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ABSTRACT.

Neural delayed feedback is a property shared by many circuits in the central and

peripheral nervous systems. The evolution of the neural activity in these circuits depends

on their present state as well a:s on their past states, due to finite propagation time of

neural activity along the feedback loop. These systems are often seen to undergo a change

from a quiescent state characterized by low level fluctuations to a oscillatory state. We

discuss the problem of analyzing this transition using techniques h'om nonlinear dynamics

and stochastic processes. Our main goal is to characterize the nonlinearities which enable

autonomous oscillations to occur and to uncover the properties of the noise sources these

circuits interact with. The concepts are illustrated on the human pupil ligllt reflex (PLR)

which has been studied both theoretically and experimentally using this approach.

I - INTRODUCTION.

Neural delayed feedback.

By neural delayed feedback system (NDFS), we mean an assembly of one or several

populations of neurons forming a feedback loop, i.e. a path h'om the input of a neural

system to its output and back to its input. In each of these populations, the evolution of

neural activity at time t is a function of the input to and output of this population from

the past ali the way up to time t. This delayed action arises because of the finite velocity

at which signals (graded potentials or action potentials) are transmitted between these

neural populations. That mathematical models of the phenomena we will be discussing

should take these delays into account is a consequence of the fact that the delays are of the

same order of magnitude or larger than the response time of these systems (see Section 3).

In general there is a certain arbitrariness in designating a given neural activity as

the input or output of a system. These are often chosen according to rh(.' experimentally

measurable quantities. For example, the pupil light reflex controls the retinal light flux,
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equal to the procluct of light intensity and pupil area (the pupil is the hole in the middle

of the colored part of the eyeball formed by the iris muscles). Arl input to this system

is a variation in retinal light flux, due e.g. to a variation in the ambient light inten.sity;

the output response is also a variation in retinal flux due to a change in pupil area. This

example illustrates that the "neural" feedback loop need not comprise only neurons, but

can include muscle cells and receptor cells.

Two interesting questions about neural systems.

One of the most interesting questions in the study of human neural systems in pattie-

ular, as well as of physiological systems in general, is the origin of the ongoing fluctuations

in the time course of measurable quantities. There has been much speculation, in the

wake of recent studies (see e.g. Ref.6) that this variability may be due in gre,_t part to

deterministic chaos. The fact that certain low dimensional deterministic systems behave

in many respects like probabilistic systems (e.g. they generate invariant densities) has pro-

vidcd investigators with a new paradigm with which to reiIlterpret mechmlisms theretofore

attributed to noise. Most studies 2'6 involve either 1) modelling or 2) computation from

time series of dynamicM invariants such as the fractal dimension or Lyapunov spectrum.

Determining whether aperiodic tirne series are the manifestation of a stochastic process

(i.e. noise) or a deterministic process (chaos) is important theoretically, arid each point of

view suggests different kinds of experiments to further knowledge about the system under

study.

Another equally important question is how oscillatory behavior either arises or is

suppressed in neural systems. Oscillations in neural activity are ubiquitous within the

central nervous system and between the peripheral and central nervous system (e.g. in

reflexes). Oscillatory neural activity can be associated either with health or pathology.

An epileptic seizure is a dramatic transition to a pathological oscillatory state 1_. The

respiratory rhythm 6, as well as oscillations in olfactory 4 and visual 7 cortex, seem to occur

under normal healthy conditions. Much work has been invested in developing a theory

for oscillation onset in neural systems 1'9'11'13 Two aspects of these phenomena have

received little attention: 1) the very noisy background on which the oscillatory activity is

superposed, and 2) propagation delays. While it is not necessarily useful to view all neural

systems generating oscillations as delayed feedback systems, it is important to realize when

delayed feedback is the key component leading to the oscillatory instability.



Nonlineai" dynalnics and neural modelling.

Nonlinear dynamics deals with the study of periodic and aperiodic osci.llations. It has

become clear in the 1ast few decades that nonlinear dynamics is a useful teel to understand

how neurophysiological systems undergo qualitative behavior changes as parameters are

varied. Examples include single neuron dynamics 1'1°'2a and physiolocal control systems 6.

