DP-MS-78-62

COVALENCY OF NEPTUNIUM(IV) TRISCYCLOPENTADIENYL COMPOUNDS FROM MÖSSBAUER SPECTRA

by

D. G. Karraker and J. A. Stone

Savannah River Laboratory E. I. du Pont de Nemours & Co. Aiken, SC 29801

NOTICE -

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Paper proposed for presentation at the Southeastern ACS Meeting Savannah, Georgia November 8-11, 1978

# MASTER

This paper was prepared in connection with work under Contract No. AT(07-2)-1 with the U.S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royaltyfree license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

#### **DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

## **DISCLAIMER**

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

COVALENCY OF NEPTUNIUM(IV) TRISCYCLOPENTADIENYL COMPOUNDS FROM MÖSSBAUER SPECTRA\*

D. G. Karraker and J. A. Stone

Savannah River Laboratory E. I. du Pont de Nemours & Co. Aiken, SC 29801

#### **ABSTRACT**

Isomer shifts measured from the  $^{2\,37}$ Np Mössbauer spectra of NpCp<sub>3</sub>OR (R = alkyl) NpCp<sub>3</sub>R and NpCpAr (Ar = aryl) are used as a measure of the covalency in Np(IV) ligand bonding. The isomer shifts in NpCp<sub>3</sub> $^{n}$ Bu and NpCp<sub>3</sub>C<sub>6</sub>H<sub>4</sub>C<sub>2</sub>H<sub>5</sub> show a strong  $\sigma$  character to the Np $^{-n}$ Bu and Np-C<sub>6</sub>H<sub>4</sub>C<sub>2</sub>H<sub>5</sub> bonds. The  $\sigma$  character of Np-OR bonding is definite, but less pronounced. The comparatively low covalency in the bonding of NpCp<sub>4</sub> is ascribed to longer Np-C bonds in NpCp<sub>4</sub> than in NpCp<sub>3</sub> $^{+}$  compounds. The  $^{2\,37}$ Np isomer shift in Np(MeCp)Cl<sub>3</sub>·2THF indicates that the MeCp ligand is  $\sigma$ -bonded in this compound.

<sup>\*</sup> The information contained in this article was developed during the course of work under Contract No. AT(07-2)-1 with the U.S. Department of Energy.

#### INTRODUCTION

The U(IV) compounds with cyclopentadiene (HCp), UCp<sub>3</sub>Cl and UCp<sub>4</sub> were among the first actinide organometallic compounds discovered. The analogous Np(IV) compounds, NpCp<sub>3</sub>Cl and NpCp<sub>4</sub> were synthesized later, and shown to have identical properties. The analogous Np(IV) compounds, NpCp<sub>3</sub>Cl and NpCp<sub>4</sub> were synthesized later, and shown to have identical properties. The Anumber of derivatives have been prepared from UCp<sub>3</sub>Cl, such as UCp<sub>3</sub>OR (R = alkyl), UCp<sub>3</sub>R and UCp<sub>3</sub>Ar (Ar = aryl). Substituted cyclopentadienes, such as MeCp, indenyl (In) and C<sub>5</sub>H<sub>4</sub>CH<sub>2</sub>D have also been prepared for structural studies of the UCp<sub>3</sub> compounds. 11,12

This study is concerned with the preparation of the Np(IV) analogs of the UCp<sub>3</sub><sup>+</sup> compounds and their study by Mössbauer spectroscopy. For several NpCp<sub>3</sub><sup>+</sup> compounds, intermediate relaxation effects did not produce interpretable Mössbauer spectra, so Cp<sub>3</sub>NpOR and Cp<sub>3</sub>NpAr compounds substituted on either the Cp, R, or Ar ligands were prepared and studied. Previous investigations have shown that the isomer shift of the Mössbauer spectrum reflects covalent contributions to the bonding of Np<sup>+4</sup> ion. 13,14 These covalent effects are the major interest of this study.

