
' - • ' ,

CONF-8109217—1

LONG-TIME BEHAVIOR OF A NUCLEAR REACTOR

Hans 6. Kaper

Applied Mathematics D iv is ion
Argonne National Laboratory

Argonne, IL 60439

A fundamental problem of reactor physics is the
determination of the long-time behavior of the neucron
population in a nuclear reactor. In particular, one is
interested in the question whether the total neutron
density has a purely exponential behavior as t + ». We
formulate this problem as an abstract Cauchy problem,
show that the solution is given by a semigroup, and
investigate the asymptotic behavior of the semigroup.

1. INTRODUCTION

A fundamental problem of reactor physics is the determination of the
asymptotic behavior of a nuclear reactor for large tines. Inside a reactor (a
highly heterogeneous composite structure of many different materials) neutrons
are generated by fission processes. The neutrons move about freely (i.e.,
rectilinearly and with constant velocity) until they interact with a nucleus of
the reactor material; in the course of an interaction a neutron may disappear
entirely (absorption), it may change its velocity (scattering), or it may trigger
a fission process, as a result of which one or more new neutrons appear. The
relevant space and time scales are such that interactions can be viewed as
localized and instantaneous events. The equation that describes the rate of
change of the neutron density inside the reactor is a linear transport equation;
the dependent variable is the neutron velocity distribution function (f). If
n denotes the rector domain (a bounded open convex subset of 2 3 ) , and S is the
neutron velocity range (a ball or spherical shell centered at the origin in £ 3 ) ,
then f(x,£,t)dxd£ represents the (expected) number of neutrons in a volume
element dx centered at a point x e fl whose velocities lie in a velocity element
dC centered at the velocity K e S at time t. The linear transport equation is a
balance equation for f over the element dxdC about (x,C),

(1.1) |£= -|j- • Cf(x,5,t) - h(x,Of(x,5,t) + / k(x,£H')f(x,C
S xefl, ? e S, t > 0 .

The first term on the right is the (spatial) divergence of the neutron flux,
which represents the effect of the free streaming; the second term represents the
loss due to interactions at x, h(x,5)d§ being the collision frequency for
neutrons with the velocity in the range d£ about E, at the point x; the third term
represents the gain due to interactions at x, k(x,?-<-£')d5 being the (expected)
number of neutrons emerging with a velocity in the range d£ about € after an
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interaction of a neutron with the velocity V with a nucleus of the reactor
material at x. With Eq. 1.1 are prescribed an initial condition,

(1.2) f(x,S,0) = fo(x,5), (x,?) e fixS ,

and a boundary condition on 9fl. The boundary condition expresses the fact that
no neutrons enter the reactor from outside ("zero incoming flux"); it may be
formulated as

(1.3) f(x,5,t) = 0 , x e 3il , 5 £ S , t > 0 ,

where S = {c e S: x + t£ e n for some t > 0}, x e 32.

The quantity of interest is the total neutron density inside the reactor,
i.e., the integral / / f(x,S,t)dxd£; in particular, its asymptotic behavior as
t -»• <*>. For practical purposes one wants to know under which conditions on the
functions h and k the integral behaves like a pure exponential as t + ». We
might add that, for many reactor materials, the functions h and k vary rapidly
with the neutron velocity: they may display resonances, etcetera. As we shall
see, a satisfactory solution to this problem has not yet been given. Partial
answers are available, and new results from the theory of strongly continuous
semigroups of positive operators in Banach lattices are being applied.

In the next section we give the functional formulation of the reactor problem
as an abstract Cauchy problem. In Section 3 we show that this abstract Cauchy
problem is solved by a strongly continuous semigroup of positive operators. In
the final Section 4 we discuss some results about the asymptotic behavior of the
semigroup. Details of the proofs, as well as related results, can be found in
our forthcoming monograph [1, Chapter 12].

2. FUNCTIONAL FORMULATION

Let n be a bounded, open, convex subset of 8 3, and let S be a ball of finite
radius centered at the origin in 8 3. In this section we shall show that the
initial-boundary value problem 1.1-3 leads to an abstract initial value problem
for the function f: [0,°°) •»• L^ftxS). (The choice of an L^space is a natural one
in the present context, as f is nonnegative and its L^norm gives the total
number of neutrons inside the reactor.)