These studies involve building sound physiological models and identifying the proper bi-

furcation parameter (s) leading to the oscillatory state. Essential to these studies has been

the availability of data for guiding mathematical modelli,:g and for validating model pre-

dictions. We will see irl Section 4 that nonlin_.'ar dynamics has to be augmented to include

the effects of noise in order to underst,md oscilla.tion onset in NDFS's.

The paradigm of neural delayed feedback systems.

In the case of human neural control systems, it is often very difl:icult to carry out

experiments, and thus models are based on known anatomy, animal studies and/or hypo-

thetical mechanisms There is one system which i_ amenable to experimental investigation

and whose study holds hope for uncovering more functional principles of neural control:

the human pupil light reflex (PLR). This was one of the systems to which concepts from

cybernetics were first applied in the 50's, especially in the work of Stark and his colleagues.

Tile essential feature of this reflex is that its feedback loop can be opened by an optical

trick (see Section 2). This makes it possible to induce and control oscillations in this reflex

by artifici',flly increasing its feedback gain. Among its many interesting dynamical b_.;hav-

iors, the PLR exhibits "hippus" which is an ongoing pl:pil area fluctuation that occurs

even under constant, lighting conditions and seems to be due to neural noise injected into

the reflex arc 15'17'24'28 Of course, one of the main advantages of working with tile hur.;lan

PLR is that the results are directly relevant for humans.

This paper deals with the properties of o:.cillatory NDPS's, and focusses in particular

on the PLR. Section 2 describes experiments designed to induce oscillatory neural activity

in the human PLR. Section 3 outlines a model used to study autonomous oscillations in the

huntan P LR. We fiarther describe the Hopf bifurcation in ordinary and delay-differential

equations. Section 4 deals with the stochastic Hopf bifurcation in DDE's and the concept

of physiological order parameter. Physiological irregularity is discussed in Section 5, and

the l?aper ends with a conclusion and outlook on future investigations in Section G.

2 - THE HUMAN PUPIL LIGHT REFLEX.

Th,.' ]:urnan pupil light reflex is the i:lvohmtary response of the iris m_:s('ulat.ur_' t(,
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variations in the light intensity, impinging on th¢' eye._. Light enters th(' eye tllrough th¢_

pupil and falls on the retina. The t'_'flc:x'" tries to control the retinal light flux, equal to

the product of light intensity arid pupil area. It is a negative feedback control system:

an increase in retinal light flux (due, e.g., to an increase in the ambient light intensity) is

counteracted by a neural response which decreases tlte light flux (e.g., a decrease in pupil

area).

This control loop can be opened using an optical trick first discussed by James Clerk

),Iaxwell and popularized by Stark and Sherman 2r. "Maxwellian view" ir.volves shining a

narrow beam of light down the center of the pupil, as in Fig.la. The beam is so narrow

that iris mouvements can not influence the retinal illumination, and thus the feedback loop

is opened. It is possible to electronically close this loop with an analog signal proportiomd

to pupil area provided, e,g., by a pupillometer17722'26'27 This signal can then be used

to control the intensity of a light source in Maxwellian view. This procedure is termed

"clamping" and allows the experimenter to substitute a different feedback in the piace

of the nonlinear feedback naturally present in the syst.em. This involves designiltg an

"area comparator" which electronically converts area values to light intensity values. The

changes in retinal light flux are then due to changes in intensity, since the area of the light

beam entering the pupil is fixed.

The data shown in Fig.2 was obtained by our collaborators at the l_'ee University of

Amsterdam using a reflectance type pupillometer 17'22. The area comparator is simply a

linear amplifier relating pupil area to light intensity, as shown in Fig.lb. The (positive)

gain of this amplifier is adjustable, and sets the slope in Fig.lb. From the point of view

of pupil area A, the clamped reflex as a whole operates with the feedback of Fig.lc, where

the forcing on the pupil area is plotted versus the area itself. The slope here is negative

because an increase in area causes an increase in light intensity which forces the area to

de"=(.Iease."Also, the saturation of the feedback at high and low area values is a consequence

of the nonlinearities in the reflex. Hence, from the point of view of pllpil area, the area

comparator of Fig.lb actually produces a negative feedback configuration.

