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Scattering Amplitudes to Ali Orders in Meson Exchange

RICHARD R. SILBAR and MICHAEL P. MATTISt

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

ABSTRACT

As the number of colors in QCD, Nc, becomes large, it is pos-

sible to sum up ali meson-exchange contributions, however arbitrarily

complicated, to meson-baryon and baryon-baryon scattering. A semi-

classical structure for the two-flavor theory emerges, in close corre-

spondence to vector-meson-augmented Skyrme models. In this limit,

baryons act as extended static sources for the classical meson fields.

This leads to non-linear differential equations for the classical me-

son fields which can be solved numerically for static radial (hedgehog'

like) solutions. The non-linear terms in the equations of motion for
the quantized meson fields can then be simplified, to leading order

in 1/N'C, by replacing all factors of the meson field but one by the

previous'ly-found classical field. This results in linear, SchrSdinger-like

equations, wh.(ch are easily solved. For the meson-baryon case the

solution can be subsequently analyzed to obtain the phase shifts for

the scattering and, from these, the baryon resonance spectrum of the

model. As a warm-up, we have carried out this calculation for the

simple case of o" mesons only, finding sensible results.

1. Introduction

In the large-No limit of QCD a number of interesting things happen. 1 The

quark and gluon degrees of freedom "freeze out" of the theory, leaving behind an
effective chiral field theory of mesons. The nucleon (and other baryons) become

heavy objects, with renormalized masses of O(Nc), while mesons remain "light"

(masses of O(1)). In fact, for two-flawr QCD, the nucleon is but one member

of a degenerate tower of baryons with I = J = ½, 3_ ... with masses of O(Nc)2'

In quark-model language these are the states formed from Nc quarks in relative

S-waves, antisymmetrized in color, and symmetrized in spin ® isospin; in Skyrme-
model language these states are the quantized excitations of the rotational collective

coordinates of the hedgehog.

Two lesser-known facts regarding meson-baryon vertices in the large-No, limit

have been pointed out by Mattis and collaborators, 2 motivated by work of Dono-
hue. 3 The first of these is the so-called "It = Jt Rule", which says that those
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partial wave amplitudes for meson-baryon scattering which have the isospin in tile
t-channel unequal to the total (spin plus orbital) t,channel angular momentum
go to zero like O(1/Nc). [For example, this rule therefore says that the pNN
coupling is dominantly tensor-like (at,v), while the wNN coupling is vector-like
(Tu).] The second fact is that meson-baryon coupling constants are related by a
"Proportionalty Rule",

gxNN' _ [(2iN + 1)(2iN, + 1)]_/2 , (1)

for meson x interacting with a baryon N with isospin iN to make a final baryon N _
with isospin iN,. For example, g,cNN ' g_Nh ' g_hh = 1 " V_' 2. [Since we don't
know much about the vrAA coupling constant, the latter ratio is better considered
as a prediction.]

Using these two large-Nc rules, Arnold and Mattis 4 recently showed how to
sum up ali the meson-exchange contributions in, say, meson-baryon scattering am-
plitude, e.g.,

•} ):
Graphs which are not included in the above t-matrix summation are the "Compton-
like" graphs, in which the external meson lines attach directly to the baryon-line.

At first glance, this claim of summability seems a pmori outrageous. Consider,
for example, the set of diagrams for exchange of n boson exchanges. For one thing,
each of the n! tanglings (i.e., orderings of how the n bosons attach to the baryon
line) involves a different integrand for the multiple integral over the loop momenta.
Also, for meson-baryon couplings which depend on spin and isospin, each of the n!
tanglings involves a different overall group-theoretic factor. (This merely reflects the
f_t that the Pauli matrices, for spin or for isospin, do not commute.) Nonetheless,

as 1No _ 0, these complexities disappear. 4 We do not go into the proofs here,
but they depend on the validity oi"the lt = Jt and Proportionality Rules mentioned
above, as well as the assumption that the momenta of interest are all of the order
of a typical meson mass, i.e., O(N_).

In the following we will sketch how the summation over all meson-exchange
graphs goes for the simple case of aN scattering. We have carried out this case
numerically as a warm-up problem before tackling a more realistic model which
also includes Tr, P, and w mesons. After presentation of numerical results, we will
wrap up, indicating how we would extend the meson-baryon scattering work and
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what some of the additional complications are in applying this technique to baryon-
baryon scattering.