#### **EXPERIMENTAL**

#### General

All compounds were prepared in the dry, purified argon atmosphere of a glove box. Samples were sealed under an argon atmosphere in plastic holders for Mössbauer measurements, as performed previously. 13,14 Solvents (THF, 1,2-DME, toluene, petroleum ether

and ethyl ether) were purified by standard methods in an argon atmosphere. Neptunium was analytically determined by destruction of a sample in dilute acid and alpha-counting an aliquot of this solution. Chloride was determined by titration with standard silver nitrate to potentiametric end-point. Organic ligands were estimated by gas chromatography of the decomposition products, formed by reacting the compounds with water or ethanol.

#### Preparation of Compounds

NpCp<sub>3</sub>Cl, Np(MeCp)<sub>3</sub>Cl, NpCp<sub>3</sub>Br•DME

NpCp<sub>3</sub>Cl was prepared by reacting NpCl, and TlCp in 1,2-dimethoxyethane (DME), as described by Marks, et al. <sup>15</sup> Substitution of TlMeCp or NpBr, produced Np(MeCp)<sub>3</sub>Cl or NpCp<sub>3</sub>Br\*DME, respectively. The product of this reaction may be only 70-80% pure. To obtain pure material (>95%) the crude produce was dissolved in toluene, filtered, and vacuum evaporated. The solid product was heated at 100°C in vacuum for 8 to 16 hours to remove excess solvent. In the single preparation of NpCp<sub>3</sub>Br, solvent removal was incomplete. Calcd. for NpCp<sub>3</sub>Br\*DME: Np 40.05%; Br, 13.6%. Found: Np, 40.6%; Br 14.5%.

Np In<sub>3</sub>Cl, NpIn<sub>3</sub>•xTHF

NpIn<sub>3</sub>Cl was prepared by reacting NpCl<sub>4</sub> and KIn in tetrahydrofuran (THF) solution, as described by Laubereau, et al.<sup>11</sup> The product of the reaction at room temperature contained only trace amounts of chloride, and its Mössbauer spectrum showed only a Np(III) species, consistent with a NpIn<sub>3</sub>•xTHF product. Mixing the reagents at -88°C yielded a mixture with a Cl/Np ratio of 0.15, assumed to be a mixture of NpIn<sub>3</sub>Cl•xTHF and NpIn<sub>3</sub>•xTHF from its Mössbauer spectrum.

NpCp<sub>3</sub>BH<sub>4</sub>, Np(MeCp)<sub>3</sub>BH<sub>4</sub>, NpCp<sub>3</sub>OR, Np(MeCp)<sub>3</sub>OR

These compounds were prepared by metathesis of NpCp<sub>3</sub>Cl (for example) with LiBH<sub>4</sub>,<sup>5</sup> or a potassium alkoxide.<sup>16</sup> Stoichiometric amounts were stirred in toluene for 24 to 72 hours, the solids (LiCl, KCl) filtered, and the filtrate vacuum-evaporated to recover the products. Compounds prepared in this manner, and their analyses are tabulated below.

| Compound                                                       | Np%, Calculated | Np%, Found |
|----------------------------------------------------------------|-----------------|------------|
| NpCp 3BH4                                                      | 53.04           | 48.9       |
| $Np(MeCp)_3BH_4$                                               | 48.4            | 46.9       |
| NpCp <sub>3</sub> O <sup>i</sup> C <sub>3</sub> H <sub>7</sub> | 48.3            | 45.0       |
| $Np(MeCp)_3O^1C_3H_7$                                          | 44.2            | 42.3       |
| NpCp <sub>3</sub> OCH(CF <sub>3</sub> ) <sub>2</sub>           | 39.6            | 40.2       |
| NpCp₃O <sup>t</sup> C₁ <sub>1</sub> H <sub>9</sub>             | 46.9            | 44.4       |
|                                                                |                 |            |

NpCp<sub>3</sub><sup>n</sup>Bu

NpCp<sub>3</sub><sup>n</sup>Bu was prepared by adding an equimolar quantity of commercial butyl lithium in hexane to NpCp<sub>3</sub>Cl suspended in diethyl ether at -78°C. <sup>8</sup> The solution was stirred as it warmed to room temperature, then the ether was removed by vacuum. The remaining solids were dissolved in toluene, filtered and the product recovered by vacuum evaporation of the toluene. Calcd for NpCp<sub>3</sub><sup>n</sup>Bu: 48.5% Np. Found: 47.9% Np; Cl not detected.