Fig.2 slmws experimental recordings of pupil area versus time at four different gain

settings. All the data is obtained from the same healthy subject within a short time span

in order to maximize stationarity. The baselines haw_ been corrected fi)r drift. While the

mean amplitude of the oscillation increases with the gain, the _ "(p_.rl _d varies only mildly.

Further, tile signals are strongly, aperiodic despite tl. '. pre_.'.._.nc=_'_'_of a dominant frequency.

4



/

/

/:

From classical control systems theory lmsed on linear trml,sfer flmctions, one expects the

system to begin oscillating as the gain is increased. Wtfih_ oscillations arc definitely more

prominent as the gain is increased, it is not clear at which point they appear (data at lower

gain values than those shown substantiate this point). Pinpointing oscillation onset in this

NDFS will be the focus of Section 4.

\%7emust emphasize that the oscillations are not externally driven by some periodic

modulation of the light intensity. Rather, the oscillations are autonomous in the sense

that pupillary dynamics determine the retinal light flux. Once the system is set up in

the high gain configuration along with a mean light beam intensity, the oscillations begin

spontaneously.

3 - HOPF BIFURCATION IN NEURAL DELAYED FEEDBACK.

The Hopf bifurcation.

This section focusses on the Hopf bifurcation, i.e. the transition fl'om a stable equi-

librium (fixed point) to _ stable oscillation (limit cycle), a,_ a parameter is varied. This

bifurcation is characterized by the crossing of a pair of roots of the characteristic equation,

obtained from the linearization of the nonlinear equations of motion, into the right hand

side of the complex plane. It is relatively straightforward to compute the condition for the

roots to migrate across the imaginary axis and to verify the further condition that this

crossing be non-tangential. However, this calculation only indicates how the fixed point

goes unstable, but does not guarantee the existence of a stable limit cycle. This depends

on whether the equations of motion sa.tisfy certain non-degeneracy conditions s.

Hopf bifurcation analysis, although quite involved, can be used to compute the period

and amplitude of the limit cycle oscillation. In practice, one often resorts to numerical

simulation of the equations of motion to obtain this information, as well as to determine

whether the bifurcation is super- or subcritical. The basic difference here is that in the

former case, the amplitude of the oscillation is zero at the bifurcation point. In tile lat-

ter case, tile amplitude is finite and the limit cycle can only be reached through some

perturbation from the fixed point (so-called "hard excitation") s.

The Hopf bifllrcation theorem is essentially the same for a system of ordinary differ-

ential equations (ODE's) or delay-differentiM equations (DDE's). However, tlie analysis is

much more complicated for DDE's because they are infinite dimensional systems evolving

in a functional (Banach) space rather than the usual phase space spanned by the finite

number of degrees of freedom of ODE's. This is a consequence of the fact that a family
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of solutions to a DDE is paranletrize.d not by a finite vector of initla.1 conditions but by

a function on the interval (-.r, 0), where r is the delay. Further, the characteristic equa.-

tion for linear DDE's is a transcendental function. This implies that it can not be soh, ed

analytically for its complex roots, and that it has an infinite number of roots.

Model for high gain oscillations in the PLR.

We now outline a mathematical model for nonlinear autonomous oscillations in the

PLR which occur as the feedback gain is increased. Details can be found in Ref.16. Al-

though the PLR is a spatially distributed system with thousends of parallel pathways, not

much is known about the parameters characterizing the spatial features beyond the retina.

What is known is where the neurons of one nucleus project to, and we have found that this

is sufficient to explain the phenomena we are interested in. Thus our model is spatially

homogeneous, and deals with one scalar variable, the pupil area A(t). This area value is

inversely proportional to the area of the iris muscles. The main iris muscle is a sphinc-

ter surrounding the pupillary margin. It reduces its diameter upon constriction, thereby

stretching the iris tissues. Hence, iris area is proportional to the iris sphincter activity.

The retinal light flux is transduced into neural activity in the optic nerve (for sim-

plicity, one can assume that stimulus strength is encoded in firing frequency of action

potentials). This neural activity is processed by different brainstem nuclei and finally
!

reaches the sphincter muscle. The result is that an increase in retinal light flux increases

sphincter activity which decreases pupil area. The following model has been shown to

predict the basic features of pupillary dynmnics including oscillatory behavior 16'

dg(A) dA(t) [¢(t- r)]dd dt + ag(A) = 71n - (1)¢

where r is the time delay between the falling of light on the retina and a change in pupil

area. a is a rate constant for pupillary motion, ¢(t) is the retinal light flux and ¢ is the

threshold flux below which no pupil response occurs. The fimction g(A) (shaped like the

inverse of a sigmoid) relates area to iris sphincter activity. The logarithm accounts for

the compression of the light flux scale in the transduction process at the retina. A rate

constant of 3 sec -1 and a delay of 300 msec are typical.

