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Summary 
Certain causes of anomalous dispersion in the second order 

achromata of the SLC area are Investigated. For matched dis
persion, transverse displacements of combined function magnets 
do not introduce anomalous dispersion. This is shown by de
riving a non-dispenivi condition connecting the average of the 
matched dispersion function with the quadrupole and sextupole 
components of the field. In the SLC Arcs, however, the achro
mias are rolled producing a dispersion mismatch. In this case, 
the horizontal (vertical) dispersion is affected linearly by verti
cal (horizontal) displacement of magnets. The integral condition 
connecting the dipole and quadrupole fields and the matched dis
persion is abo derived. Combining this with the non-dispersive 
condition and the analytic expression of the matched disper
sion gives two simple relationships for the fields of second order 
achromats constructed of combined function magnets. 

The effects of the dispersion mismsltk in the SLC Arcs is 
investigated using computer simulations. The results show that 
this mismatch will increase the sensitivity to transverse errors. 
We report the effects of certain systematic errors. 

Introduction 
The FODO cells of the SLC Arcs are put together to form 

second-order achromata.' Each cell is composed of two combined 
function magnets each having superimposed dipole, quadrupole 
and sextupole fields. The strength of the dipole field is the same 
for both magnets. The field gradients in both magnets are nearly 
the same but the signs are Opposite. The sextupole components 
are different both in the signs and in the strengths. 

In this lattice the matched dispersion function n, defining 
the deviation of the trajectory for an off-momentum particle, 
and its derivative a with respect to the path length a are both 
periodic with a period equal to the cell length. 

During the course of designing the SLC orhil correction sys
tem for the SLC Arcs one of us (JJM) observed1 that transverse 
translations of the combined function magnets were effective in 
generating 1 rum-iitptnivt ottit correction . By this is meant 
that the beam direction can be made to change and that this 
change is independent of momentum in the linear approxima
tion. It Is shown below that this effect is the result of a simple 
relationship between the average value of the matched disper
sion function SJ and the strength of die quadrupole and sextupole 
components in each combined function magnet. 

It has been shown1 that the integral relationship in this sim
ple form consists of the most dominant terms contained in a 
more general integral expression which car. be used to define 
the properties of a second order achromat. In most situations, 
where the radius of curvature is large, the simpler form can he 
used to calculate sextupole strengths which agree with those 
obtained from TRANSPORT to within a few percent. 

The demonstration of thit non-dispersivt effect was a key 
part of the decision to adopt transverse displacements of com
bined function maartetc u the method** of correcting the beam 
trajectory in the SLC Art'. 

Even chough the matched dispersion function is unperturbed 
in the linear approximation by either random or coherent dis-
placment of magnets, it was later found* that in the SLC Arcs 
'Work supported by the Department of Energy, contract 
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certain coherent displacements did indeed linearly perturb the 
dispersion. This observation led to several studies of systematic' 
and random* errors with the conclusion that this effect stems 
from the fact that the dispersion in the Arcs is not always 
matched (especially in the vertical plane) due to the neeesaity 
of rolling the achromats about the beam Mis to follow the site 
terrain. We will now review these findings ir limple form. 

Non-Dispersive Ccmditic 
Consider a differential slice of an Are m*cn< . with length d*. 

The transverse field components can be expressed as follows, 

f?,=B„ + B . r + ; * „ ( * » - A 

B, = B^g + Bc*y, 

ID 

(2) 

where the coefficients BotBt and B. represent le dipole, 
quadrupole and sextupole strengths of the combin -i function 
magnet, respectively. Here the prima indicates dift. -entiation 
with respect to transverse displacement. 

Suppose at this location that there Is no disperse n the y 
plane and that the horizontal dispersion is equal to v iuppose 
further that the elemental magnet Is displaced from the. jference 
axis by Az and Ay. Then, for a momentum p = p„(l •*• t), 

x = t)6 + Az, 

ST" A y . 