Butane produced by decomposition of a sample with ethanol was measured by gas chromatography as 84% of theory. Mössbauer spectra of several preparations always showed NpCp4 and NpCp3.3THF impurities.

NpCp<sub>3</sub> $\emptyset$ , NpCp<sub>3</sub>C<sub>6</sub>H<sub>4</sub>C<sub>2</sub>H<sub>5</sub>, Np(MeCp)<sub>3</sub>(C<sub>6</sub>H<sub>4</sub>C<sub>2</sub>H<sub>5</sub>)

These compounds were prepared only in an impure state, by reacting NpCp<sub>3</sub>Cl with an ether solution of the phenyl lithium<sup>17</sup> at -78°C, similar to the method for preparing NpCp<sub>3</sub><sup>n</sup>C<sub>4</sub>H<sub>9</sub>. After stirring a short time at room temperature, the ether was removed by vacuum, and the residue extracted with toluene. The toluene solution was evaporated by vacuum to recover the product. For NpCp<sub>3</sub>Ø the best preparation had a Cl/Np ratio of 0.52, indicating 52% of the sample was unreacted NpCp<sub>3</sub>Cl. Destruction of a sample with ethanol and benzene analysis by gas chromatography showed 40% NpCp<sub>3</sub>Ø; the Mössbauer spectrum showed a NpCp<sub>4</sub> impurity. The NpCp<sub>3</sub>(C<sub>6</sub>H<sub>4</sub>C<sub>2</sub>H<sub>5</sub>) and Np(MeCp)<sub>3</sub>(C<sub>6</sub>H<sub>4</sub>C<sub>2</sub>H<sub>5</sub>) compounds were further purified by extraction with petroleum ether (boiling range 20-40°C).

Np(MeCp)Cl<sub>3</sub>•2THF

This compound was prepared by the reaction of stoichiometric quantities of T1MeCp and NpCl<sub>4</sub> in THF solution, similar to the literature preparation of UCpCl<sub>3</sub>·2THF.<sup>18,19</sup> The reaction mixture was stirred for 24 hours at room temperature, filtered, and a crude product obtained by evaporation of the filtrate. The crude product was washed with toluene to remove a probable Np(MeCp)<sub>3</sub>Cl impurity, and vacuum-dried. Calcd. for Np(MeCp)Cl<sub>3</sub>·2THF: NP, 41.95%; Cl, 18.50%. Found: Np, 42.4%; Cl, 19.55%; Cl/Np = 3.05.

#### **RESULTS**

Mössbauer spectra were obtained for all 16 compounds prepared Representative spectra for the compounds studied are shown in the five figures: Figure 1, Np(MeCp)<sub>3</sub>BH<sub>4</sub>; Figure 2, Np(MeCp)<sub>3</sub>Cl, NpCp<sub>3</sub>Br·DME, NpIn<sub>3</sub>Cl·xTHF; Figure 3, NpCp<sub>3</sub><sup>n</sup>Bu; Figure 4, Np(MeCp)<sub>3</sub>O<sup>i</sup>C<sub>3</sub>H<sub>7</sub>; and Figure 5, Np(MeCp)Cl<sub>3</sub>·2THF.

Except for NpMeCpCl<sub>3</sub>, none of the spectra are well-resolved. The spectra of all the  $Cp_3Np^+$  compounds investigated had their resolution decreased to varying degrees by relaxation broadening. In extreme cases, the resolution was so poor that no useful information could be obtained from the spectra of  $Np(MeCp)_3Cl$ ,  $NpIn_3Cl \cdot xTHF$ ,  $NpCp_3Br \cdot DME$  (Figure 2) and  $NpCp_3BH_4$ , and  $NpCp_3\emptyset$  (not shown). The spectra of  $NpCp_3O^{\dagger}C_3H_7$ ,  $NpCp_3O^{\dagger}Bu$ , and  $NpCp_3C_6H_5C_2H_5$  were poorly resolved, but could be interpreted within a rather generous error.

