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o l Introduction
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PEP has been operated successfully under computer
control. It is necessary for colliding beam operation
that the errors in closed orbits, dispersion and beta
funcrions be corrected. The schemes in the PEP control
prograz for on-line correction of these errors are des-
cribed in this paper.

The orbit control tasks §n the PEP control aystem
perforn the functions of data gathering, data presenta-
tion (color display, printing), calculazion and setting
of cerrector magnets. The tasks are generally small
and nodular, taking information from the database, pro-
cessing it, then returning the results to the database.
The PEP operator communlicates with the tasks through
touch panels monitored by the Director pregram. The
disglay task, which displays orbit and corrector infor-
mation on a TV :olor display, provides the main infor-
cation required by the operator.

The Orbit Calcularor

The orbit calculator task enables the opetator to
manipulate orbit data stored in the many orbit regis-
ters. Manipulations are: fetching, storing, comparing
and function calculation. Orbit information is stored
in the database in various registers. Each vcgister
norzally holds information for both ¢* and e~ beams,
and for both horizontal and vertical planes. Each re-
Eister holds: a) the displacement at all bean position
zonitsrs (BPMs), b) the strength of all correctors, c)
calculated displacement and slope at the interaction
regicas, valuves of maximum and rms deviations through
the regions, d) the time of the orbit scan (or calcula-
tion). The many orbit reglsters are necessary to pro-
vide flexibility. Registers are provided for: display,
last scanned oroit, last calculated dispersion and beta
funcrions, global and local corrections, RF orbits (se-
Jparation of the e and e~ ovbits due to the RF accelera-
tion, both calculated and scanned). An orbit stack
(depth of four) 1s used for calculatioas; and a memory
register is provided for the operator's comvenience.

+

Local/Global Orbit Correction

Local orbit correction is dome by changing the
displacement and/or slope at the interaction regions.
Llocal symmetric, anti-symmetric or combination bumps
are made by changing the strength of two correctors on
either side of the interactior regions. The corrections
=ay be keyed in using the orbit correction touch panel,
or b, tuanecting the bumps to knobe by software. 1n the
lacter case the correction is monitored by reading the
current. in th2 corrector magnets as the knobs are turn-
ed. Four knobs may be ccnnected at any one time allow-
ing correction of x, x', y and y'.

Global orbic correction 1is done by minimizing the
s orbit deviation at the BPMs. Calculations are done
for one particle type (e*/e™) and one orientation (hori-
zontal/vertical) ar a time. In this sacheme the sensiti-
vity macrix 15 calculated firsct. This matrix of partial
derivarives relating the displacement at the BPMs to
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Two methods of selecting the correctors are nov avail-

able:

1. One corrector is chosen as the most effective and
the results are stored. Another corrector is then
chosen that fs the most effective partner to the
first one, then a third corrector that iy most ef-
fective with the first twc, etc, The matrix manipu-
lation subroutines come from the program MIKADO.?

2, Orthogonal sets of correctors arc chosen by reducing
the non-square sensitivity matriz To its single
value form. These sets are thca chosen in a manner
similar to rhat of method 1, the singular values give
the effectiveness of each particular set.

1f all correctors are chosen then the two methods
give identical results., Corrections may be applied on
top of an existing set of corrections or by srarting
from scratch. In the latter case the orbit cawsed by
the existing correctors is removed frowm the acanned or-

bit, and correctlons are done on this orbit. Figures 1
and 2 show the result of a global correction to com-
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Fig. 1. Typical vertical orbic for an operating
PEP configuration.
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Fi Vertical orbit after global correction
using method 2.

pletely change the corrector pattarn using the sacond
orbit correction methud with 10 sets of correctors. The
predicted maximur and rms values were 4.24 and 1.60 mm;
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those achieved were 4.27 and 1.58 mm, One iteration
using 20 sets of correctors further reduced the wmax{mum
and rms values to 3.5 and 1.37 mn.

When correcting in the horizontal plane allowance
is made for deviations of the machine energy from the
ideal energy. The BPM da“a together with a knowledge
of the dispersion function and corrector strengths al-
low us to find the energy deviarion and the equillbrium
orbic corresponding to this energy. The correction is
calculated using displacements about this equilibrium
orbit. At the end of the calculation the equilibrium
orbilt is added back in, taking account of changes in
corrector strengths. In a similar manner we may sub-
tract out the RF orbit of the positrons or clectrons
since this orbit is another form of eqiilibrium crbis,
Here we may choose between gcanned or calculated values.