2. Qualitative Remarks on Vertices and Amplitudes for Large Nc

First, a diversion to provide some insight as to the sizes of things. As the
number of colors in QCD grows large, one finds 1 that the theory requires the three-
meson vertex coupling constant to be O(1/_/_), the four-meson vertex to be
0(1 No), and the meson-baryon coupling to be O(_-N-'c). [The latter is reasonable,
vis-a-vis the gMMM coupling, because of the Nc quarks necessary to make up the
baryon, compared with the _q pair in the meson.] This means that the meson-
baryon scattering amplitude (and thus the scattering phase shifts) will be of O(1),
as can be seen by considering powers of Nc for each of the various terms in the
diagram in the last section.

Note in particular that, with the coupling constants going as stated above,
meson-loopcontributions to the scattering amplitude are suppressed by a power
of 1/Nc or more. This implies that, in the large-No limit, the relevant diagrams
(as far as the mesons are concerned) are tree diagrams. That is, the meson-meson
interactions do not involve loop integrations and hence can be well described by
classical fields for the mesons.

By the same arguments, a meson-meson scattering amplitude is of O(1/Nc),
i.e., is small. On the other hand, a baryon-baryon scattering amplitude iterates
meson exchange, and each exchange brings in a factor going like lO(No). Thus the
(unitary) S-matrix goes like exp(iO(Nc)) and its phase shifts gl are of O(Nc).

Note also that, by th,_ _ame sort of power counting, one might expect that
the contribution to the meson-baryon scattering amplitude from the Compton-like
graphs,

\
4.

/
would be O(Nc), not 0(1). However, there is a cancellation of the leading orders
that leaves these graphs contributing only terms of 0(1) (which are, in the calcula-
tion below, nevertheless neglected). This cancellation could have been anticipated
by consideration of the topological equivalence (duality) between the quark dia-
grams representing these Compton-like graphs and the usual graphs representing



meL,n exchange:

istopologically
equivalentto

Recall that the meson-exchange graphs are manifestly of order unity.

The neglect of the Compton-like O(1) contributions to the meson-baryon scat-
tering amplitude may not be so bad an approximation as one might first imagine.
In the large-No limit, the A is just as elementary a baryon as the N; both are
members of the same (degenerate) tower of I = J (non-strange) baryons. We do
not need the crossed-v-exchange graph as a driving term to build up the A as a
Chew-Low type of vN resonance.

3. Sketch of a a-Nucleon Scattering Amplitude Calculation

Reference 4 really presents only an outline of an extended numerical program.
We have begun work on this program by considering first the warm-up problem of
a-nucleon scattering (through arbitrarily complex a exchange). The a meson has
I = S = 0 and the aNN coupling is S-wave (i.e., satisfies the It = Jt rule). As
a result of I = 0 there can be no transitions to any of the higher-isospin baryons
(such as A's). Also, because the only mesons present in this simple model are a's,
one doesn't have to worry about transitions to other meson states.

The Lagrangian we want to solve, then, has the form

1

£aN = _(O_,a) 2 - Y(a) + N(iT. 0 - mN)N -- ga"lVN , (2)

where thea self-inter_tions are described by the potentld

V(a) = 1 2 2 1+ + + .... (3)

where/_ is the a meson mass.

We first note the simplification that, because of the large mass m2v compared
with the momenta in the nucleon propagators, together with use of a remarkable
identity, 4 the sum of all n-boo,,n tanglings simplifies to
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Here the symbol ® indicates a static source j(x) for the a's due to the (heavy) N's.
(We have chosen to work in the rest frame of the nucleon.) That is, the nucleon
field "freezer out", meaning that the/:aN Lagrangian can be replaced by

£eff = "_1(O,a)_, _ V(a) - gaj(x) , (4)

to le_ding order in 1/Nc.

The equation of motion for the a field for £:e',_is

O,O_a(x) + V'(a) . gj(x) - 0. (5)

Here j(x) will be taken as an extended source reflecting the size of the nucleon, e.g.,

j(x) c¢ e-r2/a_ , (6)

where, say, a _ 0.5fm.

In the large-No, limit, the solution of Eq.(5) involves summing up all the tree
graphs. This is equivalent to solving Eq.(5) for the semi-classical solution,

¢_ct- _® + _ +' ''

+ _ .' . .

i.e., ad is shorthand for the complete sum of tree-level one-point graphs. With this
in hand, it is a reasonable approximation to treat the aN scattering problem as the

dressing of a (quantized) a-field by ali possible attachments of a¢l:
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Together, these two pictures motivate a two-step numerical program, which we now
describe.

