PNL--7480

DE91 001240

RESULTS OF CHEMICAL, TOXICOLOGICAL, AND BIOACCUMULATION EVALUATIONS OF DIOXINS, FURANS, AND GUAICOL/ORGANIC ACIDS IN SEDIMENTS FROM THE GRAYS HARBOR/CHEHALIS RIVER AREA

J. Q. Word J. A. Ward A. L. Squires

Battelle/Marine Sciences Laboratory Sequim, Washington

September 1990

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL0 1830

Pacific Northwest Laboratory Richland, Washington 99352

DISTRIBUTION OF THIS DOCUMENT IS UNLY

<u>SUMMARY</u>

The Battelle/Marine Sciences Laboratory (MSL) was requested by the U.S. Army Corps of Engineers (USACE), Seattle District, to assist in planning and conducting sampling, toxicological tests, and chemistry evaluations on sediment samples collected from the Chehalis River in Grays Harbor, Washington.

The objectives of the study were to investigate the toxicity and biological effects of sediments that might potentially contain dioxins, furans, and organic acids, as a result of industrial practices in the Grays Harbor area, on sensitive marine species. In addition to the toxicological tests conducted using standard bioassays, sediment chemistry tests were performed to determine levels of selected chemicals, and elutriates of sediments were tested chemically and biologically to determine contaminant mobility in water. Also, bioaccumulation measurements were made to determine chemical mobility in animal tissue. A joint task group, including representatives from the USACE, Washington Department of Ecology (WDOE), Washington Department of Natural Resources (WDNR), Washington Department of Fisheries (WDOF), and Region 9 of the U.S. Environmental Protection Agency (USEPA) participated in designing the testing program and reviewing data produced by MSL. The results of this analysis will be included in a supplemental Environmental Assessment (EA) prepared by the USACE for the Grays Harbor Dredging Program, beginning in early 1990.

Toxicological test results indicate that sediment samples collected from the Grays Harbor area demonstrated no appreciable toxicity to test organisms, and although dioxin/furan and guaiacol/organic acid compounds were detected in most sediment samples, the concentrations were relatively low. Sediment elutriate preparations resulted in little-to-no-toxicity and were considered insignificant according to guidelines presented in the Implementation Manual (USEPA/COE 1977). Elutriate chemistry results showed that the guaiacol/ organic acid compounds were not extracted by water, while 30- and 60-day bioaccumulation studies showed that no potential existed for bioaccumulation of dioxin compounds by the filter-feeding clam <u>Macoma nasuta</u>. Indigenous crabs from the in-bay disposal sites of the Grays Harbor area showed no

iii

dioxin/furan contamination in crab muscle tissue, but detected levels of dioxin/furans were found in the hepatopancreas of crabs collected at North Bay, South Bay, and Half Moon Bay.

<u>CONTENTS</u>

SUMM	IARY	· · · · · · · · · · · · · · · · · · ·
1.0	INTRO	DDUCTION
2.0	MATE	RIALS AND METHODS
	2.1	STUDY AREA DESCRIPTION
	2.2	STUDY OBJECTIVES AND EXPERIMENTAL DESIGN 2.1
	2.3	FIELD COLLECTIONS
		2.3.1 Sediment
		2.3.2 Crab
	2.4	CONTROL AND REFERENCE SEDIMENT COLLECTION AND HANDLING 2.9
	2.5	LABWARE PREPARATION
	1.	2.5.1 Glass, Plastic, Nytex, PVC, and Teflon 2.9
		2.5.2 Stainless Steel and Titanium 2.9
	2.6	LABORATORY EQUIPMENT AND INSTRUMENTATION 2.9
	2.7	SEDIMENT, ELUTRIATE, AND TISSUE SAMPLE PREPARATION 2.10
		2.7.1 Sediment Preparation
		2.7.2 Elutriate Preparation
		2.7.3 Tissue Preparation
	2.8	TOXICOLOGICAL TESTING PROCEDURES
		2.8.1 Microtox
		2.8.2 Amphipod
		2.8.3 Oyster Larvae
		2.8.4 Clam
	2.9	ANALYTICAL CHEMISTRY PROCEDURES
		2.9.1 Sediment and Tissue Dioxins/Furans 2.18
		2.9.2 Sediment and Elutriate Guaiacols/Organic Acids 2.2

		2.9.3 Tissue Lipids	2.22
		2.9.4 Total Organic Carbon	2.23
	2.10	QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES	2.23
		2.10.1 General Procedures	2.23
		2.10.2 Toxicological Tests	2.23
		2.10.3 Analytical Chemistry	2.26
	2.11	STATISTICAL DESIGN, DATA ANALYSIS, AND INTERPRETATION	2.28
		2.11.1 Randomization	2.28
		2.11.2 Methods	2.28
3.0	TOXI	COLOGICAL TESTING RESULTS	3.1
	3.1	MICROTOX	3.1
	3.2	AMPHIPOD	3.1
	3.3	OYSTER LARVAE	3.4
	3.4	30-DAY CLAM	3.6
	3.5	60-DAY CLAM	3.6
4.0	ANAL	YTICAL CHEMISTRY RESULTS	4.1
	4.1	SEDIMENT DIOXINS/FURANS AND TOTAL ORGANIC CARBON	4.1
	4.2	SEDIMENT AND ELUTRIATE GUAIACOLS/ORGANIC ACIDS	4.5
	4.3	30-DAY AND 60-DAY TISSUE DIOXIN/FURANS AND LIPIDS	4.7
	4.4	CRAB TISSUE DIOXINS/FURANS	4.11
5.0	DISC	CUSSION AND CONCLUSIONS	5.1
6.0	REFE	ERENCES	6.1
APPE	NDIX	A - SUMMARY INFORMATION FOR FIELD COLLECTIONS	A.1
APPE	NDIX	B - TOXICOLOGICAL TESTING DATA	B.1
APPE	NDIX	C - SEDIMENT AND ELUTRIATE CHEMISTRY DATA	C.1
APPE	NDIX	D - 30-DAY TISSUE CHEMISTRY DATA	D.1

vi

鹕

APPENDIX E -	60-DAY TISSUE CHEMISTRY DATA	•	•	•,	• •	•	•	•	•	•	•	•	• •	,	E.1
APPENDIX F -	CRAB TISSUE CHEMISTRY DATA .	•		•		• •	•	•	•	•	•	•	• .	•	F.1

FIGURES

2.1	Grays Harbor Study Area	2.2
2.2	Sampling Locations at Sequim Bay and West Beach	2.3
3.1	Results of Amphipod, Oyster Larvae, and Clam Toxicity Tests	3.3
4.1	TCDD, PeCDD, PeCDF, and Total Organic Carbon Concentrations in Sediment Samples Tested for Toxicological Response	4.4
4.2	Mean of Detected Values for 30- and 60-day Clam Tests and Summary of 30-day Tissue Lipid Tests	4.12

1

TABLES

2.1	Experimental Design for Toxicological and Analytical Chemistry Evaluations	2.4
3.1	Biological Survival Data Summary	3.2
4.1	Sediment Chemistry Data Summary	4.3
4.2	Concentrations of 2,3,7,8 TCDD; 2,3,4,7,8 PeCDF; and 1,2,3,7,8 PeCDD in Clam Tissues After 30- and 60-Day Exposures	4.9
4.3	Toxicity Equivalence Concentrations for 30- and 60-Day Clam Tissue Tests	4.11
4.4	Results of Crab Tissue Analysis	4.14
5.1	Summary of Toxicological and Chemical Evaluations of Grays Harbor Sediment Samples	5.2
5.2	Summary Results for Crab Tissue Dioxin/Furan Concentrations	5.4
A.1	Summary of Core Collections	A.1
A.2	Summary of Grab Sample Collections	A.3
B.1	Microtox Results	B.1
B.2	Amphipod Results	B.4
B.3	Oyster Results	B.7
B.4	30-Day Macoma Results	B.16
B.5	60-Day Macoma Results	B.18
B.6	Quality Assurance Summary for Toxicological Tests	B.20
C.1	Sediment Dioxin Results	C.1
C.2	Sediment Guaiacols/Organic Acids Results	С.8
C.3	Elutriate Guaiacols/Organic Acids Results	C.11
C.4	Sediment Total Organic Carbon Results	C.14
C.5	Quality Assurance for Sediment Dioxins	C.15
C.6	Quality Assurance for Sediment Guaiacols/Organic Acids	C.23
С.7	Quality Assurance for Elutriate Guaiacols/Organic Acids	C.25

i.		
		ŀ
C.8	Quality Assurance for Sediment Organic Carbon	C.2
D.1	Thirty-Day Tissue Dioxin Results	D.1
D.2	Thirty-Day Tissue Lipid Results	D.1
D.3	Quality Assurance for Dioxins and Lipids	D.2
E.1	Sixty-Day Tissue Dioxin/Furan Results	E.1
E.2	Sixty-Day Tissue Lipid Results	E.1
E.3	Quality Assurance for Dioxins and Lipids	E.1
F.1	Tissue Dioxin Results	F.1
F.2	Tissue Lipid Results	۶.6
F.3	Quality Assurance for Dioxin and Lipids	F.7
с. П		

1.0 INTRODUCTION

The Water Resources Development Act of 1986 (Public Law 99-662) authorized the Seattle District of the U.S. Army Corps of Engineers (USACE) to dredge Grays Harbor as part of the Grays Harbor Widening and Deepening Project. Subsequent to this authorization, concerns about potential dioxin/furan and guaiacol/organic acid contamination within the Chehalis River area arose. These concerns resulted in a requirement to evaluate the potential sediment concentrations, toxicity, and bioaccumulation of sediment-bound guaiacols/ organic acids, dioxins, and furans before dredging and disposal could begin.

