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COMPLETE FLUIDEQUATIONS FOR LOW-n SINGULAR MODES
_IN AXISYMMETRIC TOROIDAL PLASMAS

Alan H Glasser

,,

Los Alamos National, Laboratory

A system of equations governing ttic s_ugular region of low-n MHD in stabilitie_
in a collisional toroidal plasma with magnetic shear has been derived from Bragin-
skii's magnetized fluid equations. I These equations are anextension of the equations
of Glasser, Greene, and Johnson 2 (GGJ), incorporating all important fluid processes.
They can be used to describe the narrow layer in the neighborhood of a singular
surface for tearing and interchange modes. Formal ordering assumptions describing
the behavior of the perturbations in the singular region are introduced into Bragin-
skii's equations. The ordering is chosen to allow for the maximum range of physical
effects while retaining the principal terms in GGJ and ensuring the validity of the
fluid equations. Time dependence is expressed in terms of a Complex growth rate by
restricting consideration to modes which vary rapidly on the time scale of variation
of the equilibrium. One spatial dimension is treated as ignorable because of axisym-
metry, retaining a single Fourier component. While the pressure must be constant
along a field line in order to exclude fast Sound waves, temperature and density are
not individually constant. A second-order ODE along the field line with periodic
coefficients is derived for the temperature. A periodic solution for temperature must

be obtained in order to complete the determination of the variation along the field
line. A second spatial dimension can then be eliminated by averaging over this known
behavior. The third spatial dimension, the distance across the singular layer, survives
as the independent variable of a 12th-order system of ODEs. Laplace transformation,
using specially constructed contours in the complex plane, is used to reduce the order
from 12 to 4. Asymptotic limits of the solutions are matched to ideal MHD behavior
in the region far from the singular region, yielding a dispersion relation which can
be solved to obtain growth rates and stability criteria. Most of the new effects are
related primarily to ion behavior. Transverse ion thermal conductivity and viscosity
prop up the sing-Max layer width and prevent it from falling below the ion gyration
radius. Parallel ion viscosity in the presence of toroidal variation of the magnetic
field strength along the field line imposes a drag on the perturbed parallel velocity.
Gyroviscosity in the presence of the saane toroidal variation breaks the reflectional
symmetry of the singular region equations about the singular surface. In addition,
the equations incorporate anisotropic resistivity, diamagnetic rotation, and related
effects.
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Singular modes are among the most prominent in determining the limits on
the operations of tokamaks and similar toroidal plasmas. Low-n resistive tearing
modes cause disruptions in tokamaks and limit achievable current density. Low-n
resistive interchange modes cause anomalous tra_lsport in spheromaks and reversed
field pinches. High-n resistive ballooning modes cause anomalous transport in high-
beta tokamaks and limit achievable _. All these modes are characterized by global
ideal MHD regions matched to narrow singular regions where nonideal effects are
dominant. The singula _ region acts like the grid of a triode, where many srnall effects
can influence large .flows of energy. Existing theories include _very limit.ed dynamics
in the singular region. The goal of this work is to develop a complete linear theory
of the singular region, including all importa_*, dynamical effects. The present phase
of the work treats the more collisio;, fluid regime. A later phase will treat the less
collisional gyrokinetic regime. Tiff,, paper concerns the derivation and form of the
fluid equations for the singular region of low-n modes. Later work will treat high-n
ballooning modes. In addition, the Ordering in the present work must be amended
before it is applicable to the neighborhood of the field reversal surface of the RFP.

We begin with Braginskii's equations for a magnetized fluid, the equations for
the total fluid mass,

0)v
-N-+ v. (Nv)= 0,

momentum

p _-+v.Vv = c xB-Vp-V.rr

the temperature for species j = e, i,

3 N(OTj )\w + vj "VTj + NTjV ' vj + V ' qj + 7rj " Vvj = QJ ,

Ohm's Law,

( s)Ne E+-vx = R+ l-'J x B- Vp_
c a

the potential representation of the electromagnetic fields,

1 OA
E=-V_ c 0t' B=VxA,

Ampbre's law without displacement current,

47r
V2A =---J,

c

and quasi-neutrality,

V.J=O.