Poor resolution occurs because the relaxation time of  $^{237}\text{Np}$  nuclei is about the same as the 62 nsec-half-life of the 59.5 keV level. At relaxation times much faster than 62 nsec, the spectra is either a single line, or quadruple-split pattern, like NpCp4. 14 At much slower relaxation times, the spectrum is magnetically-split, like Np(C<sub>8</sub>H<sub>8</sub>)<sub>2</sub>. 13 Intermediate relaxation effects in Np(IV) compounds usually show some correlation with the distance between Np(IV) ions. Relaxation effects on Mössbauer spectra can sometimes be relieved by measuring a similar compound with bulkier ligands, such as  $[(C_2H_5)_4N]_2NpCl_6$ , which has a well-resolved

spectrum, instead of  $Cs_2NpCl_6$ , which has an uninterpretable spectrum because of intermediate relaxation effects. This approach was used in this study with partial success. For example,  $NpCp_3BH_4$  and  $NpCp_3\emptyset$  have spectra that could not be interpreted, so measurements were made with  $Np(MeCp)_3BH_4$  and  $NpCp_3C_6H_5C_2H_5$ . Interpretation of the spectra requires the assumption that the isomer shifts are essentially the same for both the substituted and unsubstituted ligands.

The Mössbauer parameters for the compounds studied are listed in Table 1, with some previously reported data included for comparison. Isomer shifts are referred to  $NpAl_2 = 0$ .

#### **DISCUSSION**

The isomer shift in the <sup>237</sup>Np Mössbauer spectra depends upon the shielding of the 6s orbitals by electron density in the inner orbitals, principally the 5f orbitals. <sup>20,21</sup> As the 5f orbitals add electrons proceeding from Np<sup>+7</sup> to Np<sup>+3</sup>, the isomer shift becomes progressively more positive, from approximately -6.5 cm/sec to 3.5 cm/sec. Similarly, as electron density is contributed to the 5f orbitals from the ligands bonded to Np(IV), the isomer shift of the Np<sup>+4</sup> ion is shifted from its normal position of -0.4 cm/sec toward the normal value for Np<sup>+3</sup>, 3.5 cm/sec. The isomer shift of the Np<sup>+4</sup> ion in Np(IV) organometallic compounds reflects the differences in the electron density contributed by the ligands, which are equivalent to differences in covalent contributions of the ligands bonding to the Np(IV) ion.

For Np(MeCp) 3BH4 and NpCp3Cl, the isomer shifts are 1.4 cm/sec. The difference between 1.4 cm/sec and -0.4 cm/sec is considered to represent the covalent contribution of the three Cp ligands. BH4 and Cl ions are assumed to have little or no covalency in their bonding to Np(IV). The four NpCp3OR compounds all have isomer shifts in the range 0.8 to 0.93 cm/sec; compared with the 1.4 cm/sec shift of NpCp<sub>3</sub>Cl, this demonstrates that the sigma bonding-OR group is withdrawing some of the electron density contributed by the three Cp ligands from the Np(IV) ion. The isomer shifts of NpCp<sub>3</sub> Bu and NpCp<sub>3</sub>C<sub>6</sub>H<sub>4</sub>C<sub>2</sub>H<sub>5</sub>, 0.27 and 0.4 cm/sec, respectively, show a much stronger electron-withdrawing tendency, and verify the strong sigma bonding reported for the - "Bu and -C<sub>6</sub>H<sub>4</sub>C<sub>2</sub>H<sub>5</sub> ligands. 9,10 The isomer shift of NpCp<sub>3</sub> <sup>n</sup>Bu represents a withdrawal of electron density of more than 1 cm/sec with respect to NpCp<sub>3</sub><sup>+</sup>, equivalent to about 1/4 the isomer shift difference between Np(IV) and Np(III). In view of the nature of the Np(IV)- Bu bond, it is not surprising that no Np(IV) or U(IV) tetraalkyl compounds are known.