The Battelle/Marine Sciences Laboratory (MSL) was requested by the USACE, Seattle District, to assist in planning the sediment toxicity evaluation and performing toxicity and bioaccumulation tests on sediment and sediment elutriates. Solid phase toxicity tests were conducted using the amphipod Rhepoxynius abronius and the clam Macoma nasuta. Sediment elutriate toxicity was evaluated in a 96-h D-cell test using larvae of the oyster Crassostrea gigas and a Microtox illumination test. Dioxin/furan bioaccumulation potential was evaluated by exposing the clam M. nasuta to sediments for 30 and 60 days. In addition, MSL coordinated the analysis of dioxin/furan levels in the tissues of the Dungeness crab Cancer magister. The MSL was also requested to perform or arrange for analysis of tissue samples for any bioaccumulated dioxin/furan contaminants, sediment concentrations of dioxin/ furans, and chemical analyses of sediments, and sediment elutriates for the concentrations of guaiacols/organic acids. In addition, the USACE requested that an optional leachate experiment be performed on selected sediments to determine which resin acids, guaiacols, and fatty acids were available for dissolution from selected sediment treatments.

This report discusses the results of biological and chemical testing conducted by MSL on sediment samples collected from the Grays Harbor area. Section 2.0 describes the materials and methods used in the tests. Section 3.0 presents toxicological testing results, and analytical chemistry results are presented in Section 4.0. A discussion of the results is provided in Section 5.0.

2.0 MATERIALS AND METHODS

2.1 STUDY AREA DESCRIPTION

The dredging project area includes areas in Grays Harbor and the Chehalis River, located in Grays Harbor County, Washington. The study area for this project extends from the outer portion of Crossover Reach to the city of Cosmopolis on the Chehalis River (Figure 2.1), and sampling locations included within 17 transect lines, approximately 1 nautical mile apart along the river. The 17 sampling locations were determined by the USACE. Transects extending across the Chehalis River were numbered from 1 to 16. Transect 1 was located in Crossover Channel, and transect 16 was located upstream of Cosmopolis. Station 17 was located near the WEYCO Outfall in the Hoquiam Reach (Figure 2.1). Most transects consisted of a sampling station on the south side of the river near the bank (A), a center channel sampling location (B), and a station on the northside of the river near the bank (C). Uncontaminated sediments were also collected from Sequim Bay and West Beach, Whidbey Island, Washington (Figure 2.2).

2.2 STUDY OBJECTIVES AND EXPERIMENTAL DESIGN

The experimental design for the analysis of sediments for this project is presented in Table 2.1. The objectives of this study were to evaluate the potential toxicity and biological effects of selected sediments from the Grays Harbor area before dredging and disposal could be considered. This was accomplished by performing toxicological tests using the phoxocephalid amphipod <u>R</u>. <u>abronius</u>, the larvae of the Pacific oyster <u>C</u>. <u>gigas</u>, and the clam <u>M</u>. <u>nasuta</u>, and the bacterium <u>Photobacterium phosphoreum</u> in a saline-extraction Microtox® test. Bioaccumulation potential was evaluated by exposing clams to sediment for 30- and 60-day periods and measuring tissues for dioxin/furan levels.

Analytical chemistry measurements were made on samples from individual sediment stations or sediment station composites, and on elutriate water and tissues. Dioxin/furans were measured in individual or sediment composites and in the tissues of clams exposed to sediments. Guaiacois/organic acids were

FIGURE 2.1. Grays Harbor Study Area

ĩ

באטר וווכווניםיו עכי ויסיווי ויסיו. 0vster 30-0ay 60-	Ovster 30-Day 60-	3Ø-Day 60-	60-	Day	Sediment	Tissue Dioxins/	Tissue	Sediment Guaiacols/	Elutriate Guaiacols/	Total Organic
<u>Amphipc</u>	밍	Uyster <u>Larvae</u>	Sø-vay Clam	Clam	Jeu illent Dioxins/Furans	Furans	Lipids	Organic Acids	Organic Acids	Carbon
					CV ^{(c)^CArchived}					
					J	-	,	2		>
> :		> :	ບ່	ပ ၊	ن ر	ں د	ິ່	> >	> >	• >
>		>	ر	د	• د	د	2	•	•	
					CV Archived					
					د		•			
					ى د	ı				
				Ċ	د	Ľ	ر	>	>	>
>		>	ບ ·	u		د.	د	•	•	•
² N		>	ပ	J	د د د د	U L	ပ	>	>	>
					د					
>		>	ပ	J	_{. ن} ن ن	сı I	υ ,	>	>	Ň
2		2	د	د	00	J	J	>	N	
>		>	د	′ د	rv Archived)	I			
>		>	J	υ	(g)	J	ບ :	7	>	>
					C CV Archived					
>		>	ပ	ບ ເ	ບບ	ں ،	പ	>	>	>
		•			ບບ				·	
					CV Archived	,		:	2	
>		>	J	J	ບບບ	ບ .	ن	>	-	•
				Ċ	ບ ເ	c	د	2	N	2
>		>	ں	ن	ں د	د	ر	-	•	
					CV Archived					

•

Experimental Design for Toxicological and Analytical Chemistry Evaluations

TABLE 2.1. (contd)

Total Organic <u>Carbon</u>	>	>	×	۸ ۸	> >	04	
Elutriate Guaiacols/ <u>Organic Acids</u>	٨	>	>	> >	> >		
Sediment Guaiacols/ <u>Organic Acids</u>	>	>	>	> >	>		· · · ·
Tissue <u>Lipids</u>	U I	J	ပ		J	D P Crab	Crab Crab Crab Crab
Tissue Dioxins/ <u>Furans</u>	J	J	ບ		U	D P Crab ^(g)	Crab Crab Crab Crab
Sediment Dioxins/Furans	ი ი ი	CV Archived C C X CV Archived	c c(b) cV Archived	C CV Archived C	CV Archived CV Archived C	ე ე ი ი	
6Ø-Day <u>Clam</u>	J	J	J		U	04	
3 0 -Day Clam	J	J	J		ن ن	04	
0yster <u>Larvae</u>	>	>	>	> >	>>	04	
Amphipod	>	>	N	> >	~ > >	0 4	
<u>Microtox</u>	>	>	>	v ^(c)	>>	D ^(e) P(f)	Śe
Sediment <u>Sample</u> (a)	11-C 11-A-C 12-A	12-B 12-C 12-A-C 13-A	13-C 13-A-C 14-A	14-C 14-D 14-A-C	15-8 16-8 16-C 17-A	17-B 17-C West Beach Sequim Bay South Bay	North Bay Buoy #3 Ocean off Grayland Half Moon B

A = sampling location on southern edge of the Chehalis River, B = center channel, C = northern edge of river, D = near pier; A-C = composite sample of A and C. (a)

C indicates sediment used in evaluation was collected with a vibra or dart core.

CV indicates sediment used in evaluation was collected with a vibra or dart core and/or a van Veen grab.

V indicates sediment used in evaluation was collected with a van Veen grab. (f)

D indicates sediment used in evaluation was collected with an amphipod dredge.

P indicates sediment used in evaluation was collected with a Ponar petite grab.