(3) 

With these equations inserted in Eqs. (3) and (2), the an
gular "kicks" di in horizontal and &$ in vertical planes of a ray 
passing through the elemental magnet may be written as follows, 

+ ( X + a."q«)Ai + ^ ( A * 1 - Ay1) } . (S) 

^ ' ^ — ^ j l ^ + ^VjAp+^ArAtfJ. (6) 

Consider only the terms up to the linear approximation in Az 
and Ay and neglect all others, then 
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Clearly, the momentum dependence In both equations will 

fauor out if the following conditions are satisfied everywhere, 
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Eqs. (9) cannot be satisfied at all points since within a mag
net 1 varies while B„ B„ and fl„ do not. However, if r) is aver
aged over a single Arc magnet the second equation in Eqs. (9) 
is satisfied, i.e., 

B,r\ 
*nnjte ma^utt = i (mi 

Eq. (10) is the non-Jisptrstvt condition given in Ref. 2. This 
equation is satisfied by the fields of combined function magnets 
in second order achromats. 
Eqs. (7),(8), and (10) can be used to conclude that in the linear 
approximation the matchtd dispersion function IJ it immune in 
effects due to random or purposely induced transverse displace
ments of single magnets in an achromat composed of combined 
function magnets. For the SLC Arcs a transverse displacement 
or 100 microns for Az (Ay) steers a beam horizontally (verti
cally) with a strength equivalent to 1.292 of the dipnle bend
ing field fir making such displacements an effective method nf 
steering. Furthermore, since this non-dispersive properly ap
plies to a single magnet such a magnet can he used to provide a 
non-dispersive "kick" anywhere in any lattice providvd ihut tin-
average value of the dispersion is not zero. 

Relat ionship of Field Components 

The first equation in Eqs. (9) is also satisfied when n is 
averaged over each magnet of an entire cell, i.e., 

* (») 

This is shown to follow from the definition of the i? function and 
a general integral equation derived in Ref. 9 and which apply 
to a cell of an arbitrary lattice. Eqs, (10) and (11) can be used 
to derive relationships for the field components correct to a few 
percent for achromats composed of combined function magnets. 
These relationships are useful because for such achromats n can 
be integrated analytically as in Re). 9 . Using the SLC A n ceil 
for an example, Eqs. (ID) and (11) become 

and 

*?D) = > 
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where the subscripts F and D refer to the focusing and defocus
ing magnets, respectively. Similar relationships can be written 
for combined function lattices of second order achromats com
posed of magnets with differing lengths and field components. 

Effect of Mismatched Dispersion 

Equations (3) and (4) are now rewritten to allow the position 
in the differential slice to include deviations front the matched 
dispersion. Let 

and 

x = Ax + ijj< = A i + (i) a + A>?,) 6 

y = Ay + t)y6 = Ay + An^j 
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(15) 

where Ax, Ay are transverse displacements, >)i,r)v are the ac
tual dispersion functions, rj« is the matched ^-function and Ai;, 
and Any are the differences between the actual and matched 
functions. 

Again, Eqs. (H) and (IS) are inserted in Eqs. (1) and (2). 
Then retaining only terms linear in Ax and Ay, averaging the 
dispersion over the li .ig'.h of the moved magnet, I. and separat
ing the remaining terms in dispersive and non-dispersive groups, 
one finds 

A0*s-
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Inserting Eq. (10) and tatting the derivative with respect to 
i at the point ! c 0 , the anomalous An , for x and y planes, 
respectively, become 

An, = —^ ( Aij .Az - Aq^Ay J 
P» V 

AJ?« '¥0 A v . A y * Aij jAz) 

(18) 
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These equations (how that in the presence of a magnet mis
alignment a deviation of the dispersion from that of tlir- matched 
dispersion will generate an anorralaus n\y . This ii important 
to the SLC Arcs in that the dispersion is not always matched Ant 
to the required rolls. The consequence is that the Arcs are more 
sensitive to misalignment than if they had been constructed flat. 
For a typical Mr* roll as in the Arcs, A» , is small compared to 
A ? , so the main contribution l o both Af), F comes from the 
terms proportional lo A n v . That means that A i j t Is produced 
by a vertical displacement Ay and vice versa. On the other 
hand, for the whole Arc the accumulated error in AIJ , becomes 
large and both terms in Eqs. (18) and (19) are significant. 