We begin with the definition of the collisionless transport operator (-T),
v'lich corresponds to the first term in the fight member of Eq. 1.1. Two techni-
cal difficulties arise: one because the expression (3/3x)«£f is singular at £=0,
the other because the boundary condition 1.3 involves only part of the range of

the variable 5. Let Cg g(fl*S) be t he space of all functions f that satisfy the
conditions (i) supp f cft*Sag for some 6 _>

 a > 0» where S = {Ce I 3: a _< |C| _< &};
and (ii) f admits a (B,e)-extension to £2£xS for some e > 0; here, O£ is a
e-neighborhood of fl, and a (B,e)-extension is a function fe e (^(Q^S) whose
restriction to n*S coincides with f and which vanishes on each incoming ray up to
a point inside fl (i e., for each (x,C) e flxS, let x = T(X,5) denote the unique
nonnegative number such that x-t£ e 3J2; then there exists a n e (0,T) such
that fe(x-s5,€) = 0 for all s > n.) Let TQ be defined in Cg o("xS) b^ the

expression *

(2.1) Tof(x,C) =1^- • Cf(x,5) , (x,5) e flxS , fe



Then Al+To(Ae<E) is a bijective map of Cg Q(fixS) onto itself. If ReA > 0, then
(Xl+Tg)~l can be extended by continuity to a bounded linear operator R^ in
LJ(flxS), where

(2.2) R,g(x,C) = / e"Asg(x-s(-,Ods , g e L ^ S ) ,
* 0

for almost all (x,£) e fixS. This operator R^ is injective; its inverse is the
closure of Al+Tg, so if we define T by

(2.3) T = R"
1 - AI ,

then T is uniquely defined and T is the closure of TQ.

The second and third term in the right member of Eq. 1.1 give rise to bounded
linear operators in L1(QxS), provided h e L°°(fixS) and h e L°°(axS), where

thp(x,C) = f k(x,£<-?')d£i for (x,C) e fixS. We shall assume that these conditions

are met, and define the operators A^ and A£ in L^ftxS) by the expressions

(2.4) Ajf(x,0 = h(x,C)f(x,?) ,

(2.5) /

for any f e L^HxS). Then UAjii = iihiim and llA2» = "hpll„.

The initial-boundary value problem 1.1-3 thus gives rise to the following
abstract Cauchy problem in L^ftxS):

(2.6) f'(t) = (-T-A1+A2)f(t) , t > 0 ; f(0) = fQ .

3. SOLUTION OF THE ABSTRACT CAUCHY PROBLEM

We consider the transport operator -T-Aj+Ag as a perturbation of the stream-
ing operator -(T+A^) by the bounded operator A£. The spectrum a(-(T+A^)) is
determined by the behavior of h(x,C) for small values of |£|. Let the
nonnegative constant A* be defined by

(3.1) A* = inf{ lim h(x,5): x e n} .
151*0

Assume that

(A) There exists a positive constant c such that h(x,£) >̂  A*-c|C| for all x e fi
and all 5 e S with 5 ^ 0 .

Then the right half-plane {A e C: ReA > -A*} belongs to the resolvent set
p(-(T+A^)); moreover, the resolvent Qx = (AI+T+Aj^)"

1 satisfies the estimate
»Qx" <. M(ReA+A*)"n for n=l,2,..., with M = exp(c«diamn). It folows from the
Hille-Yosida theorem [2, Section IX.1] that -(T+Aj) is the infinitesimal gener-
ator of a strongly continuous semigroup W^ = [W^(t): t 2 0] in Lx(fixS). The
expression for W^(t) is readily found,
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(3.1) W1(t)g(x,5) = exp(-J h(x-s5,5)ds)g(x-sCf6) ,
0

for any g e L M ^ S ) . The semigroup consists of positive operators As the
underlying space is an l^-space, the type of the semigroup coincides with the
spectral bound of the generator [3, Section 3.3]. The latter is at most equal to
-X*; it is exactly equal to -A* if we assume, in addition, that

(B) For each e > 0 there exists a ball BQ = {|x-x^| <_ p] wholly contained in fl
and a constant n > 0 such that h(x,5) < X*+e for all x e BQ and ? e S with
Kl In.