Crab were collected in crab pots.

measured in sediment composites and elutriate preparations from those sediment composites. Lipids were measured in clam tissues exposed to sediments, and organic carbon was measured in sediment. An additional study was conducted to evaluate the baseline dioxin/furan levels in the Dungeness crab living in and around the Grays Harbor study area.

2.3 FIELD COLLECTIONS

2.3.1 Sediment

Sediment samples were collected from 17 transects in the Grays Harbor area from July 31 to August 5, 1989, using either a 0.1-m^2 van Veen grab sampler, a 2.5-in. diameter vibracore device, or a 3.5-in. dart core. A total of 59 grab and 77 core samples were collected from 50 stations during this time, including 11 dart cores and 66 vibracores.

Once a sampling station was located, its position was marked with a buoy deployed from a survey vessel operated by the USACE. Water depth was determined with a calibrated fathometer, and this information was radioed to the barge where it was entered into the field log. Tidal corrections were applied aboard the barge to verify that the buoy was positioned correctly, and the barge then moved into position near the buoy to begin sampling. The crane positioned the sampler within 5 ft of the marker buoy. Grab samples were collected at all stations, and core samples were collected at all stations except Stations 15 and 16 and some center channel locations where water depth exceeded the vibracore barrel length, and dart core sampling failed. These included Stations 1B, 2B, 11B, and 13B. At these locations, a grab sample was collected.

Grab samples were collected with a 0.1-m^2 van Veen grab that was cleaned between uses with river water. Grab samples were obtained, and the sampler opened to view the sediment. If the sediment surface was disturbed, the sampler was leaking sediment, or a minimum of 4 cm of sediment was not collected, the sample was rejected, and another one was collected. Sediment from acceptable grab samples was characterized for texture, color, odor, and collection depth, then removed with a clean stainless steel spoon and placed in a labeled, solvent-rinsed 4-L glass jar equipped with a Teflon-lined cap. Each

jar was filled completely to minimize head space, sealed, and placed in a cooler containing ice. A storage temperature of 4°C was maintained in the field and laboratory until the sample was processed. Preparation of grab samples for testing and evaluation is discussed in Section 2.6.

Core samples were collected with either a 3.5-in.-diameter x 8-ft dart core or a 2.5-in.-diameter vibracore composed of 5-ft-long threaded pipe sections, which were coupled to produce a 50-ft pipe. Steam-cleaned cellulose acetate butyrate (CAB) liners were used in both devices. During the first 2 days of the field collections, dart cores were attempted first, because the dart core can collect a larger volume of sediment in less time than the vibracore and has been used successfully in other sampling studies. However, the nature of the Chehalis River bottom prevented obtaining many acceptable samples using the dart core. Modifications to the device were made, but did not improve the device's sampling efficiency. At stations where it was not possible to collect dart cores, the vibracore was used. Eventually, the dart core was completely abandoned, and only the van Veen grab and vibracore were used for sediment collections.

After core samples were brought aboard, the liner containing the sediment sample was removed from the core barrel, and one end was capped. The core was placed in a vertical position, the sediment length was measured, and excess liner was cut off the uncapped end just above the sediment level. This end was then capped, and a label was affixed to the side of the core that specified the station, collection date, and vertical orientation of the sample. Cores longer than 5 ft were cut into two sections, labeled, and described. All cores were stored in a chest freezer that maintained a storage temperature of 4°C. At the end of the cruise, the freezer was loaded onto a truck, and the cores were transported directly to MSL. Preparation of core samples for testing and evaluation is discussed in Section 2.7.

Sediments collected with the van Veen grab were analyzed for guaiacols/ organic acids and total organic carbon, and provided test sediment for the Microtox, amphipod, and oyster larvae tests. Sediments collected with the dart and vibracores were analyzed for dioxin/furans and provided test sediment for the clam toxicity and bioaccumulation tests. At most transects, the "A"

and "C" samples, representing the edges of the river basin were composited into a single sample for biological testing. Sediment dioxin/ furan analysis was conducted on "A," "B," and "C" stations, while guaiacols/ organic acids analysis was conducted on only the composites. On transects 2, 7, 16, and 17, chemical and biological samples were analyzed at only one location at each station (2A, 7C, 16C, and 17A). Core collection information is presented in Appendix A, Table A.1; grab sample collection information is summarized in Appendix A, Table A.2.

Sampling operations were conducted aboard a barge and tug supplied and crewed by personnel of Quigg Brothers, Inc., Aberdeen, Washington. This barge was equipped with a 60-ft crane, which was used to raise and lower sampling equipment. The scientific crew was composed of personnel from MSL; USACE, Seattle District; Beak Consultants; and one person from the USACE, Portland District, who operated the vibracore. Navigational support was provided by a laser positioning system operated by personnel from the USACE, Seattle District. During the sampling program, detailed field collection notes and chain-of-custody information was compiled by the MSL chief scientist. This information included the date and time for each collected sample; uncorrected water depths; grab sample descriptive characteristics (penetration depth, sediment type, odor, and color); core sample length; and other pertinent information.

2.3.2 Crab

Adult Dungeness crab, <u>C. magister</u>, were collected from five locations near the Grays Harbor sampling area, including three sites in the Chehalis River and two ocean sites. The crabs were collected at each site in crab pots set by either the USACE or the WDOF. Each crab was wrapped in aluminum foil, placed in a large ziplock bag, then placed on ice and delivered to MSL by USACE personnel within 24 h of collection. Even after the 24-h period, all crab arrived at the MSL alive, and the tissue was in good condition. Crab tissue sample processing is discussed in Section 2.7.3.

2.4 CONTROL AND REFERENCE SEDIMENT COLLECTION AND HANDLING

West Beach control sediment was collected from West Beach, Whidbey Island, by MSL staff on August 12, 1989. To collect the sediment, an MSLdesigned amphipod dredge was towed parallel to the shore in approximately 3 m of water, near the western edge of the island. The sediment was placed in clean coolers and immediately transported to MSL.

Reference sediment was collected in Sequim Bay on August 13, 1989, using a ponar petite grab. Collected sediment was placed in a clean 5-gal bucket, transported to MSL, and stored at 4°C until use.

2.5 LABWARE PREPARATION

2.5.1 Glass, Plastic, Nytex, PVC, and Teflon

All labware, including toxicity testing containers, was handwashed in warm, soapy (Liquinox) water. Washing was followed by five rinses with deionized water and dried in open air. Dry labware was then soaked in 5% nitric acid (HNO₃, Baker Instra-analyzed grade) for at least 4 h. This labware was then rinsed five times with deionized water, air dried, and stored in clean containers until use.

2.5.2 Stainless Steel and Titanium

Stainless steel and titanium implements were washed with warm, soapy (Liquinox) water, rinsed five times with deionized water, air dried, rinsed twice with methylene chloride, and dried under a vented laboratory hood.

2.6 LABORATORY EQUIPMENT AND INSTRUMENTATION

Temperature control was established using MSL's seawater boiler coupled to a YSI temperature controller. This controller moderated mixing of the warmed (28°C) seawater with colder (12°C) incoming seawater. Temperatures during the biological tests were recorded with Fisher Model 15-077-8 or Fluke Model 52 digital thermometers, which were calibrated monthly against an ErTco L-68397 laboratory standard thermometer at 20°C. Salinity was measured with Reichert Model 10419 refractometers, which were calibrated monthly to International Association of Physical Oceanographers (IAPO) standard seawater with a certified salinity of 35.000 o/oo and chlorinity of 19.377 o/oo. The pH was measured with Orion Model SA-250 pH meters and calibrated daily to standard pH buffers of 7 and 10. Dissolved oxygen was measured with YSI Model 57 dissolved oxygen meters, which were calibrated daily to 100% air saturation.

Test containers used during this study included 1-L glass jars for the oyster larvae and amphipod tests and 39-L glass aquaria for the bioaccumulation tests. Aeration to the test containers was supplied by 1-mL borosilicate glass pipettes. Microtox supplies included 250-mL Pyrex beakers, Microtox cuvettes, and various Eppendorf digital pipettors.

