1l configurations of links. The eight-vertex problem (in which each vertex has
an evan_number of incoming and outgoing arrows) has been solved exactly by
Baxteri2, [t is also of interest to consider a more general staggersd version
of this model with two sets of weights, one for each of two interpenetrating
sublattices. Such a model has Reen shown to be equivalent to the Potts modelsi3
and to the Ashkin-Teller model ‘0,

The xy-Modei !*
which has 2 Hamiltonian given by

H O =sad] VoV, (4)

where Vi is 2 unit, two-dimensional vector, differs from the preceding models

> >
by having a continuous variable at every site, This is clear if VjoVy is
rewritten in the form cos(8; - 84) where o4 and 8; are the polar '

angles of V, and Vi- This Hamiltonian describes a maanetic system, hut it
has also been used’ for the superfluid transition in He“ films, for which oy is
the phase of the ordar parameter, The duall® of Hy, is a special case of

Coulomb Gas‘®

e abig 0 el ®

Here the summation over 1 and j extends to all sites (not only near neiqhbors),
and the charges Q; have values 0,21,22,.... This model is equivalent!® 16 ¢o
the discrete Gaussian version of Hy, as mentioned earlier.




It 1s a remarkable fact that these apparently quite different models are closely’

related: the partition function of one may ba transformed into the partition
function of the other, with an appropriate redefinition of parameters. [n some
cases, the transformtign ls exact in others it is asymptotically cocrrect for
the critical procerties®=!%, It is often possihle to find further equivalences
between correlation functions. However, the transition to field theory is most
directly made via the transformation of all of these models into one-dfnet;sional
quantum mechanfcal systems. The link 1s provided by the transfer matrixt? T,

The partition functfon Z fs a sun over all configurations of variables on the
lattice. The elements of T consist of the contributions to this sum from pafrs
of configurations of two neighboring rows of the lattice, and

Z st T (6)

where N is the number of rows. In the thermodynamic limit (N+w), Z 1s dominated
by the largest eigenvalue of T. The configurations of a row mrany aiso be
regarded as states of a one-dimensional quantum system, with playing the
role of a transition matrix, In this interpretation, if T is written in the
form! exp{-H), then H is the corresponding quantun Hamiltonfan, and its ground
state gives the largest eigenvalue of T. It may appear that one of the original
space dimensions has been lost, but actually it has been renlaced by {imaginary)
time which, implicitly or explicitly, plays an unavoidable role in quantum
mechanics. Fallowing this prccodurg, every one of the models 1isted above may
be related to the spin Hamiltonian!

HaH +H +H (7)
0 1 2
where
N x x yy z 2
Mo = - Floy ogm * oy o5 - 9 ool (@
N X x Yy y
Hy =y JEI [«'1 9ga1 = % °j+1] 9
and

bd 1 X x sy z 2 2
Hy = =2 jgl (-1) [cj 94 * 9y Oguy - 9'9y 9y, ¢ koo ] (19)

Here o3X, ag-V and gjZ are Pauli matrices. The Hamiltonian Ho

describes the Heisenberg-Ising model, H, gives an anisotropy in the xy plane of
spin space and H; is a dimerization that is related to the staggering of weights
in the Baxter model. This is the central mode! of the field to which all others
may be reduced, at Teast asymptoticallyi3. The spin representation (8)-(10) is
only one way of writing H. Other useful forms in terms of fermion or boson
variables will be introduced later. The parameters, g, v, A, g', hg are known
functions of the temperature and the parameters (J, G, etc.} of the original
models. It will be seen that Hy is the critical Hamiltonian while H; and H; give
th:n{ml or field perturbations away from the critical points of the original
modeis.

It is now possible to state how the quantum models, mentioned in Section 2, may
be fitted into the picture. The Hamiltonian for a spin-Peierls system® is
HgtHz, where Hy refers to localized spins in a uniform lattice, and H, describes
the effects of dimerization in the low-temperature phase. The motion of the
mercury fons in Hgy-gAsFg, and the spin or charqe deqrees of freesdom of
elestrons in oraanic conductors are related to Hg+H,, but, to show more



explicitly how this comas about, it is necessary to know something about
transformations between spins, bosons and fermions. This is des¢ribed in the

next saction.
IV. METHODS OF SOLUTION

It is a remarkable feature of one-dimensional physics that, for a number of
models, eigenstates and eigenvalues are known exactly. They have been obtained
in varfous equivalent forms--Bethe's amsati for the wavefunction (see Dr.
Andrei's talﬂ. quantun inverse scattering<? and the semiclassical method for
field theory“'. This whole approach is closely related to the ideas of
classical nonlinear physics, and 1t works for systems which are exactly
integrable,

Once an exact solutfon {s available, it might seem that there is little more to
be said. gonever it is not easy to work with the wavefunctions and, with one
excaption??, it has not been possible to evaluate correlation functions which
are required in order to assess the prospects for various kinds of longeranged
order. Furthermore, the methed has not so far succeeded for the most qeneral
Hamiltontian of Eqs. (6)-(10), including dimerization, and hence there is every
reason to seek alternative approaches, even approximate ones, that are not so
specific. Two are of particular impaortance--operator repiesentatfons, and the
renormalfzation aroup method.

The idea of using operator representations is that there are exact relationships
betweon spin, fermion and boson operators, and it may happen that & problem {s
intractable in one representation but may he exactly soluble in angsher.