We first solve for the classical, static col(x) from the equation

Acc1- V'(ad) = gj(x) , (7)

which is the classical equation whose solution sums up the tree-level one-point
graphs shown above. If one then assumes a radial solution, a = a(r), this equation
becomes a one-dimensional non-linear ordinary differential equation, which can be
solved by standard techniques. 5 In particular, for the potential V up to quartic
terms, this ODE is

u 2 u 3
u"-_2u-_---_ - , (8)

r r 2 (a )a're-r2/a2

where we have made the usual replacement of col(r) = u(r)/r.

Given acl, we then solve for the quantized a field from the induced quadratic
Lagrangian

1

(0.)2 _o-2V"(od), (9)_quad = _

or its equivalent linearized equation of motion

[0_o_+ v"(_d(x))]o(_)=0. (10)

(This equation is equivalent to solving for the renormalized propagator depicted
above') In the radial, static limit the latter equation becomes

[ _ ]_ + k_ - acrd -,_a_l l(l + l)_2 _,(_)=0, (11)
where we have assumed

r



and set k 2 = w2 - #2. This is a Schr6dinger-like linear differential equation that can
also be solved in standard ways 5'6 to get the partial-wave scattering amplitudes or
phase shifts for aN scattering.

4. Fixing Parameters, Method of Solution, and Numerical Results

The differential equation for ac_, i.e., the u(r) of Eq.(8), involves five parame-
ters, which is too many for a simple model with only a mesons. We have appealed
to the linear a-model _ to reduce this number to three, namely,

• a, the nucleon size parameter (nominally 0.5 fm),

• _q,the aN coupling constant (here the same as the lrN coupling, 13.6), and

• u, the a-meson mass (typically 600 MeV/c2).

In terms of these parameters, the meson self-coupling constants are

2=

-- A < a >/4 , (13b)

where < a >= mN/g isthe vacuum expectation value that breaks the chiral sym-
metry.

We recognize Eq.(8) as a non-linear differential equation which is of the "two-
boundary-value" type. 5 The boundary conditions on u(r) are that u(0) = 0 (the
solution ac1 is regular at the origin) and that, as r _ oc, u(r) _ Be -_r. The latter
condition reflects the confinement of the a field and can be understood as resulting

' from the shorter-ranged natu-'e of the non-linear terms on the LHS as compared
with the #2u term. [In fact, dropping the non-linear terms (i.e., setting n = A = 0)
and replacing j(x) by a point source (a - 0), the solution for the field ad would be
a Yukawa-function with the range controlled by the mass # and with normalization
controlled by the coupling g.]

The numerical method used 5 involves a Runge-Kutta integration, shooting out
from the origin and in from the asymptotic region to a matching radius at r = a,

J given initial guesses for u_(0) = A and the asymptotic normalization B. Requiring u
and u _ to be smooth at r = a fixes the next iteration with refined values of A and B.

One then repeats the Runge-Kutta process iteratively until the solution converges.
Typically, the computer finds a solution in less than five iterations. The solution
for acl for the nominal parameter values mentioned above is shown in Fig. 1. The
quadratic behavior at the origin comes from the finite size of the nucleon source.
The effects of the non-linear terms are hard to s(.e but come in between 0.3 and 1.0

' fm,
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Fig. 1. Solution of Eq.(8) for/z = 600 MeV, g = 13.6, and a = 0.5 fm.

The linearized scattering equation for the quantized a field, Eq.(ll), can be
solved directly for ul(r), from which the phase shift 6z can be extracted by compar-
ing the numerical solution with the asymptotic form. However, it is not actually
necessary to solve this equation per se if one only wants phase shifts. These can
be found by the variable-phase method, 6 solving a first-order non-linear differential
equation for the phase shift itself.

The "potential" in the Schrtidinger equation, Eq.(ll), consists of a short-range
repulsive piece (coming from the quartic term in the Lagrangian) _nd a longer-
ranged attractive piece (from the cubic term, reflecting acl(r) < 0). This leads to a
combination which changes sign, as in Fig. 2, sh _wing moderate attraction at 1 fm.

For such a potential one finds sensible phase shifts as shown, for the standard
parameter set, in Fig. 3. For example, the S-wave phase shift at low energies ,.
positive because of the medium-range attraction, but it soon turns over and looks
like the phase shift for a hard-core repulsive potential. (At higher energies, not
shown, the phase shift returns to 0, since the short-range repulsive core is not
infinite.) For the higher partial waves, l -- 1,..., 4 there is a similar behavior, but
delayed because of the angular momentum barrier.