2.7 SEDIMENT, ELUTRIATE, AND TISSUE SAMPLE PREPARATION

2.7.1. Sediment Preparation

At most transects, grab and core samples collected from stations near the river bank (A and C) were composited into one sample for toxicological and analytical chemistry testing. These composites were produced by placing equal volumes of sediment from each station into a large stainless steel bowl, and stirring it with stainless steel utensils until texture and color was consistent (approximately 5 to 10 min). For grab samples, this was accomplished by removing the sediment from the glass storage jars; for core samples, this was done by carefully scoring the core liner on opposite sides longitudinally with a circular saw, then cutting completely through the core liner and sediment with a stainless steel knife, which produced two equal half-cores. Sediment was then removed from the center of each half-core, avoiding the edges of the liner. After compositing, aliquots were removed for analytical chemistry samples, the rest of the sediment was transferred to solvent-rinsed 4-L glass jars with Teflon-lined lids, and the samples were stored at 4°C. Where compositing was not required, the material was removed from the storage container as described and placed in a clean stainless bowl, where the sediment was mixed as described above to create a homogenous mixture. Sediment chemistry samples were removed, and these samples were also stored as described above. Sediment chemistry samples were stored in clean solvent-rinsed 1-L Qorpac jars with Teflon-lined lids and either frozen or stored at 4°C, depending on the

chemical analysis required. Dioxin/furan analysis was also conducted on each individual "A," "B," and "C" station, in addition to the A-C composites.

2.7.2 Elutriate Preparation

Elutriate samples were prepared for selected sediments or composites by adding one part sediment to 4 parts $0.45-\mu$ m-filtered Sequim Bay seawater volumetrically in a clean container, suspending all sediment by stirring vigorously, then placing the jar on a shaker table at 120-150 cycles per min for 30 min. After shaking, the mixture was allowed to settle for approximately 10 min; then, the supernatant was poured into 500-mL Teflon containers, placed in a centrifuge, and centrifuged for 10 min at 1750 RPM (740 g). The liquid portion was poured into a clean container, and the process was repeated until enough elutriate was collected for both the oyster larvae toxicological tests and resin acid chemistry tests. This procedure is consistent with protocols described in the Implementation Manual (USEPA/COE 1977).

2.7.3 <u>Tissue Preparation</u>

Three types of tissue samples were analyzed for dioxin/furan concentrations: tissue of the bioaccumulated clam and the hepatopancreas and muscle tissue of collected Dungeness crab. Clams were removed from an aquarium, immediately washed under clean seawater to remove external mud, and the tissue excised with clean titanium scalpels. The adductor muscles were cut, and tissue was scraped out of the shell into a prepared and labeled Qorpac jar. The jars were labeled by station. The jars were frozen and remained frozen until analysis was performed. Crab hepatopancreas tissue was obtained after pulling the legs off each crab and removing the carapace. The hepatopancreas was gently cut away from each crab and placed in a clean, labeled Qorpac jar. Stainless steel scalpels and scissors were used during this dissection. Muscle tissue was obtained by slitting the legs open with a scalpel or scissors, gently removing the tissue, and placing it in a clean Qorpac jar. Crab tissue was frozen immediately and remained frozen until analysis was performed. All tissue compositing was performed in the analytical testing laboratory (Twin City Testing, St. Paul, Minnesota) using approved procedures.

2.8 TOXICOLOGICAL TESTING PROCEDURES

2.8.1 Microtox

The Microtox bioassay was conducted following the saline extraction technique developed by Williams et al. (1986) and set forth in the Puget Sound Estuary Program Recommended Protocols (PSEP 1986). This technique calls for the preparation of a saline extract from 30 g of sample, followed by analysis of five concentrations of the extract (100%, 50%, 25%, 12.5%, and 0%). A Beckman Microtox Toxicity Analyzer Model 2055 was used to measure the change in bacterial luminescence over time, following the procedures in the Microtox System Operating Manual (Beckman Instruments 1982) developed by Bulich et al. (ASTM 1980). The viability of each batch of luminescent bacteria was assessed once or twice per day by exposing them to sodium arsenate, an established reference toxicant for Microtox (Williams et al. 1986).

The PSEP protocol was followed with the exception of three modifications. First, in preparing the saline extract, a 100-mL beaker was used for shaking the 30-g sediment sample with 10 mL of Microtox dilutent, instead of the 30-mL container called for by PSEP. Using the 100-mL beaker results in more thorough extraction of the water-soluble contaminants, as the large surface area of the beaker allows greater contact and agitation of the sediment and diluent than is possible in the 30-mL container. Second, during the Microtox analysis step, PSEP protocol calls for a measurement of initial luminescence (light output) before organisms are exposed to the extract and another measurement 15 min after organisms are exposed to the extract. The initial measurement was made before exposure, but light output was recorded at 5, 15, and 30 min after exposure. These additional measurements provide more temporal data on bacterial response to the extract over time than does the single 15-min reading. The third variation from PSEP was that a salinity calibration curve was not constructed for this test because Williams et al. (1986) reported that salinity-induced changes in luminescence were relatively small. The salinity of each extract was measured before analysis, and all measurements were within the 20 to 40 $^{\circ}/_{\circ\circ}$ optimum salinity range for light output of P. phosphoreum reported in the Microtox System Operating Manual (Beckman Instruments 1982). Data from the test were reported as the change in

2.12

and the second second

luminescence during each observation period. The EC50 calculations were made for the 15-min observation period to be consistent with Puget Sound Dredged Disposal Analysis (PSDDA) reporting requirements (PSDDA 1989).

2.8.2 Amphipod

2.8.2.1 Test Organism Collection and Care.

Amphipods were collected by MSL personnel from West Beach, Whidbey Island, using an infaunal dredge, on August 12, 1989. The West Beach sediments were sieved through a 1.0-mm screen to remove predators, and within 4 h of collection, the amphipods were transported to MSL in large tubs containing sieved native sediment and seawater. At MSL, the amphipods and sediment were transferred to holding tanks integrated into MSL's flow-through seawater 3ystem. The seawater temperature was increased gradually, over 24 h, from the West Beach ambient temperature of 9°C to a test temperature of 15°C. Daily water quality measurements of the holding tanks were taken. Animals were not fed before or during testing.

2.8.2.2 <u>Testing Procedures</u>

The amphipod static test was conducted in 1-L glass jars following protocols described in Swartz et al. (1985) and Puget Sound protocols (PSEP 1986). Nineteen stations were tested: 17 from the Grays Harbor area, a reference sediment from Sequim Bay, and a control sediment from West Beach. Each container was layered with 2 cm (100 mL) of sediment, and five replicate containers per station were tested. After adding the sediments, test containers were slowly filled to the 900-mL mark with filtered (0.45 μ m) Sequim Bay seawater. These 95 test containers were then arranged randomly on a water table containing a 15°C water bath. At test initiation, amphipods were sieved from the holding sediment, and 20 organisms were randomly placed in each test container.

Daily observations of the test containers included the number of amphipods on the sediment and water surfaces and the temperature, dissolved oxygen, pH, and salinity of the water in each container. Acceptable environmental conditions included a temperature of $15.0 \pm 1.0^{\circ}$ C, dissolved oxygen of \geq 4.0 mg/L, pH of ambient \pm 0.4, and salinity of ambient \pm 1.0 $^{\circ}/_{\circ\circ}$ during

daily observations. Any amphipods on the water surface were gently pushed into the water column using clean glass pipettes. No organisms were removed during testing. Amphipods were not supplied food other than that available from the test environment.

At the end of the 10-day exposure, test organisms were gently sieved from the test sediments through 0.5-mm Nytex screens and transformed to small finger bowls for determination of mortality. Death was defined as the absence of pleopod movement after stimulation with a glass probe.

2.8.3 Oyster Larvae

2.8.3.1 Test Organism Collection and Care

Oysters were obtained from Coast Oyster Company, Quilcene, Washington, on August 22, 1989. The organisms had been conditioned for a period of 4 to 6 weeks in 20°C seawater with a salinity of 26 °/oo and fed a mixture of algae to provide nutrition and hasten sexual maturity. Oysters were transported on moist paper towels in a cooler to MSL within 45 min of collection. At MSL, the organisms were placed in 26 °/oo seawater at 20°C in preparation for spawning.

2.8.3.2 Testing Procedures

The oyster larvae suspended particulate phase bioassay was conducted in 1-L glass jars generally following the procedures detailed in ASTM Method E724-80 (ASTM 1980). Sediment from the 17 Grays Harbor area stations, a West Beach reference, and a Sequim Bay control sediment were used to prepare the elutriate test media. In addition, a cadmium chloride ($CdCL_2$) reference toxicant was prepared.

Three replicates of four concentrations (0%, 10%, 50%, and 100%) of each station's elutriate were tested. Three replicates of each of the six cadmium chloride reference toxicant concentrations were tested. Test containers were placed randomly on two water tables maintaining 20°C water baths.

