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We show that the Nsrnst-EInstein equation can be generalized for a high defect con-
centration solid to relate the mobility or conductivity to the self-diffusion coef-
f icient in the standard form:

Da " kBT '

where Xa is the mobility of the charge carriers, qa is their charge, and Da is the
self-diffusion coefficient; kg and T are Boltzmann's constant and the temperature. We
derive this relationship assuming that the diffusing particles Interact strongly and
that the mobility is concentration-dependent. We derive this relationship for
interstitial disordered structures, but it is perfectly general to any mechanism of
self diffusion as long as diffusion in a pure system is considered.

1. INTRODUCTION

In an ionic solid, a classic method for develop-
ing interpretations of defect structures is to
compare conductivity measurements with diffusion
measurements. The electrical conductivity of the
solid, a, is related to the mobility of the
charge carriers, Xa, by

D*

S
a (1)

with Na and qa the number of carriers and their
charge. The mobility is related to the diffusion
coefficient of the charge carrier by the familiar
Nernst-Einstein equation

k T

V

(2)

kB and T are Boltzmann's constant and the tem-
perature.

The usefulness of Eqs. (1) and (2) has centered
around a correct interpretation of the diffusion
coefficient in Eq. (2) and the question of the
general applicability of the Nernst-Einstein
equation as expressed in Eq. (2).

When diffusion occurs by the motion of isolated
point defects in a pure system, (i.e., NaCl,
AgCl, . . . ) , Da is just the self-diffusion coef-
ficient and is related to the tracer diffusion
coefficient, D*, by
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(3)

with fa the correlation factor. However, if the
defects are not isolated noninteracting defects,
then it is not clear that Eq. (2) is generally
applicable, and evaluations of conductivity and
tracer diffusion coefficient comparisons have had
to be dons in other than quantitative terms
because of defect interactions.

In this paper, we examine the assumptions that
were used in the derivation of a Nernst-Einstein
relationship and see that as long as diffusion in
a pure system (whether stoichiometric or not) is
considered, the expression as presented in
Eq. (2) is perfectly general and that the dif-
fusion coefficient, Da, is always the self-
diffusion coefficient of the charge carriers.

The derivation is done for an Interstitial disor-
dered system, and although a phenomenological
development is used, a specific kinetic model
calculation is given to illustrate the detailed
physical justification of Eq. (2).

2. NERNST-EINSTEIN RELATION BETWEEN DIFFUSION
AND CONDUCTIVITY

A derivation of the Nernst-Einstein equation as
written in Eq. (2) was done by Mott and Gurney1

for a solid in which is was assumed that the
mobile charge carriers were independent and
non-interacting. Mott and Gurney derived Eq. C!
proceeding from a simple statement of a no-
current condition for a solid electrolyte with
a uniform electric field externally applied.
The system is "blocked" at the electrodes, the
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particles accumulate in regions of lower electri-
cal potential energy, and a concentration gra-
dient is established. As a result of the forced
notion from the electrical field, an equal and
opposite alffusional flow down the concentration
gradient is set up to maintain the particles in
equilibriun with a no-current condition on the
crystal. A statement of this no-current con-
dition in terms of the intrinsic diffusion coef-
ficient of the particles, D1, and the mobility of
the particles, Xa, is

q JMa a

dC

N is the total number of sites in the crystal,
C a is the fraction of sites occupied by the
particles, and E is the negative gradient of the
electrical potential <f>.

Mott and Gurney Integrated Eq. (4) assuming that
Dj and \a were constants, thus implying that DJ =•
D a (the self diffusion coefficient of the par-
ticles). Therefore, the particles distribute
themselves in the electrical field according to

N C - constant • exp (— (5)

Mott and Gurney then combined this result with
the well known prediction from the Maxwell-
Boltznann distribution,

q A
N C constant • exp [—: (6)

and
LAAXA ' (9)

The Lji are phenonenological coefficients, and
the Xj are thermodynamic forces

(10)

where Sj, the electrochemical potential of j, is
the sum of the chemical potential, |ij, and the
potential energy of a charged particle in an
electrical potential +,

qa is the charge.

Substituting pj into Eqs. (8), (9) and (10) gives

JA* • - W U A * - W W A + 1a(k*A*
(12)

and
1-AA* A* ~ LAA7uA

(13)
LAA>E '

E is the electric field, E - - V $ . With Eqs. (12)
and (13), we get the electrical current as

Va V

to obtain ( U )

D kBT
(7)

Equation (7) is the comnonly accepted expression
for the Nernst-Einstein equation.

What we will do in the following is to remove the
restriction that D* and Xa remain constant and
rederive Eq. (7). However, since the more
general case for particles interacting will be
treated, we cannot use the convenience of the
Maxwell-Boltzmann distribution, but an equation
similar to Eq. (6) can be derived from flux
equations obtained using irreversible thermo-
dynamics.