The isomer shift of NpCp<sub>4</sub> (0.72 cm/sec) is less than NpCp<sub>3</sub>Cl (1.4 cm/sec) and even NpCp<sub>3</sub>OR compounds (0.8 - 0.95 cm/sec). The explanation for this lies almost certainly in the difference between the Cp-Np bond distances in NpCp<sub>3</sub><sup>+</sup> compounds and NpCp<sub>4</sub>. In the U(IV) analogues, single crystal studies have shown that the C-U distance is 2.72 - 2.74 Å for UCp<sub>3</sub>Cl, UCp<sub>3</sub> $^{\rm n}$ Bu, and UCp<sub>3</sub> -alkyl while the C-U(IV) distance is 2.81 Å

for  $UCp_4$ . <sup>22</sup> The increased C-U(IV) bond distance in  $UCp_4$  is the result of repulsion between the four Cp ligands. Assuming that the distances between Cp ligands and Np(IV) are very close to the Cp-U distances, the smaller isomer shift in NpCp probably results from a decreased overlap between Cp bonding orbitals and the 5f orbitals of the Np(IV) ion, and thus to a decreased covalent contribution in the bonding of NpCp<sub>4</sub>, compared to NpCp<sub>3</sub><sup>+</sup>. Np(C<sub>8</sub>H<sub>8</sub>)<sub>2</sub>, which has the most positive isomer shift of any Np(IV) organometallic compound (1.94 cm/sec), has a Np-C distance of 2.65 Å. The shorter Np-C distance in Np(C<sub>8</sub>H<sub>8</sub>)<sub>2</sub> compared to NpCp<sub>4</sub> is a significant factor in the greater covalency of Np(C<sub>8</sub>H<sub>8</sub>)<sub>2</sub>. The Np(IV) ion has 20 electrons available from the ligands in both NpCp<sub>4</sub> and Np(C<sub>8</sub>H<sub>8</sub>)<sub>2</sub>, so the electron density available to the Np(IV) ion is the same for both Np(C<sub>8</sub>H<sub>8</sub>)<sub>2</sub> and NpCp<sub>4</sub>.

The Mössbauer spectrum (Figure 5) of Np(MeCp)Cl<sub>3</sub>·2THF has an isomer shift of -0.31 cm/sec, about the same as the isomer shift of NpCl<sub>4</sub> (-0.35 cm/sec). Comparing these isomer shift values, the MeCp ligand and the chloride ion are essentially equivalent in donation of the electron density to the Np<sup>4+</sup> ion. This equivalence indicates that the MeCp ligand is  $\sigma$ -bonded in NpMeCpCl<sub>3</sub>·2THF, and infers that the Cp ligand in analogous compounds (UCpCl<sub>3</sub>·2THF, UCpCl<sub>3</sub>·DME, etc.) is probably  $\sigma$ -bonded also. The infrared data of Bagnall, et al.<sup>19</sup> show an average  $v_{(U-CP)}$  of 262 cm<sup>-1</sup> for seven compounds of the general formula UCpX<sub>3</sub>·xS (X = Cl<sup>-</sup> or Br<sup>-</sup>, x = 1 or 2, S = ligand) compared with an average  $v_{(U-CP)}$  of 243 cm<sup>-1</sup> for

 $UCp_3C1$  and  $UCp_3Br$ . The difference suggests a difference between the U-Cp bond in UCpX and U-Cp bond in UCp3X compounds, consistent with the Mössbauer results.

#### **ACKNOWLEDGMENT**

The authors are indebted to B. Tiffany for the gas chromatography analyses.