Oyster larvae used for the biological testing were obtained by laboratory-induced spawning. Twenty oysters were removed from the dry transport containers and placed in clean polypropylene tubs holding 26 °/00, 30°C

filtered offshore seawater. Water temperature was constantly monitored and maintained at ±2°C by periodically adding warm seawater to the tubs. Water was changed hourly by siphoning off the old seawater and gently pouring in new warm, salinity-adjusted seawater. This procedure prevented disturbing the oysters and minimized the disruption of the spawning process.

Spawning individuals were isolated in clean baking dishes containing warm seawater and allowed to continue to spawn in those dishes. Two males and two females spawned in this manner. When the organisms had finished spawn-ing, gametes were examined under a compound microscope to determine quality. The eggs of both females were normal and pear shaped, so they were combined in a clean 1-L glass jar and diluted with seawater. One of the two males had viable sperm. To fertilize the eggs, 15 mL of sperm suspension was added to 1-L of the egg suspension to yield 10^5 to 10^7 sperm/mL in the final mixture. This solution was then stirred with a perforated plunger every 15 min to assist mixing and thus increase fertilization success.

One hour after fertilization, the concentration of embryos in the embryo suspension was determined after mixing the solution gently with a perforated plunger, withdrawing a 0.5-mL sample, and creating a 1:100 dilution with seawater by counting on a Sedgwick-Rafter cell the number of embryos that had developed to the two-cell stage or beyond. An estimate of fertilization success was then recorded. This procedure was repeated, and a mean was determined. Based on this mean, the volume of embryo suspension to provide 15 to 30 embryos per milliliter in the test solutions was calculated at 740 μ L, and the appropriate volume of stock added to each container with an automatic pipette. The pipette had been calibrated before the test by weighing at least eight individual water delivery volumes to determine the coefficient of variation. If the coefficient of variation at the desired volume was less than 5%, the calibrated pipettor was used.

The test was initiated when test containers were stocked with the embryo suspension. After the embryos were added, the suspension in a randomly selected seawater control container was mixed, and a 10. mL sample was taken to estimate stocking density. This process was repeated for nine other containers, and a mean stocking density was estimated based on the 10 samples.

These samples were preserved with 5% buffered formalin in Tabeled polypropylene vials equipped with screw cap lids for later referral.

The temperature, dissolved oxygen, pH, and salinity were measured at initiation, and daily thereafter, including before termination. Acceptable environmental conditions included a test temperature of $20.0 \pm 2.0^{\circ}$ C, dissolved oxygen of ≥ 6.0 mg/L, pH of ambient \pm 0.5, and salinity of 27.0 \pm 1.0 $^{\circ}/_{\circ\circ}$.

Ninety-six hours after the beginning of the test, the solution in each test chamber was carefully mixed, and a 10-mL sample was immediately removed and preserved in 5% formalin. To concentrate the larvae for counting, the samples were centrifuged for 10 min at 1700 rpm (740 x g). The embryos and larvae in the samples were transferred by pipette to a Sedgwick-Rafter cell for counting. Because the volume of the cell is 1 mL, it was necessary to prepare and count several slides to enumerate all embryos and larvae in each sample. All embryos exhibiting cell division were counted. All larvae with completely developed shells containing soft tissues were counted as normal. Larvae with incomplete shells were scored abnormal. To eliminate potential investigator bias, all counting/scoring was done blind, i.e., without the investigator knowing which sample was being evaluated. As an additional quality assurance measure, 10% of all samples were rescored by a second investigator, and any differences of 10% or greater were reconciled.

2.8.4 Clam

2.8.4.1 Test Organism Collection and Care

Clams were obtained from Discovery Bay, Washington, on three different dates: 420 clams were received on August 1, 1989; 2150 on August 15, 1989; and 300 on August 16, 1989. Organisms were transported to MSL in clean coolers containing native seawater. At MSL, the organisms were placed in a clean holding tank integrated into MSL's flow-through seawater system at 15°C. Daily water quality measurements of the holding tanks were taken. Animals were not fed before or during the testing periods.

2.8.4.2 <u>Testing Procedures</u>

The clam bioaccumulation test was conducted in 38-L glass aquaria randomly positioned on four water tables that are integrated to the laboratory's flow-through seawater system. Aquaria were cured with the flow-through seawater for a minimum of 24 h before test initiation. Cured aquaria were drained so that approximately 3 cm of seawater remained standing in each aquaria. Test sediments were removed from 4°C storage, and approximately 2 L of each test sediment was spooned into each of five replicate aquaria and smoothed out over the bottom of the aquaria. Stand-pipes then were replaced to allow the aquaria to refill slowly. Sediment from 15 Grays Harbor-area stations, Sequim Bay, and West Beach were tested.

Salinity, dissolved oxygen, temperature, and pH were measured. Thirty clams were then added to each aquarium. Initial observations were taken on those aquaria in which the sediment had settled sufficiently; most aquaria were too turbid to observe initially. Water quality measurements and biological observations were conducted daily on one replicate of each treatment for the duration of the test. Observations recorded the number of siphons exposed and the number of organisms situated fully above the sediment. Dead individuals were defined as those whose shells were open and did not respond to gentle probing with a clean pipette. These individuals were removed from the aquaria.

After 30 days, replicates 1, 2, and 3 of each test sediment were terminated. After 60 days, replicates 4 and 5 were terminated. Termination involved removing organisms from the test sediment, washing them under flowing seawater to remove sediment from the shell, recording the number alive and dead, and excising the tissue of all live clams in an aquarium from the shells. Tissue dissection and related sample preparation is discussed in Section 2.7.3.

2.9 ANALYTICAL CHEMISTRY PROCEDURES

2.9.1 Sediment and Tissue Dioxin/Furans

Sediment and tissue dioxin/furan samples were analyzed by Twin City Testing Corporation, St. Paul, Minnesota, under the direction of Dr. Fred DeRoos and Ms. Barb Larka. Sediment samples were run using a modification of EPA Method 8290 (Tondeur 1987). The analysis steps and equipment used are summarized as provided to MSL by Twin City Testing.

2.9.1.2 Extraction Techniques

Each sediment and tissue sample was homogenized, and a portion of each sample was removed and spiked with $13C_{12}$ -labeled PCDD/PCDF internal standards at a concentration of 2 ng/Kg. Sample weights were approximately 5 g for sediment and 10 to 15 g wet weight for tissues. The samples were extracted with benzene for 18 h in a Soxhlet/Dean Stark extraction apparatus; then, the extracts were transferred to Kuderna Danish concentrators, concentrated, and the solvent exchanged to hexane. The hexane extracts were then spiked with the 2,3,7,8 -TCDD- 37 Cl₄ extraction efficiency standard, and processed through the analyte enrichment procedures described in the following subsection.

Relative efficiencies of the extraction step, the analyte enrichment step, and the gas chromatography/mass spectrometry (GC/MS) sensitivity are evaluated by comparing the three standards added at various points during the analysis. Quantitation, however, is based solely on the recoveries of the 13 C-labeled internal standards added before extraction.

2.9.1.3 Analyte Enrichment for PCDD/PCDF Analysis

The extraction procedure often removes a variety of compounds in addition to PCDDs and PCDFs. Some of these compounds can directly interfere with the analysis while others can overload the capillary column, causing a degradation in chromatographic resolution or sensitivity. The analyte enrichment steps described were used to reduce interference from the extracts.

The hexane extracts were concentrated to 1 mL and transferred to liquid chromatography columns containing alternate layers of silica gel, 44% concentrated sulfuric acid on silica gel, and 33% 1 m sodium hydroxide on silica gel. The columns were eluted with 60 mL of hexane, and each eluate was collected and concentrated under a gentle stream of dry nitrogen to a volume of 1 mL. The extracts were then fractionated on liquid chromatography columns containing 4 g of activated alumina. Then the columns were eluted with 10 mL of hexane followed by 7 mL of 2.0% methylene chloride/hexane and 25 mL of 60% methylene chloride in hexane. The 60% methylene chloride/hexane fractions were concentrated to 1 mL under a stream of dry nitrogen and applied to the tops of chromatography columns containing 1 g of 5% AX-21-activated carbon on silica gel. Each column was eluted with cyclohexane/methylene chloride (50:50 V/V) and cyclohexane/methanol/benzene (75:20:5 V/V) in the forward direction and then with benzene in the reverse direction. Each benzene fraction was collected, spiked with recovery standards (1,2,3,4-TCDD- $^{13}C_{12}$ and 1,2,3,7,8,9-HxCDD- $^{13}C_{12}$), and concentrated to a final volume of 20 μ L.