To induce pupillary oscillations as in Fig.2, the retarded flux is given by

_)(t- T)'- I(t- T)Abeam (12)

= [Zm + Ia.c.(A(t- r))]dbeam (3)
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where .4b_,,,,_is the area of the light bean1 used in Maxwellian view, I(* ) is tile light intensity,

I,,, is the mean light intensity, and I,.c. is the functional deI_enderlce of light intensit, y on

pupil area synthesized by the area comparator (see Fig.lb). Under these conditions, the

delay also comprises the external electronic delay. Eq.(1) has a fixed point solution A* given

by the root of the transcendental equation obtained by setting the time derivative equal t,o.

zero. Eq.(1) undergoes a supercritical Hopf bifurcation when the delay is increased past a

critical value. This is also the case when the slope of the nonlinearity g(A) evaluated at the

fixed poin.t decreases below a critical value. This corresponds to increasing the feedback

gain. The amplitude of the limit cycle is constrained by the neuromuscular nonlinearity

and the logarithmic compression at the retina. Near the bifurcation, the amplitude is

predicted to grow as the square root of the deviation of the parameter from its value at

the bifurcation point, while t,he period varies slowly across the bifurcation.

4- DEFINING OSCILLATION ONSET: PHYSIOLOGICAL ORDER PA-

RAMETERS.

The limit cycles in Fig.2 are irregular. Quantitative analysis of the data shows 17 that

the amplitude does not grow as the square root of the distance from the bifurcation point,

as the deterministic theory reviewed in Section 3 predicts. However, both ' the observed

growth and the aperiodicity can be explained by hypothesizing that stochastic forces are

also driving pupillary dynamics. Noise such as "hippus" can arise from the spontane,.)us

activity of the neurons in the reflex arc, or from the activity of other neural pathw_,ys

which impinge on those of the P LR but are not under experimental control. The power

spectrum of hippus is approximately broad band up to a cutoff frequency of _ 1Hz, which

indicates that it is a colored noise. Its correlation time can be roughly estimated as the

inverse of the spectrum bandwidth, i.e. _ lace.

: In a noisy system, one is confronted with the very basic problem of defining what is

meant by oscillation onset. Defining a "statistical bifurcation point" can be done with some

help from nonequilibrium statistical mechanics. The idea is to find a quantity that exhibits

: a qualitative change as the bifurcation parameter is swept, just as in the deterministic Hopf

bifurcation case. The obvious measure of oscillation, i.e. the height of the main peak in

the power spectrum, does not undergo such a qualitative change 5. Any amount of noise

will reveal this peak, even when the parameter is well below the l)ifllrcation point (the

peak is a "noisy precursor" of the Hoi)f bifurcation - see Ref.5). The 1)eak simply grows
=

as the pm'ameter is swept across the deterministic bifllrcation point. The autocorrelation
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function doc:s not exhibit alo' qualitative change either, as it is obtained ft'ore the Fourier

transft)rm of the l)ower spectrum.

However, the probability p(x) that a signal x(t) takes on a value between x and

x + dx does undergo a qualitative change from a unimodal to a bimodal shape. The

distance between the peaks, which serves as an "order parameter", is a statistical measure

of amplitude different fl:'om "the mean oscillation amplitude"; in fact, the order parameter

can be zero even though the mean amplitude in the time series is not.