Perhaps the best-known example is the Jordan-Wigner transformation

a; = exp(h:g c;cj)c; (11)
m=1
% = ewliz T eleslen (12)
where
o, = 1/2(q," £ 15 ) (13)

amd c*y, ¢, are fermion creation and annihilation operators. This
transformation 1s used in solving the two-dimensional sing modeIZ’, and it may
be used for any lattice model. On the other hand the boson representations of
spin or fermion operatorsZ* rely on the continuum 1imit2%, For fermions in one
dimension, it is possibie to distinguish between right-qoing and left-going
particles, with field operators y.(x) and ¢.(x) respectively. Then y.(x) may
be written

172

12 X
v, (x) = const exp[-1(x/u)"'" [ dg »(€) ¢ i(mu)"'"e(x)] (14)

where ¢(x) is a Bose Field and =(x) 1s its conjugate momentum, This
transformatfon is particularly useful, because it is rather easy to evaluate
correlgtion functions when the operators consist of exponentials of Bose
Fields%“, Equatfons (11)=(14) are given in order to show the form of the
transformations. More detatled discussions ard applications to a number of
problems may be found in the literature or in reviews23,2",



The operator representations give the connection between the spin chain and
other one dimensional materfals, and also show how the sine-Gordon equation
comes fnto the picture. In the continuwum limit, the charge- and spin-degrees of
freedom of the conduction electrons are decoupled<“, and each may be regarded as
a set of spinless fermions which, in turn, are related to Hy + H, by 2
Jordon-Wigner transformation. The Hamiltonfan contains products of p«(x) and
9:+T(x) and, introducing the boson representation (14), it is found that the
contribution from tha inteqral of »(£) cancels out leaving a factor oraportional
to cosl{mu)2/2p(x)], which is the potential enerqy density of the sine-Gordon
system, Thus, all of these problems, as well $ the ordered phase of mercury
1on: in Hay.gAsFg (another sine-Gordonn system®) are related to the spin

chain,

The sfne-Gordon equivalence suggests that there may be soliton and breather
excitations, Howsgor. the fields are quantized and, in contrast to the
classfcal case?l,2%  the solution depends on the value of u. Solitons and
breathers exist when u is less than a critical value, and then the mass of the
Towest excitation is a measure of the coherence length in the disordered phase
of the corresponding two dimensional problem; since the mass governs the decay
in {(imaginary) time of a quantum-mechanfcal system. [t 1s in this regfon that
the sine-Gordon picture contributes most effectively to the solutfon of this
group of problems2®, If u is greater than the critical value, there are no
solitons and the excitations are massless. This rsgjon corresponds to the line
of critical points in the two dimensional theories®’, and is more effectively
tackled by the renormalization group mathod.

One way of phrasing the renormalizatfon group method?® s to focus on some
quantity such as the colierence lengtR &, and to study the variation of
parameters (such as J) required to keep £s fixed, as s varies. From the
resulting flow equations, it is possible to evaluate the critical exponents.
Usually this procedure cannot be carried out exactly unless there is a small
paramater in which an expansion may be made. [t does, however, tell us which
are the relevant vartables, the ones which must be taken into account in order
to get a complete description. The method {is most useful in the neighborhood of
a fixed point of the transformation, and it is usually necessary to resort to
numerical calculations or to some other method of calculation if a more global
picture is required. Navertheless it can be applied in a relatively
straiaghtforward way to more complex Hamfltonfans, and to include ghe
dimerization Hy, which is quite difficult to deal «ith otherwisa'®,

Clearly, 211 of these aporoaches have their advantaaes and limitations, and it
is necessary to resort to a combination of all of them, in order to build up a
completoe picture of a given problem, The Bethe ansatz or the quantum versions
of the inverse scattering method are directly related to classical nonlinear
theories. They give exact sxpressions for the energy spectrum, but 1t is quite
difficult to evaluate correlation functions. The transformations between spins,
fermions and bosons may help to turn a problem into a more easily soluble form
but, without further help, they do not always give a mass spectrum. They are at
their best near a2 critical point, where the boson form in particular is usefyl
in giving the algebraic decay of correlation functions and expressions for the
associated critical exponents2‘., The renormalization group was originally a
techique of quantum field theory. [t is versatile but does not give a complete
analytical solution to a problem if there 1is no small parameter in which to
expand, or if regions far from a fixed point cannot be disregarded.

Nevertheless, by assembling the contributions of all of these techniques, we
have come to a unified picture of a large class of one-or two-dimensional



models, The commmon feature is a line of critical points, alonq which
correlation functfons of the classical or quantun mordels decay algebraically;
with exponents that depend upon the position along the line. The bhoson
representations and renormalization group equations lead to relationshins
between critical exponents in what amounts to a:; xtensfon of the exact results
to problems for which no exact solution exists!”., Off the critical line,

it 1s necessary to know the mass spectrum or the coherence length and to make
use of all of the methods in order to obtain a sclution. A survey of this
approach and a description of recent work 1s given in reference 19,

A1l of these developments have been described fn the context of condensed matter
physics, but many of the results have been discovered independently by
elementary particle theorists. Their objective has been to practice on models
showing confinement and asymptotic freedam in the hope that techniques may bz of
value for the more physical four dimensional theories. By now it has the
appearance of a mature fleld, But it is tco much to expect that such a tidy
picture of Tow-dimensfonal physics will persist. Already a number of models,
that cannot be solved immediately by these methods, are being investigated--that
1s a symptom of a healthy field.
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