One can get somewhat more interesting phase shifts by adjusting the parame-
ters in _his model to get more attraction in the "potential". For example, making
g smaller (i.e., the a less strongly interacting) gives an s-wave phase shift which
peaks slightly higher than shown in Fig. 3 (g = 7 gives 60 peaking at 16°). Making
a larger (spreading out the nucleon) also gives a bigger phase shift; 60 peaks at 570

|
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Fig. 2. The "potential" in Eq._ll), for # = 600 MeV, g = 13.6, and a = 0.5 fm.
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Fig. 3. Phase shifts of Eq.(ll) versus meson momentum, for _tandard
parameters of Figs. 1 and 2.

for a = 1 fm. Making the a-rees ,n more massive is the most interesting variation.
By # = 7fm -1 = 1400 MeV the "potential" is mostly attractive. In fact, it appears

" that there is an l = 0 bound state at this value of _, with _0 dropping from 1800 to

I" ' II1"q' '_ ' N,ll,'



0° in going from k = 0 to k = ct, in accordance with Levinson's theorem.

5. Outlook and Summary

Forthewarm-up problemofaN scattering,therewas a significantsimplifica-
tionwithrespecttospinand isospindependences.We do notproposetopushthe
aN model any further,ltisbetterat thispointto extendthecomputationsfor
meson-baryonscatterfl.g(andreactions)tothemore realisticcasewhichincludes
Tr's,p's,and w'saswellaso's.Therewillthenbe needtodealwiththe,_Jpin-isospin
complications,but thelt- Jtand ProportionalityRuleswillleadtosimplifications.
Insteadofa single,non-lineardifferentialequation,as inEqs.(8)or (11),we will
now havecoupled-channelequations.(E.g.,reactionssuchas7rN ---,pA willnow

be calculable.)Theseequationswillagainbe solvedusinga staticapproximation
witha hedgehogAnsatz.An interestingquestioniswhetherthisextendedmodel
willreproducetheknown propertiesofthehigherN* and A* resonances(ormake

, predictions about yet unknown properties).

For extension of these techniques to baryon-baryon scattering there will be some
complications. Unlike the meson-baryon case, there is now no natural restframe; at
least one of the baryons will be in motion. This means that the "remarkable iden-!

. tity" must be modified so that what was previously a static source, j(x), becomes
time dependent. There will be rewards for the extra work involved. Unlike the
Skyrme model for the two-nucleon interaction (in the Heitler-London approxima-
tion), one does expect a full a, vr, p, w model to provide the medium-range attraction
(in the central potential) that is necessary to understand the existence of atomic
nuclei. What one does not know, but would be interested in seeing, is whether the
higher-meson-exchange contributions result in significant differences from, say, the
Bonn potential (which has only been fully developed to the two-meson.exchange
levelS).

To summarize, we have seen how, to leading order in 1No, one can sum arbi-
trarily complicated meson-exchange contributions to meson-baryon scattering. The
program can also be applied to baryon-baryon scattering, but with some complica-
tions. We have carried out, as a warm-up calculation, the numerical program for

solving the non-linear and linear equations for the simple model of aN elastic scat-
tering. It is clear how to proceed now with more realistic models for meson:baryon
and baryon-baryon systems, and this program is underway.

REFERENCES

t J. Robert Oppenheimer Fellow.

1. G. t'Hooft, Nucl. Phys. B72,461 (1974); G. Veneziano, Nucl. Phys. Bl17, 519

:|
_1 n



(1976); E. Witten, Nucl. Phys. B160, 57 (1979).

2. M. P. Mattis, Phys. Rev. D 39, 994 (1989); M. P. Mattis, Phys. Rev. Lett, 63,
1455 (1989); M. P. Mattis and M. Mukerjee, Phys. Rev. Lett. 61, 1344 (1989);
M. P. Mattis and E. Braaten, Phys. Rev. D 39, 2737 (1989).

3. J. T. Donohue, Phys. Rev. Lett. 58, 3 (1987); Phys. Rev. D 37, 3 (1988);
Phys. Rev. D 40, 1679 (1989); Universit_ de Bordeaux preprint, August 1990.

i 4. P. B. Arnold and M. P, Mattis, Phys. }'tev. Lett. 65, 831 (1990).
i
! 5. W. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, NumericalI

i Recipes: The Art of Scientific Computing (Cambridge Univ. Press, New York,
1986).

. 6. F. Calogero_ Variable Phase Approach to Potential Scattering (Academic Press,
, New York_ 1967).

' 7. M. Gell-Mann and M. Levy, XXX.

8. R. Machleidt, private communication.
!

i
H '" _,lil ''_ nl '""