The probability densities for the area time series of Fig.2 are shown in Fig.3 . Al-

though one sees a widening of the density as the gain is increased, the order parameter

is always zero. At the highest gain, however, one could argue that the order parameter

is not zero, but it simply can not be resolved from the short time series available. This

is supported by numerical experiments. The behavior of this order parameter has been

computed in Ref. 17 by numerically integrating a simplified version of Eq.(1) having the

same qualitative dynamics. The noise is modelled by an Ornstein-Uhlenbeck process which

is an exponentially correlated colored noise (correlation time lsec) At each parameter in

a set spanning across the deterministic bifurcation, the density p(A) is computed from the

simulated time series A(t) and the order parameter is computed. We find that it is very

important to allow for transients to die out, especially near the bifurcation point where the

exchange of stability occurs. At this point "critical slowing down" occurs, which means

that perturbations away from the attractor decay more and more slowly as the bifurcation

point is approached. In practice, the solution has to be integrated over thousands of peri-

ods in order to resolve the growth of the order parameter. Hence, the poor resolution irl

Fig.3 is not surprising, given the length of the available time series.

Another interesting result is that the peaks of p(A) do riot correspond to those of

the deterministic c_se (i.e. the extrema of tile oscillation); irl fact, tile order parameter

is smaller than the deterministic amplitude. The parameter value at which tlm order

parameter becomes non-zero, i.e. the point which we define as "oscillat.i_,n onset", is larger

than the deterministic one. Noise postpones oscillation onset from a statistical point of

!i view: on tile limit cycle side of the bifurcation, tile system sp' e.nds' more time near tile

! unstable fixed point than in the absence of noise. This effect has been reported in ODE's

S"'( ,, 5and is called a, "noise-induced tran,._ltl )n We have found this to occur with both additive

and multiplicative noise.

Physiological or(lcr parameters have also been studied in the context of movement
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coordination in Ref.9. Order parameters are very difficult to resolve on short experimental

time series such as those shown in Fig.2. However, we believe that an understanding of

their behavior is an essential backbone of any analysis. Further, measurements of order

parameters may still be used to validate a model despite their lm'ge standard deviation.

But other measures may be more useful for short neurological time series, such as the

behavior of period, amplitude and phase of oscillations. In fact, it was shown in Ref.17

that the noise intensity at which the predicted and measured curves of "mean amplitude

versus gain" have similar shapes also yields similar shapes for the predicted and observed

curves of "mean period - " as well as "relative amplitude an'd period fluctuations versus

gain" These last three curves further agree quantitatively with the data. While these

quantities do not undergo qualitative changes, they are important characteristics of the

oscillations and the proper prediction of their behavior serves as a strong test for the model.

5 - ORIGIN OF PHYSIOLOGICAL IRREGULARITY.

Although the mean behavior of NDFS's may be described by deterministic laws, upon

closer scrutiny they are seen to generate aperiodic activities. For example, in the case of the
.,

PLR, hippus is always more or less manifest. This general observatien raises the question

of the origin and purpose of this irregularity. This has been a subject of great debate over

the past few years (for a comprehensive review, see Ref.21). The debate has centered on

whether chaos, noise or both underlie the irregularity. Thus the simpler view of simple

dynamical motion with noise has received little attention. The reasons for this are varied,

the major one being that fractal dimensions and other quantities can be cranked out of

time series with relative ease, along with the immediate conclusion that the dynamics are

principally chaotic. There are many problems with this view (for a review see Ref.19). It

is safe to state in these cases that the steady state dynamics involve only a few degrees

of freedom. But the presence of chaos will remain uncertain until one can rule out the

other kinds of (maybe noisy) dynamics which can yield e.g. similar dimension values. It

is known 14'20 for example that the fractal dimension of attractors reconstructed from time

scabiesof colored type noises such as 1/f (one-over-f) are also finite (although it diverges

to infinity in the wlfite noise limit); thus results have to be interpreted with extreme care.

Fractal dimension algorithms are now being extensively used because 1) often there is no

adequate theory for the system under study, or 2) system parameters can not be varied to

produce bifurcations leading to the chaotic state, or simply 3) they are readily available.

More stringent and self-consistent tests for chaos, based on prediction of time series, are
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being developed and hold hope for clarifying the source(s) of irregularity (for a review see

Ref.3).

Without further belaboring the merits and pitfalls of these methods, we wish to

emphasize that simple dynamics with noise should also be considered as a candidate for

irregularity. This is especially true in the vicinity of bifurcation points where the dynamics
,',

a.re dominated by the noise, due to critical slowing down. It is possible that even in simple

NDFS's there are a few feedback loops that interact together and with different noise

sources (there are at least three pathways in the humml PLR- see Ref.15), and hence that

critical behavior could occur around more bifurcation points.