#### **REFERENCES**

- 1. L. T. Reynolds and G. Wilkinson. JINC 2, 246 (1956).
- 2. E. O. Fischer and Y. Hristidu. Z. Naturforsch B17, 275 (1962).
- 3. E. O. Fischer, P. Laubereau, F. Baumgärtner and B. Kanellakopulos.

  J. Organometallic Chem. 5, 583 (1966).
- 4. F. Baumgärtner, E. O. Fischer, B. Kanellokopulos, and P. Laubereau. *Angew. Chem. 7* (Int. Ed.), 634 (1968).
- 5. R. von Ammon, B. Kanellokopolus, and R. D. Fischer. Radiochem.

  Acta. 11, 162 (1969).
- 6. G. Brandi, M. Brunelli, G. Lugli and A. Mazzei. *Inorg. Chem. Acta.* 7, 319 (1973).
- 7. A. E. Gebala and M. Tsuitui. *JACS 95*, 91 (1973).
- 8. T. J. Marks, A. M. Seyam and J. R. Kolb. *JACS 95*, 5539 (1973).
- 9. M. Tsutsui, N. Ely, and R. Dubois. *Accts. Chem. Res.* 9, 219 (1976).
- 10. T. J. Marks. Accts. Chem. Res. 9, 223 (1976).
- 11. P. Laubereau, L. Ganguly, J. H. Burns, B. M. Benjamin, J. L. Atwood and J. Selbin. *Inorg. Chem.* 10, 2274 (1971).

- 12. L. Leong, K. O. Hodgson and K. N. Raymond. *Inorg. Chem.* 12, 1329 (1973).
- D. G. Karraker, J. A. Stone, E. R. Jones, Jr. and N. Edelstein.
   JACS 92, 4841 (1970).
- 14. D. G. Karraker and J. A. Stone. Inorg. Chem. 11, 1742 (1972).
- 15. T. J. Marks, A. M. Seyam and W. A. Wachter. *Inorganic Synthesis VI*, F. Basolo, Ed., p 147 (1976).
- R. von Ammon, B. Kanellakopulos, R. D. Fisher and P. Laubereau.
   Inorg. Nucl. Chem. Letters 5, 219 (1969).
- 17. M. Schlosser and V. Ladenberger. J. Organometal. Chem. 8, 193 (1967).
- L. Doretti, P. Zanella, G. Faraglin, and S. Faleschini.
   J. Organometallic Chem. 43, 33 (1972).
- K. W. Bagnall, J. Edwards, and A. C. Tempest. J. Chem. Soc. Dalton, 295 (1978).
- 20. W. L. Pillinger and J. A. Stone. *Mössbauer Effect Methodology*, *Vol. 4*, Ed. I. J. Groverman, Plenum Press, New York, pp 217-236 (1968).
- 21. G. M. Kalvius. Plutonium 1970 and other Actinides. In Proceedings of the 4th International Conference on Plutonium and Other Actinides, Santa Fe, New Mexico, October 5-9, 1970.

  Ed. W. N. Miner (Metallurgical Society of American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., 345

  E. 47th St., NY 10017, pp 296-330.)
- 22. E. C. Baker, G. W. Halstead and K. N. Raymond. Structure and Bonding 25, 23 (1976).

### FIGURE CAPTIONS

- FIGURE 1. Mössbauer Spectrum of (MeCp)<sub>3</sub>NpBH<sub>4</sub>
- FIGURE 2. Mössbauer Spectra of a) MeCp $_3$ NpCl, b) In $_3$ NpCl (the Sharp Peak at 3.5 cm/sec is In $_3$ Np), and c) Cp $_3$ NpBr
- FIGURE 3. Mössbauer Spectra of a) Cp<sub>3</sub>Np<sup>n</sup>C<sub>4</sub>H<sub>9</sub>, b) Cp<sub>4</sub>Np, and c) Cp<sub>3</sub>Np
- FIGURE 4. Mössbauer Spectrum of (MeCp)<sub>3</sub>NpOCH(CH<sub>3</sub>)<sub>2</sub>
- FIGURE 5. Mössbauer Spectra of Np(MeCp)Cl<sub>3</sub>·2THF