Vertical Dispersion Function Correction

The dispersion function is measured by scanning
two orbits with the RF accelerating system tunning ar
different frequencles. The change of womentum of par-
ticles on the synchronous orbit 1s given by
af/f » -a(sp/p) where a L5 the momentum compaction fac-
tor. Using the relation &x(s) = n(s)-4p/p ve calculate
n{s) at all cthe BPMs. Examples of dispersion function
{n) before and after correction are shown in Figs. 3 and
4. Two schemes are avallable tor correction of the

Fig. 3. Typical vertical dispersion
function before correction.
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Fig. 4. Vertical dispersion function
after correction.

disperaion fuaction:
1) Correction by individual corrsctors.

The global correction of the vertical dispersion func-
tica {s done by the ssme task that globally corrects
the orbits. In this case the sensitivity watrix fs the
sensitivity of change in vartical disparsion functiom
to change in corractor strength. This is calculated by

using £q. (1) twice. A rhange in one corrector causes
a change {n orbit at each quadrupole and sextupole.
This change in orbit i{s a driving term for a change in
dispersion functlon at every place in the ring. An
efffeclent algorithm is used that does not require the
integration over all quadrupoles and sextupoles for
every corrector and BPM.

2) Correction by antisymmetric bumps.

The correction of vertical dispersion function by
changing corrector strengths as above results in . han-
ges of orbit chat may be undesirable. By uslng loecal
antisymmetric bumps we may change the global dispersion
function by introducing only local changes in orbit.
Correctlon may be achieved empirfcally by putting local
bumps onto the knobs and tweaking for minimum beam
height. A task ls being tested that makes corrections
In all =ix interaction regilons simultaneously using
method {2) of che orbit correction scheme. Local bumps
mav also be undesirable and steering in the interaction
regions may be determined solely by the requirements f
tie experimenters.

Beta Function Correction

Two mechods are used for measurement of rhe beta
funceions:

1. Small changes are made to the currents flowing {n
the trim windings of the insertion quadrupoles and
the change in machine tune caused by these wvarfa-
tions 18 recorded. Using the first order pertur-
bation formula! av = ZEAK,‘(A:) relating the tune
change 4v to the change In focussing parameter LK
we may estimate 8 at the insertion quadrupoles.

2. Small changes are made to a corrector magnet be-
tween the insertion qudrupoles and close to a BPM.
Using Eq. (1) and assuming that the aearest manitor
is close enough to the corrector that the beta
function perturbation 38/3 {s the same at both, we
calculate ﬂj. We then calculate By at the posi-
tions of the other BPMMa, Because the phase term
will be unfavorable ar many monicors we change cor-
rectors at several interactfon regions, summing che
results with weight functions appropriate to the
phase term.

Using the sensitivity function
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we use method {(2) of the orblt correction schemc to ap-
ply corrections AK to the trim windings. This task is
at prasent used off-line (rom the control system.
Figure 5 shows an uncorrécted asymmetry in the beto
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Fig. 5. Measvrement of f function asymretry (the
strangth of tha orbit correctors used in the measure-
went is aleo ebown).
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funcrion that was later corrected. For this calcula-
tion of the beta function, correctors in reglons 2, &,
6, and B were changed in sequence.

Performance of the Measurement and Correction Syater

At present the reproducibility of position mea-
surement at 96 monitors is about 0.03 mm allowing us to
measure the dispc:sion funcrion to an acecuraey of 1.3
cm, The absolute accuracy of the position measurement
is difficult to determine. Using a measured orbir the
correction programns willl pot predict a correcred orbit
with peal. dlsplacement values less than 3 mm; but
using a simulated orbit this peak displacement can be
reduced many times further. (The simulated orbit is
generated by random misalignment of magnets in a mathe~
natical model). Sowme of the discropancy could be due
to position errors, the rest to deviations of the real
machire from the computer model.

Orbir correction is used on a daily basis and bath
horizontal and vertical orbits may be reduced to 3 mm
peak (1.3 mm ros) at the monitors. The accuracy of
correstion is enhanced by changing the model of the
machine as represented by a configuration having cthe
measured tunc values. Local correction by symmetric
and antisymaceric bumps is very successful, the orbit
changes outside of the bumps bring very small.

More time needs to be devored to investigate the
performance of dispersion funct’on correction. Cor-
rection by local antisyrmetric buxps performs much as
predicted but Lls limiced by the orbit requirements at

the iateraction points. Experiments have been started
to simultaneously correct both the vertical orbit and
dispersion functions.

Beta functions can be measured at the ingertion
guadrupoles to an accuracy of 10Z by the focusing per-
turbatian method, but not enough work has yet been done
to determine the accuracy of the orbit change method.
Using changes lar;e enough to give reproducibility
ccaparable to the other wethod may cause changes to the
linearity of the machine due to orbit deviatfons
through the sextupoles. The correction of beta func-
tion asymmetries alse works well but a bad asymmetry
requires iteration because Eq. (1) is only accurate to
first order in 4R. To reduce time consuming measure-
ment we shall later do the iteration os a2 mathematical
model.
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