Previous studies 24'25'2s have focussed on the dynamics of hippus in the steady state

and during transient responses to light; they have concluded that hippus is probably noise.

Longtin et al.17 have investigated hippus at oscillation onset by studying the critical be-

havior of a model DDE at a Hopf bifurcation; they have reached the same conclusion. This

raises two questions. Is the noise really injected into the reflex arc with a 1 see correlation

time, or is it quasi-white but appears strongly colored because of the lowpass characteris-

tics of this neuromuscular system, as suggested in Ref.24 ? Tiffs remains to be investigated.

Also, what is the ultimate origin of hippus? Is it the trace of a chaotic process? Important

clues may lie in the fact that the interaction of hippus with the dynamics of the reflex arc

seems to be unidirectional, i.e. the dynamics of the arc are influencedby that of the noise,

but not vice-versa.

Assessing stochastic components of any dynamics requires proper characterization of

the noise, namely its density, spectrum and source. It is conceivable that characteristics

of the noise itself may serve as bifurcation parameters in real NDFS's.

6- CONCLUSION AND OUTLOOK.

NDFS's are inherently nonlinear, and under experimental control display a variety

of dynamical behaviors. Stochastic components of NDFS's must be disentangled from

deterministic ones in order to understand their behavior in the vicinity of bifurcation

points. The specia'i problem of oscillation onset leads one to define a physiological order

parameter as the distance between the two peaks of the invariant density for the dynamics

of the measured variable. While these peaks are extremely difficult to resolve on short time

series, as is the case for the PLR experiments, it is nevertheless important to know this

distance is less than the limit cycle amplitude in the absence of noise. This means noise

postpones the oscillation onset by stabilizing the fixed point. That noise is responsiMe for

10
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the observed aperiodicity can be proved by explaining the behavior of more easily measured

quantities such as the the mean and standard deviation of the period and amplitude of

the area fluctuations. In this way, hypotheses about stochastic inputs to a system can be

validated.

Numerous avenues remain to be explored. One is to understmld the influence of

distributed delays (which result from a distribution of nerve axon diameters) and of the

spatial extent of NDFS's on oscillation onset. It may be that critical behavior and growth

of order parameters different from what is expected from a spatially homogeneous system

can be a signature of interactions between parallel pathways comprising the neural system.

Tests that differentiate betweeI_ additive and multiplicative noise would also be quite useful,

as our analysis of pupil dynamics can not resol.ve their effects. One needs a theory with

which the mean and variance of the amplitude and period fluctuations can be analytically

rather than numerically computed. Further, hardly anything is known about the behavior

of stochastic DDE's (see however Ref.12, Chapter 4). A Fokker-Planck-type theory for

"generalized delayed Langevin equations" would be more than welcome as it would allow

densities and order parameters to be calculable at least in principle. It is expected that this

knowledge will become important as more neural systems involving delays are investigated.
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FIGURE LEGENDS•
Figure 1. a) Schematic of clamped pupil light reflex. The narrow beam of light illuminates the

retina in open-loop, i.e. the iris muscles can not block the beam even under maximal
constriction. The area comparator is the electronically synthesized external feedback
which relates light intensity to measured pupil area. b) Area comparator used here
to produce oscillations. The gain is equal to the slope of this cl_'ve, c) Forcing on the
pupil area as a function of pupil area. Because an increase in light intensity causes
a decrease in pupil area, this area comparator actually produces a negative feedback
configuration as in the uncIamped pupil light reflex. The nonlinearities of the reflex
are responsible for saturation at high and low area values.

Figure 2. Pupil area as a function of time at four different gain settings: a) 1.41 ; b) 2.0 ; c)
2.82 ; d) 4.0 . Area is measured in arbitrary units (the same throughout the whole
experiment) relative to the mean for a given record. The linear trend across one
record has also been removed. The sampling rate is 50 Hz.

Figure 3. Area densities corresponding to the time series in. Fig.2. The densities are 20 bin
histograms of the area values spanning the range of values obtained with a 4.0 gain.
The data in Fig.2 along with more data corresponding to total recording times of a)
16.78 ; b) 29.90 ; c) 39.60 and d) 35.96 sechas been used to construct the densities.
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