TABLE 1 Mössbauer Parameters for  ${\rm NpCp_3}^+$  Compounds

| Compound                                             | Isomer Shift <sup>α</sup><br>δ, cm/sec | Quadrupole<br>Coupling Constant<br>eqQ/4, cm/sec | Magnetic Hyperfine<br>Constant<br>$g_0 \mu_n H_{eff}$ , cm/sec |
|------------------------------------------------------|----------------------------------------|--------------------------------------------------|----------------------------------------------------------------|
| $NpCp_4^b$                                           | 0.72 ±0.02                             | 1.66 ±0.02                                       | •                                                              |
| $NpCp_3C1^b$                                         | 1.4 ±1.0                               |                                                  | ·                                                              |
| Np(MeCp) 3BH4                                        | 1.45 ±0.4                              |                                                  |                                                                |
| NpCp 3 Bu                                            | 0.27 ±0.07                             |                                                  | 5.8 ±0.2                                                       |
| $NpCp_3C_6H_4C_2H_5$                                 | 0.42 ±0.28                             | •                                                | 5.5 ±0.4                                                       |
| $Np(MeCp)_3O^iC_3H_7$                                | 0.93 ±0.07                             | 5.0 ±1.0                                         | 5.72 ±0.20                                                     |
| NpCp₃O <sup>i</sup> C₃H <sub>7</sub>                 | 0.86 ±0.2                              |                                                  | 5.4 ±0.5                                                       |
| NpCp <sub>3</sub> OCH(CF <sub>3</sub> ) <sub>2</sub> | 0.79 ±0.2                              |                                                  | 5.7 ±0.4                                                       |
| NpCp 30 <sup>t</sup> Bu                              | 0.86 ±0.3                              |                                                  | 5.2 ±0.4                                                       |
| NpIn <sub>3</sub> •xTHF                              | 3.55 ±0.15                             | 1.37 ±0.07                                       |                                                                |
| Np (MeCp) Cl <sub>3</sub> • 2THF                     | -0.31 ±0.07                            |                                                  | 5.15 ±0.06                                                     |

a. Relative to  $\delta = 0$  for NpAl<sub>2</sub>.

b. From Reference 14.