The viscosity tensor 7r can be expressed as a sum of five 4th-rank tensors acting on
the velocity gradients,

4 B
7r -" E Tri' el -- e2 x e3 = -- ei • ej - ¢_ij,

i=0 B '

in terms of the parallel terms

[_'0 = -3r10 L_I_1 -

transverse terms

. [ , ]_ -v_ (_+_)(_+_)+(_+_)(_+_) .Vv,

and gyroviscous terms

[ ]_r3 -'--773 ^ ^ -- -- ,(_.e_ _)(___ +_) (_ +_)(_ - _) _,:w,

_ =-_, [(_1_+_)(_ +_)- (_ +_)(_ +_)]. Vv,
The momentum exchaJ_ge terms can be expressed as a sum of fric_ion and thermal
force terms, R = R. + RT, , "

Ru = N"eea'j=-Ne alIbI 'j-_^e_ xj+a.L I--6_6] .j

_ --__- -?,,_•_. _^__ +_.(i-_)._].
The hea,t flux can be expressed as a sum of thermal conductivity and thermoelectric
terms, q = q. + qT,

T T
q.: Neg'j - _e [gllfi] "j + _^6_ x j + _.L(I -- fi_fil) 'j],

[ ( ) ]qT = --X' VT = - Xll6x •VT + X^fil x VT + X.L I -- 6161 . VT ,

The transport coefficients obey scaling laws expressed in terms of the cyclotron fre-
quency f/= eB/mc and the collision mean free time r --_Ta/2/N for each species.
These scaling laws are

i
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We perturb about an axisymmetric equilibrium, with all equilibrium scalars
independent of the toroidal polar angle ¢ and with no fluid velocity and no strong
anisotropy, satisfying the equations

J cV . == x B, V J V •B 0,47r

J.B BxVP

lcJ x B = VP, a =--rf2-, J = aB + c B2 ,_

B

V.J= B.V a-F B2 -'0,

B. VN = B. VT =B. VP = v = 0,

B. V(RBT) = S. V X = B. V_ = O.

Perturbed quantities in thesingular region are described in terms of a coordinate
system closely related to and derived from Hamada coordinates. The Hamada system
uses thecoordinate volume V enclosed within a magnetic flux surface to label the
surface, a_d angular coordinates 0 and (, which increase by l in going around the
torus the short way and the long way, respectively, to label a point on the surface
Such coordinates carl be constructed for which the Jacobian J (VV. V0 × V() -1 =
1. The poloidal magnetic flux is denoted x(V) and the toroidal magnetic flux is
denoted _b(V). The magnetic field has the representation

B = VV x(¢'VO- X'V()

The magnetic field components can then be expressed as B. V0 = X', B. V( =¢',
and B. VV = 0, so that for any quantity f, the derivative along the field line is given
by

+,:(+£++, ,(v,o,+>
til[ I1'1111' Im
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The safety factor is defined as q(V) = ¢'/X' = d¢/dx. For any quantity f depending
only on V, ft(V) denotes df/dY. Equilibrium scalars are independent of ( The
scalar quantity B. VV x V0 can be expressed as 27rRBT.

Modified Hamada coordinates introduce further simplification in the neighbor-
hood of a rational surface, where the safety facf.or qo - q(Vo) = m/n is a rational
number. We define the new coordinate fl -- ¢ - q00 and make the formal coordinate
transformation V, 0, ( --4V, 0, ft, which preserves the unit Jacobian. Any function
which is independent of ¢ or ( is also independent of/3. Two of the magnetic field
components in this coordinate system remain the same, B. $70 = X', B. SYV = 0,
but the third one becomes

B. Vfl = x'(q - qo) "_ x'q'x
,

where x = V- V0 is the small distance from the rational surface and the approxi-
mation is obtained from the first term in a Taylor expansion, assuming the shear q'
does not vanish at the rational surface. For any function f, we can write

B. Vf = X' 0 q,-_ + z f(V, O,_),

In order to retain all terms which are of comparable importance, in the fluid
regime, we construct an ordering which satisfies four criteria: 1. it is consistent
with conditions for the validity of Braginskii's fluid equa,tions; it is consistent with
retaining all the physics in GGJ; it is as consistent as possiblewith conditions in
a realistic magnet, lc confinement system, subject to limitations imposed by the first
two criteria; it allows the inclusion of a maximum number of physical effects. The
following set of conditions satisfies all of these conditions.

r i,i ,Xi

n,'.,q_ 1, z R

a Bp _ Z _2 rL,i _3
_q"' R B a ' a

t/i z me e4 r L,i e5
' 'fli R m, R

__ ,._ _ ,_ _6

with n the toroidal mode number, q the safety factor, rL, i the ion Larmor radius, z
the resistive layer thickness, a a characteristic poloida2 distance, R the major radius,

the ratio of fluid pressure to field energy density, B the total field strength, B p
the poloidal field strength, mr and mi the electron and ion masses, ,ki the ion mean
free path, vi the ion collision frequency, w the mode frequency, w* the diamagnetic
rotation frequency, and _i the ion cyclotron frequency.