In fact, if (A) and (B) hold, then a(-(T+Ai)) fills the entire half-space {x e C:
ReX £ -X*}.

We now add the bounded perturbation A2 to -(T+Aj). According to the theorem
of Hi lie and Phillips [2, Section IX.2.1], the resulting operator -(T+A1)+A2

 is

the infinitesimal generator of a strongly continuous semigroup W = [W(t): t >_ 0]
in L^QxS). This semigroup provides the solution of the abstract Cauchy problem.

THEOREM 1. J_f_ fg e domT, then the solution £f_ Eg. 2.6 j_s_ uniquely determined and
given ̂ y

(3.2) f(t) = W(t)fQ , t >.C .

Th>> semigroup W cannot be determined explicitly. However, W can be found
from Duhamel's integral equation

t
(3.3) W(t) = H,(t) + / w,(t-s)A9w(s)ds t > 0 ,

1 0 ~
by iteration; the result is the following Dyson-hillips expansion:

(3.4) W(t) = I w j n ) ( t ) , t > 0 ,
n=0

where w{°^(t) = W 1(t), wj
n)(t) = Wx(t) + /

tW1(t-s)A2w{
n-1^(s)ds for n=l,2,... .

The series 3.4 converges in the operator norm topology, see [2, Section
IX.2.1]. Because A2 is a positive operator, the semigroup W consists again of
positive operators.

4. ASYMPTOTIC BEHAVIOR

The type of the semigroup W coincides with the spectral bound of the
transport operator. We denote the latter by XQ,

(4.1) XQ = supfReX: X e o(-(T+A1)+A2)} .

It follows from the general theory of strongly continuous semigroups of positive
operators that XQ e o(-(T+Ai)+A2), see [3, Section 3.3].

The perturbation A2 is a partial identity in L1(nxS), so it is certainly not
compact. However, the operator A2Wj(t)A£ is an integral operator in L

1(flS)



('4.2} A g j g / f

w h e r e

x exp(-/ h(x-s ̂ - , -^)ds) ,
0 t t

The representation 4.2 enables us to use compactness arguments.

THEOREM 2. I_f̂  for some positive integer n, ( W ^ t ^ ) " _U compact for all
t > 0 _and the function [W1(t1)A2W1(t2)A2...W1(tn)A2: tx > 0, t2 > 0,...,tn > 0]
j_s continuous vn the uniform operator topology, then {x e (E: ReX = -X*} c

o(-(T+A1)+A2), i£ XQ 2 -X*; jf Xo > -X*, then o(-(T+Aj)+A2) contains finitely
many points x^ (k=0,... ,m) j_n each right half-plane ReX > -X* + e (e > 0 ) , each
of these points j_s_ _an eigenvalue of -(T+Aj)+A2 with finite geometric
multiplicity, and

m X. t tD.
(4.3) H(t) = I e k e kP + Z(t)(I-P) ,

k=0 K n

where iiZn(t)n = o(exp(-X*+i:)t) ̂ s_ t + «; here Pk and Dk are the projection and
nilpotent operator associated with Xk, and P = PQ+. -.

+P((-

The representation 4.3 can be sharpened if one can show that the semigroup W
is irreducible. In the present context, W is irreducible if there exists a
tg > 0 such that W(t) is positivity improving for each t _> tQ. Indeed, if W is
irreducible, then XQ is a simple eigenvalue, the projection PQ is positivity
improving, and there exists a e > 0 such that the real part of any other point of
( ) is less than Xg-e. Thus,

X t
(4.4) W(t) = e

 U PQ + Z(t)(I-P0) ,

where Z = [Z(t): t _>. 0] is a semigroup in (I-Pg)L1(fixS). Although the spectral
bound of the generator of Z is strictly less than Xg, one can only conclude that
the type of the semigroup Z is less than or equal to Xg, as Z does not
necessarily consist of positive operators.
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