For simplicity, we will develop the expressions
for a crystal with interstitial disorder, but for
generality, we will include the results of an
analysis that will apply to vacancy disorder.
Consider a crystal containing tracer and
nontracer interstitial ions of charge qa. Then
the fluxes of tracer ions, A*, and nontracer
ions, A, are

"A*
I Y •*- I v

A*A* A* A*A 'A
(8)

A*A*

A*A AA* "AAJ ' '

When we first apply the electrical field to our
crystal, the interstitial particle distribution
is homogenous with CA./CA.* = constant, and as it
evolves into a nonhoraogeneous crystal, the force
from the electrical field acts equally on A and
A* interstitials; CA/CA* remains constant.
Therefore, for all time

(15)

(16)

so that

k-TVC

"A* (17)



In Eqs. (15-17) Ca » CA* + CA. and a is the non-
configurational contribution to the chemical
potential gradient,

1 + (18)

Y is the activity coefficient and accounts for
particle interaction effects. Substituting
Eqs. (15) and (16) into Eq. (14) we get

A*A AA*

k TVC+ ̂ ( " V ^ - «a
E» '

Now the no-current condition gives

N k«TVC

N C
q E

(19)

(20)

This expression can be integrated to give the
particle distribution in the electric field as

dj.(x),NC^exph/^^Hix] , (21)

and while the result is similar to the one given
by the Maxwell-Boltzmann distribution, it cannot
be integrated generally since a is a function of
jc; a accounts for particle interactions and
depends upon the partic1e concentration. Now to
complete the analysis, we simply integrate
Eq. (4) in its general form not assuming D^ and
Xa to be constant

N C
a

constant • exp[- / -y d^ x )dx] . (22)
x D

Although the result is dependent upon integral
expressions, the arguments of the integrals in
Eqs. (21) and (22) can be equated and give

(23)

Equation (23) is now the generalized form of the
Nernst-Einstein relationship that we seek, and it
differs from the apparently less general case
that Mott and Gurney derived assuming no particle
interaction. However, we shall see that there is
no difference in the basic result obtained by
both methods.

The results obtained by Mott and Gurney apply
when Eq. (4) can be integrated assuming D| and
Xa to be constants (i.e., not functions of C a ) .
The results obtained when D| and Xa are not
constant are given in Eq, (23) and appear to be

different from Mott and Gurney's formulation of
the Nernst-Einstein relation. However, they are
in fact the same.

Recently it has been shown^ that when the inter-
stitial content is high enough and interstitial-
interstitial interactions occur, interstitial
diffusion is nonrandom so that the intrinsic dif-
fusion coefficient, Dj, is related to the tracer
diffusion, D*.
according to

and Che correlation factor, fa

D*
(24)

a is the thermodynamic factor given In Eq. (18).
Putting Eq. (24) into Eq. (23) we find

(25)

which is precisely the Mott and Gurney result
since the self-diffusion coefficient for the
interstitial defects equals D*/fa. Therefore,
even when defect interaction occur, the inter-
pretation of the diffusion coefficient in the
Nernst-Einstein equation remains the same,
namely, the mobility is proportional to the self-
diffusion coefficient for a randomly moving
particle. This result leaves an evaluation of
the mobility or conductivity in a nonstoichio-
metric crystal dependent on only an understanding
of how the average jump frequency of the charge
carriers depends on concentration.

We can illustrate this with a specific example
that applies to site exclusion effects in inter-
stitial disordered structures. The tracer dif-
fusion coefficient and the self diffusion
coefficient are related according to Eq. (3), and
we can also write the tracer diffusion coef-
ficient as

D* « £-fa 6 aa (26)

where fta is the average jump frequency and X is
the jump distance. Using Eqs. (26) and (3) we
find that

Da \2
a f 6 a (27)

By using a simple model of interstitial pairing
in octahedral sites of the fee lattice (see
Fig. 1), we can write down an expression for fta.
This interstitial-pairing model has been used to
explain the concentration dependence of carbon
diffusion in fee iron;2 we can use it here to
illustrate how S(a depends on the combined effects
of site exclusion and altered jump rates in
defect complexes.



Fig. 1. Schematic diagram of a (111) plane of
the fee interstitial lattice showing available
interstitial positions o, Isolated interstitials
0, and an interstitial-interstitial pair 0-0.
The various jump types and frequencies are
indicated.

The interstitial defects in our model move as
isolated interstitials at rate kp, and the basic
jump rate kg is perturbed in or near a pair to
rates uj, U3, and u4. The average interstitial
jump rate, fia, is simply a sum relationship for
contributions made by kg-, Uj-, U3-, and Ui,-type
jumps:

n - n . + a + a + n . (28)
a k0 uj u3 ui,

Either by a simple mass action approach3 or by a
more sophisticated statistical mechanics approach,2

we find that SI-, can be written to first order as

- 12ka

7(u, - (29)

C is the fraction of occupied interstitial sites
in the crystal.

There are many facets of this general problem
that we could examine with this simple model, but
let us consider its utility in discussing site
exclusion. If we ask this question, and it often

arises, "how does the simple problem of site ex-
clusion manifest itself in high defect concentra-
tion solids?" we can answer it quantitatively
w-*h Eq. (29). Equation (29) gives us an
expression for how the average juop frequency for
the cl-.irge carrying interstitial ions varies with
concentration. If we set all jump frequencies to
the value for the isolated interstitial kQ-type
jump, Sl3 illustrates only the site exclusion
effect and becomes

12k0U - C) (30)

This result tells us, in a quantitative form,
that the probability for an interstitial ion jump
decreases as the total interstitial concentration,
C, increases. It is a necessary extension of
this result to analyze more complicated struc-
tures with higher defect concentrations, and such
techniques as Monte Carlo methods are being
applied (for examples see the excellent work by
Murch1*).

III. CONCLUSION

Space does not make its presentation possible
here, but Eq. (23) is perfectly general and works
for any mechanism of self-diffusion; it can be
derived for vacancy diffusion with the exact same
result.s Therefore, for diffusion-conductivity
experiments in a pure crystal (whether stoichio-
metric or not), the diffusion coefficient in a
Nernst-Einstein equation is always the self-
diffusion coefficient when the Nernst-Einstein
equation is written as Mott and Gurney presented
it, and we have derived it more generally here.
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