To lowest order, the momentum equation can be solved for the transverse com-
ponents of the current to yield

t



j(0)=_I0)_+_B ×rp(°).
and the parallel component of the equation, of motion yields

°P(°---!=o.
,OO

The quasineutrality equation yields the lowest-order result

27rcRBT Op(°)-°[jl,°). ]=o.O0 x'B2 OV

This can be usedto expressthe parallelcurrentin terms ofa quantitywhich is

i_ constant ona field llne and known variation along the fieldline,

jI°)B < B2 > + X' OV (<B 2>

Similarly, the transverse components of Ohm's law can be solved for the transverse
velocity,

v (°) = vl)°)_1 + _'_2B x Vq3(°),

where we have defined thequantity

_(0)
_(0)____(0)+ v,Ne

The p_rallel coml)onent of Ohm'slaw yields the lowest-order result,

°_(°) = 0,O8

and the lowest-order pressure equation yields incompressibility to lowest order,

o[I,o)(9-'8v q- X' B2 cOV = 0

This can be used to express the parallel velocity in terms of a quantity which is
constant,on a field line and known variation along the field line,

VII0) B < B 2 > X' OV ,,< B 2 >

The parallel component of Ampere's yields,an equation for the parallel compo'
nent of the vector potential,

02 <A >(0) 4=[<B2/[_TV[_>(j.B>| c3V2' • B =_ _ . (o)c <B2>

2rcRBT < B2/IVV] 2 > 1 Op(°)]+ ( "<,_ -( )) .,x' > IVVl2 0v a'

:i " £
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The above relations, governing the behavior of wrious quant, ities along a field
line, axe derived from lowest order in our ordering. At next order, we obtain inho-
mogenous equations for the variation of first-order quantities along the field lines, ex-
pressed in terms of first-order operators on zeroth-order quantities. The lowest-order
relations can be used to annihilate the first-order operators and yield constraints on
the lowest-order quantities. The parallel component of Ohm's law yields an equation
for .the electrostatic potential,

0_ (°} 10<A B>(°) q)' 1 P' 0 < (0) c_l{_'_'_0__- ' -(_, _,)__"> + 0_>_°_
the parallel component of the momentum equation yields, and equation for the per-
turbed pressure,

x'q'x-_ + P-_ X' O_ , '

-r/2B 2_--_-[<'02 <B2>VV]2>(v B }(o)+ 27rcRBTx,( <B2><IVV]2 > -<IVV]aB2" })0_b(°)]0VJ

, < i% 0_(0>- ,,B B.vB,?coy2 =o,
the quasineutrality equation yields an equation for the,parallel current,

x'q'x 0 IVV) 27rRBT 1 1 '_] 03+ (°>>o_'J._''°>_ / '<B 2 OtOV 2)3
X" 2_rRBTq' , p, I

(27rRBT) 2 1 < 1/IVVl2 > _

21rRBTP'( <lllVVl 2 > ;t ,_....02 (A B> (°)x' x' ,< B_/IvvI_ > < B_ >/0V0Z, _
27rcUlBT < (e,l • VB) 2 > 0 (o) 2rcRBT O_ (°)-_,o_, <B_ o-v(<vB>+ _, o_)

_,>+,,-_ ,, (,,_,'(_,<_,>)>],', ,, OV 4

n,B_ 2_RBT < IVVI_> _ ( IVVI2 ' 03 (o>

rlaB < IV'VIa > 27rcRBTc 03_(°)- - O._-< B2 > B3 B . VB X' OV3 -

and.thepressureequationyieldsan equationfortheparallelvelocity,

!
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2_RBTq' 0_ (°) *

'

c_ IVVI_ 2_RBT 2 1 ' 1 c32p(°)

2.R_,(< _/Ivvl_> _ o_(A.B}(°_+ x' ,_ B-_/_i_; - <B_;)o-_o_

+4.[<_>+.,(2,_RB_,, , , <_,,/IVVl_>_ )7'_ :) ((BilVVI_,)- < B211VVI=>)] Ov(°O_
P' 3 T' c 0_ (°1

o, .., < o_<o><-,[,,<o>+.(<_.><o>__<o>)]:o.
S+_rongelectron parallel thermal conductivity forces tile lowest-order electron

temperature to be constant along a field line, ,_-"_T(°)/O0_._= O. At first order, the
electron temperature equation relates the electron and ion temperatures through the
heat exchange term,

o_4°> _' o_(o)lj o t_:_'°)+<T,>(0_ <r,0z<0,
_1_lop(°) o_(°)] [ .-

I N -<Tj> =0.
Te 7Tli

The ion temperature equation is more complicated, containing all components of the
ion thermal conductivity,

o OT[°)1 0 ( llOT[°>+x,_lVY O_T:°)O0[Xill. ,2 ___ 12

3 cOT:°) cT' O_(°) 1 FO T[O) cT' CO_(o)__[ ,_ +_,_ ]___(_0>. )__,0_]
10p (°) cP' O_ (°) 3 m_+_[-o,-+,<,o_]_....,.m,_V_°_-_:°>]:°.