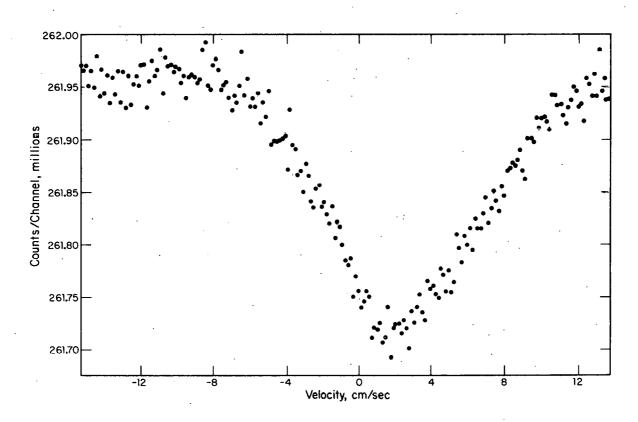



FIGURE 1. Mössbauer Spectrum of (MeCp)₃NpBH₄

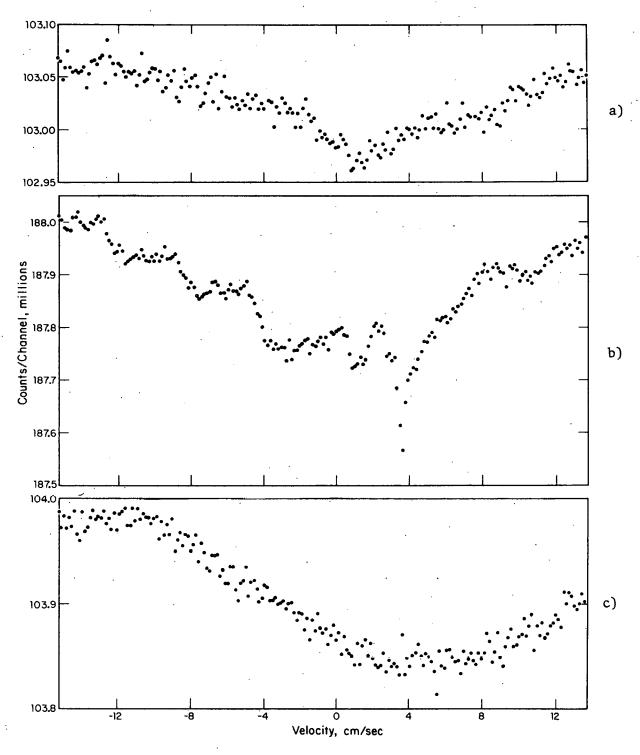



FIGURE 2. Mössbauer Spectra of a) MeCp<sub>3</sub>NpCl, b) In<sub>3</sub>NpCl (the Sharp Peak at 3.5 cm/sec is In<sub>3</sub>Np), and c) Cp<sub>3</sub>NpBr

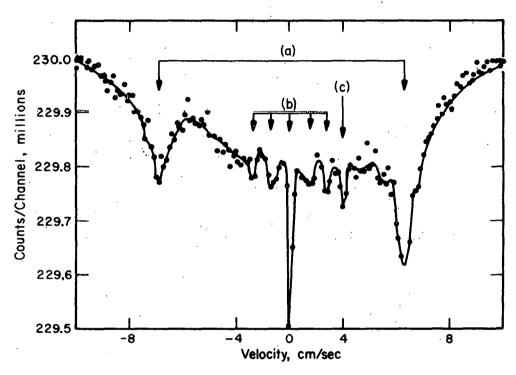



FIGURE 3. Mössbauer Spectra of a)  $Cp_3Np^nC_4H_9$ , b)  $Cp_4Np$ , and c)  $Cp_3Np$ 

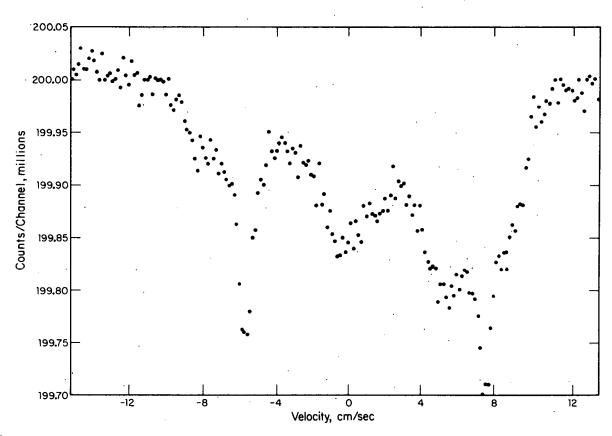



FIGURE 4. Mössbauer Spectrum of  $(MeCp)_3NpOCH(CH_3)_2$ 

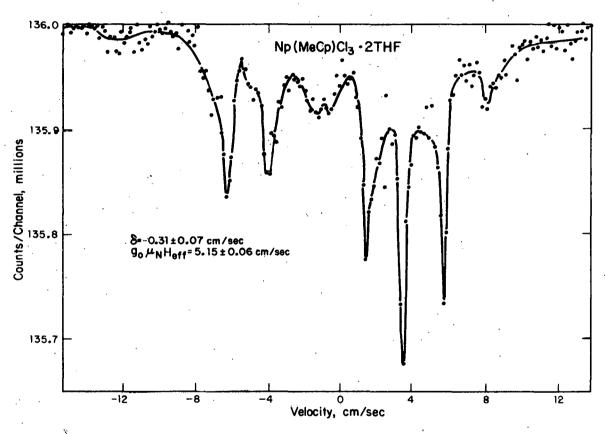



FIGURE 5. Mössbauer Spectra of Np(MeCp)Cl<sub>3</sub>•2THF