2.9.1.4 PCDD/PCDF Analysis

=

4

The extracts were analyzed for the presence of PCDDs and PCDFs using combined capillary column gas chromatography/high resolution mass spectrometry (HRGC/HRMS). (Throughout further discussion of dioxin/furans, the terms "PCDD" and "PCDF" denote "poly" substituted congeners. Specific references to penta-substitutions will be denoted by "Pe.") The instruments used included a Hewlett Packard Model 5890 gas chromatograph and a VG model 70SE highresolution mass spectrometer. The capillary column was interfaced directly into the ion source of the mass spectrometer, providing the highest possible sensitivity, while minimizing degradation of the chromatographic resolution. The mass spectrometer was operated in the electron impact ionization mode as a mass resolution of 10,000-11,000 (M/ M, 10% valley definition). This resolution is sufficient to resolve most interferences, such as PCBs, thus providing the highest level of confidence that the detected levels of PCDD/PCDF are not false positives resulting from interferences.

The data were acquired by selected-ion recording (SIR) monitoring of the groups of ion masses described in EPA Method 8290. The five groups corresponded to the tetra- through octa-chlorinated congener classes. Each group contained three ion masses for the PCDDs (with the exception of TCDD, which contained two ion masses), two ion masses for the PCDFs, the corresponding ion

masses from the two isotopically labeled internal standards, and the ion masses characteristic of the false responses in the dibenzofuran channels. The third PCDD ion mass monitored in the pentachloro- through octachlorodibenzo-p-dioxin groups prevented the possibility of misinterpretation of a PCB isomer as PCDD. Thus, when a third ion mass existed for a congener, it was used for confirmation only. The two ion masses monitored for TCDD also fulfilled this purpose.

Each group of ion masses also contained a lock mass that was monitored during the analysis to detect suppressive interferences. It is important to detect this type of interference, because it can cause the quantification of congener class levels to be artificially high if it occurs during the elution of an internal standard, or low if it occurs during the elution of the native analytes.

2.9.1.5 Quantification and Calculation

The PCDD/PCDF isomers were quantified by comparison of their responses to the responses of the labeled internal standards as described in EPA Method 8290 (Tondeur 1987). Relative response factors were calculated from analyses of standard mixtures containing representatives of each of the PCDD congener classes at five concentration levels and each of the internal standards at one concentration level. The PCDD/PCDF response factors were calculated by comparing the sum of the responses from the two ion masses monitored for each chlorine congener class and the sum of the responses from the two ion masses of the corresponding isotopically labeled internal standard. The third ion mass was used for confirmation only. Detection limits were based on producing a signal that is 2.5 times the noise level, and was calculated for each undetected 2,3,7,8 -substituted isomer of any tetra- through octa- chlorinated congener class. The noise heights used to calculate the detection limits were measured at the retention time of the specific isomer.

Concentrations for sediment samples were reported in dry weight, which was determined by subtracting the weight of water removed by the Soxhlet/Dean Stark extractor from the wet weight of the sample. Method blank values for sediment were based on 5-g sample weights, and matrix spike results were calculated on a per sample basis, with the values reported as total nanograms spiked and measured in each spike sample. Clean sand was used as the matrix for the spikes and blanks.

Concentrations for tissue samples were reported in wet weight. Method blank values for tissues were calculated based on sample weights of 10-15 g, approximating the quantities of actual samples extracted in each batch. The matrix spike results were calculated on a per sample basis, and the values were reported as total nanograms spiked and measured in each spike sample.

2.9.2 Sediment and Elutriate Guaiacols/Organic Acids

Sediment and elutriate water samples were analyzed for guaiacols/organic acids, fatty acids, guaiacols, and catechols by Analytical Resources Incorporated (ARI), Seattle, Washington. The MSL provided sediment samples and the prepared elutriate samples to ARI. Sample preparation methods are discussed in Section 2.7. Samples were analyzed using a procedure similar to the National Council of the Paper Industry for Air and Stream Improvement, Inc. (NCASI) Method (NCASI 1986). A summary of that method follows.

2.9.2.1 Extraction Techniques

Sediment samples were extracted with methylene chloride using a sonicator method without altering the sample pH. Dry weight sediment samples ranged from approximately 15-30 g. Water samples were extracted by allowing the elutriate water sample to equilibrate to room temperature; then, the sample was shaken to thoroughly resuspend any solids that may have settled during storage. A 250-mL aliquot was removed, and the sample was spiked with methanolic solution of the surrogate standard O-methyl podocarpic acid at a concentration of 50 μ g/L. The sample was transferred to a 500-mL separatory funnel and extracted with methylene chloride at a pH of 5 and again at a pH of less than 3. Extraction was accomplished by adding the sample and methylene to separatory funnel, vigorously shaking the sample for 1 min, then allowing the sample to settle for 15 to 20 min. The emulsions that formed were broken by centrifugation in screw-capped centrifuge tubes to minimize evaporation of the diethyl ether. The sediment and combined water extracts were concentrated

to about 3 mL, exchanged into acetone, concentrated to about 1 mL and derivatized as described below. Sediment matrix spikes were produced by adding $3200 \ \mu g/Kg$ of seven different guaiacols/organic acids to a sample; water matrix blanks were produced by adding 71 $\mu g/L$ of the same guaiacols/organic acids to water.

2.9.2.2 Derivatization

Derivatization was accomplished by adding 100 μ L of methanol, 5 mg KCO₃, and 50 μ L of d5 ethyl iodine to each extract, then heating the extracts at 80°C for 45 min. The derivatized acids were then analyzed by GC/MS as described below.

2.9.2.3 GC/MS Analysis

The GC/MS analysis was performed on an Incos 50 GC/MS/DS manufactured by the Finnigan Corporation. The component separation was accomplished with a 30-m x 0.25-mm i.d.-fused silica DB-5 column with a 0.25 μ m film thickness and helium as the carrier gas. The injection port temperature was 280°C, and the oven was programmed from 140°C after a 1-min hold at 4°C/min to a final temperature of 280°C. A splitless injection technique with a 30-sec purge activization delay was used for all injections. The MS operated in the repetitive scan mode, scanning from m/z 50 to 400 at a rate of 162.5 AMU/sec and using 70 eV electron impact ionization. The GC/MS was calibrated daily by first tuning the MS on perfluorotri-n-butylamine and then running a calibration standard using the conditions described above.

2.9.3 Tissue Lipids

The percent lipids in each sample was determined by the procedure described in EPA Method 8290 (Tondeur 1987). A portion (approximately 3 g) of each sample was accurately weighed, blended with sodium sulfate, and placed in a glass column. The column was rinsed with methylene chloride, and the extract was dried on a steam bath until a constant weight was obtained. The lipid content was calculated as:

the weight of the extraction residue x 100 the weight of the extracted tissue

2.9.4 Total Organic Carbon

Sediment total organic carbon was analyzed by Global Geochemistry Corporation, Canoga Park, California. Samples were analyzed using a nondispersive infrared measurement of carbon dioxide released from the organic carbon during combustion of the sediment. Inorganic carbonates were released from the sediment sample before combustion using hydrochloric acid. A Dohrmann DC-180 carbon analyzer was used to measure the released carbon dioxide. The method used is consistent with PSEP (PSEP 1986) and Standard Method 505 (Standard Methods 1975).

2.10 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

2.10.1 General Procedures

Quality assurance/quality control (QA/QC) procedures common to each toxicological test include:

- using Battelle Laboratory Record Books (LRBs) to record all information, calculations, daily monitoring, and results related to each test
- using standard forms to record observations and water quality measurements during a test
- using MSL Standard Operating Procedures MSL-1 through MSL-4 when calibrating water quality instruments
- verifying data entry quality by having a person not involved in the data entry check the accuracy of data against original data.

2.10.2 Toxicological Tests

2.10.2.1 Microtox

Quality assurance procedures related to Microtox include monitoring the response of blank and reference toxicant samples during the conduct of each test to ensure that the response is appropriate. Appropriate blank response is defined as an initial (time 0) luminescence of 80 to 100% (corrected), with less than 2% difference between duplicates during a run. Appropriate reference toxicant response includes a rapid decline of light output over time and with increasing concentration and a decrease in light output of at least 50% relative to blank. During Microtox testing, the operator monitors these

conditions relative to quality assurance and reruns any sample that fails to meet the above criteria. Microtox bacteria have a testing life of about 6 h and exhibit the described behavior near the end of their viable testing period. When the bacteria fail to respond acceptably, a new batch is reconstituted.