The mathematical structure of these equations can beunderstood as follows. To
analyze the stability of a particular mode with a particular rational surface,, we choose
a toroidal Fourier mode exp(-2_rnfli) and a singular surface with q0 = m/n, and let
0/03 --, -2rni. We Laplace transform the time dependence and let O/cOt_ s, where
s is the complex growth rate to be determined. We Laplace transform the variation
in x = V - V0 across the singular Surface and let O/OV ..-_ ik and x --, lOOk. The

,I



.t

parallel component of Ampere's Law is now an algebraic equation for < A. B >(0)in

terms of < j. B >(0) and p(0). The electron temperature equation is algebraic. The

ion temperature equation is a 2nd-order ordinary differential equation with periodic

coefficients in the independent variable 8 along a field line on a rational surface. For
each value of k, it must be solved to obtain a periodic solution for T (°), Then the

moments< T >(0) and < IVVI2T >(0) must be evaluated in terms of p (°) and q_(0).

The parallel components of 0hm's Law and the momentum equation, the pressure

equation, and the quazineutrality equation now form a 4rh-order system Of ordinary

differential equations with independent variable k and dependent variables p(0), _(0),
< j. B >(0), and <v. B >(0).

The solutions to these equations must be matched to the ideal MHD solutions

in the outer region, far from the singular surface. A procedure for accomplishing

this matching has been developed by GGJ for analytical solutions and by Glasser,

Jardin, 'and Tesauro for numerical solutions. Laplace transform integrals are used

with carefully chosen contours in the complex k-plane for which end-point contribu-

tions vanish. The integrals are evaluated by a saddle-point approximation at large 2,

to obtain their asymptotic behavior. This procedure must be generalized to the more

complicated equations studied here. The matching condition becomes a dispersion
relation which may be solved for the complex growth rate s.

The core of this system of equations is identical to that of Glasser, Greene mhd

Johnson. They describe resistive ins_;abilities in general axisymmetric plasma con-

figurations with finite beta and toroidicity, including tearing and interchange modes.

The new terms presented here arise from the large number of additional dissipative
terms in Braginskii's equations.

, ,

ParMlel viscous terms, proportional to r/0, introduce a strong drag in toroidal
systems which tends to bring the perturbed parallel velocity of the mode to rest

relative to the equilibrium and may therefore cause a reduction of the growth rate.

They vanish in fictitious 1-dimensional equilibria such as a cylinders and slabs. These

terms get large as the collision frequence drops toward the limit of validity of the fluid

equations. In the collisionless limit, they constitute tt,e effect referred to by Callen

and Shaing as neoclassical MHD. Transverse viscous terms, proportional to r/1 m_d
_2, introduce a larger velocity diffusion than is present in the simpler resistive theory.

This should tend to spread the singular layer thickness and prevent it from shrinking

below the ion gyration radius. These: terms are commonly neglected on the grounds
that they are proportional to the collision frequency and therefore get small in the

limit of low collisionality. However, the singular layer thickness also gets small in this

limit, and so these terms retain their importance. Gyroviscous terms, proportional to

r/s, break the reflectional symmetry about the singular surface and thus mix solutions
of different parity. These terms are independent of collision frequency and vanish in

equilibria with up.down symmetry.

Diamagnetic effects associated with the Hall and electron pressure gradient terms

in Ohm's law produce a Doppler shift in real part of the frequency and may also af-

fect the growth rate. The anisotropy of the resistive terms, proportional the ali and
a±, breP&s a degeneracy in the large-k behavior of the solutions. It is not clear what

if any physical significance this will have. Thermoelectric terms, proportional to/311
and fla., enter the equations for temperature and pressure. It is not clear what phys-

ical significance these will have. Ar:isotropic thermal conductivity contributes to the

I
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"' complicated structure of the temperature equation and causes the temperature to
vary along a field line. Transverse thermal conductivity, proportional _o A,±, domi-
nates at large values of k, corresponding to large transverse gradients, and causes the
temperature to be strongly nonuniform. These terms also contribute to the spreading
of the singular layer thickness, as do the transverse viscous terms. Parallel thermal

conductivity, proportional to XII, dominates at small values of k. corresponding to the
region in which the solution matches to ideal MHD, and causes the temperature to
be nearly uniform. Reactive cross-field terms proportional to X^ further complicate
the picture:

Slight modifications of the ordering used here should yield equations describing
the singular region of high-n modes in the neighborhood of the field reversal surface
of the RFP and long-0 tail of high-n ballooning modes in tokamaks. The remainder
of this phase of the work will consist of developing a computer code to numerically
solve these equations, match them to the outer region, and systematically study the
solutions as Ai/R --* 1. Eventually, there will be a study of the gyrokinetic regime.
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