Computer Simulations 

The predictions for the behavior .'f anomalous dispersion 
given in Eqs. (18) and (19) have been co-nparcd with computer 
simulations of both rolled and not rolled achromats. For the dis
placement of a single magnet, the results are in good agreement. 
That is, for an unrolled achromat (matched dispersion) there is 
no effect, whereas for a rolled achromat, the induced anoma
lous dispersion, as calculated using Eqs. (18) and (19), agree 
quantitatively with the simulation results. This agreement was 
confirmed for several magnets located at arbitrary points where 
the mismatched dispersion was either large nr small in magni
tude. 

Systematic Translations of Magnets 

With agreement established for simple cases, computer sim
ulations were now used lo investigate the effects of systematic 
errors in whole achromats and finally for the entire north arc. 

Systematic translations of magnets in the arcs can have 
many causes; here we will examine two particular ones. In 
the arcs there is a one-to-one correspondence between mag
net movers (steering correctors) and beam position monitors 
(BPM's). In this scheme each focusing magnet is moved horizon
tally (vertically) to steer the beam through the BPM, (BPMj) 
attached lo the next focusing (defocusing) magnet. This scheme 



utilizes 10 correctors and 10 monitors in the horizontal plane and 
10 correctors and 10 monitors in the vertical plane per achro-
mal. The position monitors are placed in the drifts between 
magnet*. Thus the matched dispersion has the same magnitude 
[VBPM — 35mm) at all BPMV Therefore, either a) a system
atic error in BPM, alignment or signal processing or b) steering 
a beam which has the wrong energ)' with respect to the arc ex
citation will cause a systematic ofTsoi of all horizontally focusing 
magnets. A systematic BI'MV error will do the same in the ver
tical plane. Fortunately, these systematic? will show up in the 
harmonic analysis or the magnet mover positions and, in prin
ciple! is correctable Tor magnitudes greater than ~ 30 microns. 
Steering an off-momentum beam with ^f = 10"' will induce a 
systematic error in the magnet positions or 28 microns which is 
just detectable. 

In Figures 1 and 2 Aii! is shown versus a systematic mis
alignment of DI'M,'s or relative momentum error. Here, <ii|, = 
I?I - I* where rj,. •- 47nim at the end of the north arc. 

vertical dispersion tj, is affected nonlineariy in both of the above 
cases, changing by ~ 12mm (compared to ite nominal value of 
zero) for a BPMt offset of 100 microns. 
A systematic error in the position of the vertical BPM,,'s will 
also cause dispersion changes but at a level reduced by in order 
of magnitude. 

Conclusion 
In the linear approximation the maiehed dispersion function 

is not affected by random or coherent displacements of mag* 
nets in a second order achromat made up of combined function 
magnets. For the SLC Ares the necessity of rolling the achro. 
mats has caused a dispersion nwsmorra which has increased the 
sensitivity to transverse errors. In particular, the increased sen
sitivity to systematic errors will require close attention to these 
errors in component alignment and signal processing electronics 
for both the beam position monitors and the orbit correcting 
magnet movers. 
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Fig >• Error in i , when beam is steered with a Horizontal 
displacement at entrance of each focusing magnet in north Arc. 
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Fig. 2. Error in n x when off momentum beam is steered through 
the north Arc. 

In Figure 1, each BPMZ is offset by the same amount and 
the arc steering algorithm applied. Because of the one-to-one 
correspondence between each BPM, and the upstream magnet 
mover a systematic translation is introduced at every horizon
tally focusing magnet. A systematic offset of 100 m'urons at the 
BPM,'s will cause an equivalent offset of ~ 80 microns at each 
horizontally focusing magnet. This same relationship holds for 
the vertical plane. It can be seen in Figure 1 that a systematic 
displacement of this magnitude will cause a SO - 80% change in 
the horizontal dispersion function rfo at the end of the north arc 

Next, it can be seen that the results shown in Figure 2 
are similar to those shown in Figure 1. Here a beam of the 
wrong momentum with respect to tile arc excitation was steered 
through the system. In this case, prior to the application of the 
steering algorithm, the cenlroid of the beam would have the 
same offset at each BPM,. The action of forcing this centroid 
offset to become zero at each BPMj again introduces a system
atic offset of the horizontally focusing magnets. Thus steering 
a beam with a relative momentum error of 3 x 10"' is equivalent 
to a systematic c-ror of ~ 100 microns at the BPM,'s. The 
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