2.10.2.2 Amphipod

Quality assurance/quality control of the amphipod test includes inspection of the following data:

- survival in native West Beach control sediment of at least 90%
- test water temperature of $15^{\circ} \pm 1^{\circ}C$
- test water dissolved oxygen of \geq 4.0 mg/L
- test water pH of ambient \pm 0.4
- test water salinity of ambient $\pm 1.0^{\circ}/\circ\circ$.

Water quality data were examined and qualified for the test, and any parameters out of range for a jar or station were identified. Data were then compared to determine whether the water quality parameter might have influenced the amphipod survival in that sediment.

2.10.2.3 Oyster Larvae

A definitive test started with embryos of bivalve molluscs is usually considered unacceptable if one or more of the following occurred (ASTM 1980):

- All test chambers were not identical.
- Treatments were not randomly assigned to individual test chamber locations.
- A required dilution water or solvent control was not included in the test.
- All animals in the brood stock were not obtained from the same location.
- The test was begun with embryos more than 4 h after they were fertilized.

- Less than 70% of oyster embryos introduced into a required control treatment resulted in live larvae with completely developed shells at the end of the test.
- Dissolved oxygen and temperature were not measured as specified.
- Any measured dissolved oxygen concentration was not between 60 and 100% of saturation.
- The difference between the time-weighted average measured temperatures for any two test chambers from the beginning to the end of the test was greater than 1°C.
- Any single measured temperature in any test chamber was more than 3°C different from the mean of the time-weighted average measured temperatures for the individual test chambers.
- At any one time, the difference between the measured temperatures in any two test chambers was more than 2°C.

These criteria were examined at the end of the test, and data were qualified. If any of the above criteria were not met, data were compared to determine if survival was influenced by the factor.

2.10.2.4 Clam

Quality assurance related to the 30-day clam test involved inspection of the following data:

- survival in native Sequim Bay control sediment of at least 90%
- test water temperature of ambient ± 2°C
- test water dissolved oxygen of \geq 4.0 mg/L
- test water pH of ambient \pm 0.5
- test water salinity of ambient ± 1.0 °/00
- test water flow rate of 125 ± 10 mL/min.

For the 60-day exposure, the same water quality parameters pertained, although no control survival limits were set. These criteria were examined at the end of the test, and data were qualified. If any of the above criteria were not met, data were compared to determine if survival was influenced by the factor.

2.10.3 Analytical Chemistry

General quality assurance requirements for analytical chemistry data included the inspection and review of the following results:

- method blank analysis
- surrogate standard recovery
- matrix spike recoveries
- duplicate sample analysis
- relative percent difference in machine calibration variation (where appropriate)
- standard reference material (SRM) analysis (if available).

A summary follows of acceptable ranges for each of the above data for sediment and tissue dioxin/furans, sediment and elutriate guaiacols/organic acids, tissue lipids, and total organic carbon.

2.10.3.1 Sediment and Tissue Dioxin/Furans

The quality assurance requirements for this program were established for the sediment and tissue dioxin/furan data based on requirements of EPA Method 8290 (Tondeur 1987). Some of the quality assurance requirements include:

- daily GC performance checks RPD of calibration runs should not exceed 25%.
- analysis of one method blank per batch of samples Method blank must contain the sample amount of $^{13}\mathrm{C}_{12}$ -labeled internal standards that is added to samples before extraction.
- method blank results that exhibit no positive response Method blanks that contain any of the 2,3,7,8-substituted congeners except OCDD and OCDF that exceed 110% of the desired detection limit must be reported and may invalidate results and require automatic sample reruns.
- mass resolution check to demonstrate a static resolving power of 10,000 minimum - 10% valley definition
- method calibration limits definition
- a field blank (uncontaminated sample) contained in each batch of samples
- calculation of the concentration of 2,3,7,8-substituted PCDDs/PCDFs and the percent recovery of the internal standards - Percent recovery of 2,3,7,8-substituted PCDD/PCDF congeners should be 40 to 120%.
- duplicate analysis of one sample per each batch, with relative difference between duplicate results <25% Note: for this study, replicate samples or matrix spike duplicates were substituted because duplicate analysis, for they are a better indicator of precision and accuracy than duplicates.
- analysis of a matrix spike and matrix spike duplicates for each batch of samples - Matrix spike and matrix spike duplicate results must agree within 20% relative difference.
- for each sample, calculation of the percent recovery of internal standards Percent recovery should be between 40 and 120%, although high or low recovery does not necessarily invalidate the results.

2.10.3.2 Sediment and Elutriate Guaiacols/Organic Acids

Quality assurance requirements for analysis of sediment and elutriate guaiacols/organic acids are not directly discussed in the NCASI Method (NCASI 1986), although method validation studies are discussed. For the purposes of quality assurance, MSL's requirements for sediment and water resin acid analysis included:

- daily GC performance checks RPD of calibration runs should not exceed 25%.
- analysis of one method blank per batch of samples Method blank must contain the surrogate O-Methyl Podocapic acid (d5-Ethylester), added before extraction.
- method blank results that exhibit no positive response Detected compounds in method blanks may invalidate results and require automatic sample reruns.
- a field blank (uncontaminated sample) contained in each batch of samples
- duplicate analysis of one sample per each batch, with relative difference between duplicate results <25% - Note: for this study, replicate samples or matrix spike duplicates were substituted for duplicate analysis.

- analysis of a matrix spike and matrix spike duplicates for each batch of samples - Matrix spike and matrix spike duplicate results must agree within 20% relative difference.
- for each sample, calculation of the percent recovery of internal standards Percent recovery should be between 40 and 120%, although high or low recovery does not necessarily invalidate the results.

2.10.3.3 <u>Tissue Lipids</u>

Tissue lipid concentrations were determined during the analysis of tissues for dioxin/furans. General quality assurance guidelines pertaining to the sediment and tissue dioxin/furan analysis apply to the tissue lipids. For this analysis, duplicate sample analysis was performed on 10% of the samples and was expected to agree within 20% relative difference.

2.10.3.4 Total Organic Carbon

Total organic carbon quality assurance procedures were adapted from Standard Method 505 (Standard Methods 1975) and include:

- construction of a standard curve of inorganic and organic carbon based on known concentrations and serial dilutions
- use of low carbon content reagent water and reagents
- duplicate analysis of 10% of the samples.

2.11 STATISTICAL DESIGN, DATA ANALYSIS, AND INTERPRETATION

2.11.1 Randomization

All toxicological tests were conducted using completely random designs and blind coding. Organisms were randomly allocated to exposure containers, and exposure containers were randomly assigned positions on water tables. Separate random number tables were generated for each of the biological tests, using the discrete uniform random number generator available in Lotus 123.®

2.11.2 Methods

The purpose of the statistical analyses was to determine whether the results of each toxicological test produced stations that were statistically different from each other. If differences existed, statistical groupings were

a state of the second second

• • • • • • •

ана (р. <u>1</u>

constructed to determine which stations were similar and which were different from each other. For elutriate-type tests, it was necessary to determine what percent of the elutriate produced a 50% change in the measured parameter (i.e., an effective concentration or EC50). A discussion follows of the statistical methods used for the solid phase tests (amphipod, clams) and elutriate tests (Microtox, oyster larvae).

2.11.2.1 Amphipod and Clam Tests

Amphipod and clam toxicological tests were analyzed statistically for the proportion of test organisms surviving the exposure for each station. The data were first transformed by arcsine square root to stabilize the withinclass variances to meet the assumptions of analysis of variance (ANOVA). If ANOVA produced significant differences between stations (p = 0.05), a multiple comparison analysis was run using Tukey's Honestly Significantly Different (HSD) test for all possible comparisons (Steel and Torrie 1980). Tukey's HSD is a conservative multiple comparisons test that uses an experiment-wide error rate. Tukey's HSD thus provides more information about how each sediment treatment compares with every other one, as opposed to the more limited comparisons to a single control in Dunnet's t-test (Chew 1977). The analysis results in a grouping of stations (alphabetic) that are not significantly different from each other. Inspection of these groupings provides insight into which stations group with (or away from) control or reference stations.

2.11.2.2 Microtox and Oyster Larvae Tests

Microtox and oyster larvae tests are based on dilutions of elutriate that is produced from test sediment. Microtox results were analyzed on the Microtox data analysis program to determine if an effective concentration existed that reduced light output by 50% (EC50) at the 15-min observation period, as required by PSDDA. If enhanced illumination occurred in more than three of the four elutriate concentrations, EC50 calculation was calculated, as recommended in PSDDA.

In the oyster larvae test, the data were first transformed via arcsine square root to reduce within-class variance, then ANOVA was run on the proportion of the larvae that survived to normal D-stage in each station and at

each elutriate concentration to determine if stations were statistically different from each other. If a statistical difference existed, Tukey's HSD was used to determine station rankings and ultimately determine which stations belonged to a group that included control or reference stations. In addition, the EC50 concentration that produced a 50% decrease in normal D-stage larvae relative to seawater control was calculated for each applicable station.

3.0 TOXICOLOGICAL TESTING RESULTS

3.1 MICROTOX

Microtox toxicity testing was conducted on sediment from 17 stations or station composites from the Grays Harbor area and on uncontaminated sediment collected at West Beach and Sequim Bay. The summary results of this test are presented in Table 3.1, and data on individual Microtox samples are presented in Appendix B, Table B.1.

All quality assurance parameters associated with this test described in Section 2.10.2 were met. The results of reference toxicant performance presented in Appendix B, Table B.6, show that the bacterium's response to sodium arsenate at the 15-min observation period produced EC50s ranging from 7.7 to 18.9 mg/L (as arsenic). This is similar to past Microtox tests conducted at the MSL, although it is below the EC50 of 26 mg/L reported in the Beckman Manual (Beckman Instruments 1982). This suggests that this batch of bacteria is more sensitive than the batch referred to in the Beckman Manual.

The results of the Microtox analysis show enhancement, rather than decrease, in illumination after exposure to sediment elutriates in nearly all the test stations during the 15-min observation period (Appendix B, Table B.1). A definite trend toward decreasing illumination was observed in only one sample (2A) during the 15-min observation. However, none of the decreases were significant enough to calculate an EC50, as noted in Table 3.1. Results indicate that none of the stations from the Grays Harbor area, Sequim Bay, or West Beach resulted in a 50% decrease in light output at the 15-min observation period.

3.2 AMPHIPOD

Toxicological tests were conducted with the amphipod on sediment from 17 stations or station composites from the Grays Harbor area and on uncontaminated sediment collected from Sequim Bay and West Beach. The results of these tests are presented in Table 3.1 and Figure 3.1. Data on individual replicates may be found in Appendix B, Table B.2.

			Cla	1m		
Sediment	Microtox	Amphipod	<u>% Survi</u>	val	<u> </u>	Larvae
Sample	<u>(15 min)</u>	<u>(% Survival)</u>	<u>(30 d)</u>	<u>(60 d)</u>	<u>% Normal(a</u>	, <u>EC50</u>
1-4-0	(b)	86	85	67	92	627 65 3
2-1		80	88	79	53(c)	28% (d)
3_1/_0		85	00	85	62	57% (d)
		05	00	00	96	J/% * /
4-A-C		90	90	00	00	
5-A-C		80	97	95	90	
6-A-C		/8	97	90	85	
7-C		89	99	89	87	
8-A-C		93	93	93	90	
9-A-C		92	96	88	81	
10-A-C		88	98	91	85	
11-A-C		84	94	98	82	···· / / \
12-A-C	~ ~	91	96	87	63	6′ئ% (₫)
13-A-C		88	97	82	75	
14-A-C		85	94	.88	80	
15-A-C		88	(ē)	(ĕ)	49(c)	19% (d)
16-0		87	(e)	(e)	92	
17 - Δ		79	100	82	ãã	
West Reach		96	200	78	02	
Socuim Bay		90	90	70	88	
Sequini bay		07	90	70	00	
Conclusions(e)	NS(f)	NS	NS	NS	2,15 S	2,3,12,15 S

TABLE 3.1. Biological Survival Data Summary

Mean survival to normal-D over all dilutions.

(a) (b) EC50 for decreased light illumination not appropriate - light did not increase in all cases.

(c) Statistically different from West Beach control, but not from Sequim Bay reference.

Suspended particulate phase concentration calculated to provide 50% (d) decrease in survival to normal.

Toxicity/bioaccumulation was not performed on sediment from Stations (e) 15 and 16.

(f) NS is not significant; S is significant at p = 0.05.

FIGURE 3.1. Results of (a) Amphipod, (b) Oyster Larvae, and (c) Clam Toxicity Tests (WB = West Beach; SB = Sequim Bay)

Quality assurance parameters described in Section 2.10.2 were met during this test for control survival (96% in West Beach) and dissolved oxygen. Quality assurance parameters were exceeded for temperature, pH, and salinity. Temperature exceeded the upper limit of 16°C by approximately 2°C in some test containers. However, this was a short-term occurrence and did not appear to affect survival in either control or test containers. Further, Swartz et al. (1985) have reported high survivals at temperatures of 19°C and indicate that 15°C is not close to the upper thermal limit for this species. The variation in pH was probably a result of individual sediment characteristics, and the range reported in Appendix B, Table B.6, is the experiment-wide range. The range within replicate test containers was very consistent. Salinity ranges reported in Appendix B, Table B.6, are also experiment wide, encompassing the effect of less saline river sediments compared with estuarine sediments such as those from Sequim Bay and West Beach. Again, variation between replicate test containers was within acceptable limits during the test. Acceptable survival in salinities of 25 $^{\circ}/_{\infty}$ are reported by Swartz et al. (1985). The results of these quality assurance checks indicate our test was not compromised by water quality and is therefore valid.

The results of the amphipod test presented in Table 3.1 show that survival ranged from 78 to 96% in the West Beach control sediment. The ANOVA of the arcsine square root of the proportion surviving indicated no significant differences between stations (p = 0.05). These data indicate that no significant differences existed among sediments from the Grays Harbor area, Sequim Bay, and West Beach stations, or station composites, relative to amphipod survival, and thus, no significant toxicological effects were apparent.

3.3. OYSTER LARVAE

A 96-h oyster larvae test was conducted on sediment from 17 stations, or station composites, from the Grays Harbor area and on uncontaminated sediment collected from Sequim Bay and West Beach. The results of the test are summarized for all dilutions in Table 3.1 and Figure 3.1. Data on individual replicates of each dilution are presented in Appendix B, Table B.3.

The quality assurance parameters summarized in Section 2.10.2 were met during the oyster test for percent survival in control, temperature, dissolved oxygen, and pH, but the salinity in some containers reached $25.0 \, \circ/_{\infty}$, which is below the minimum acceptable level of $26.0 \, \circ/_{\infty}$. This was likely a result of low interstitial water salinity in some of the river sediments collected in the Grays Harbor area (Appendix B, Table B.6). The salinity range was consistent within replicate containers, however, and larval survival was not affected by these conditions. Reported EC50 to the reference toxicant cadmium chloride was 1.9 mg/L. This compared well with past oyster larvae studies conducted at MSL. These data are therefore considered valid.

Summary results presented in Table 3.1 and Figure 3.1 show that the mean percent of larvae surviving to normal D-shape in all dilutions of each sediment treatment ranged from 49% in the sediment elutriate from Station composite 15A-C to 99% in Station 17A. West Beach and Sequim Bay elutriates produced 92 and 88% survival, respectively. Data in Appendix B, Table B.3, show that normal D-shape survival in seawater-only controls (run for each station) ranged between 84 and 100%, with the exception of the seawater control for Station 17A, where only 50% survival to normal was recorded. The results of this seawater control were considered to be anomalous and were not used in data analysis.

Analysis of variance (ANOVA) on the proportion of normal larvae indicated that Stations 2A and 15AC were statistically different from the West Beach control, but not significantly different from Sequim Bay. An EC50 was calculated at Stations 2A, 3AC, 12AC, and 15AC for the percent elutriate needed to produce a 50% decrease in survival to normal-D. These data are reported in Table 3.1 and show that the EC50 ranged from 19% at Station 15AC to 68% at Station 12AC. These data indicate that elutriates of four Grays Harbor station composites were capable of producing a 50% decrease in oyster larvae survival to the normal-D stage of development, but the concentration of elutriate necessary to produce this effect would not likely occur during dredged material disposal situations, based on USACE calculations of mixing and dilution (Wakeman 1989).

3.4. <u>30-DAY CLAM</u>

A 30-day toxicity/bioaccumulation test was conducted using clams. Sediment from 15 stations, or station composites, from the Grays Harbor area were evaluated, along with uncontaminated sediment from West Beach and Sequim Bay. The original experimental design included 5 replicate containers per station for the 30-day test. However, pursuant to instructions from the USACE, three replicates were analyzed at 30 days, while the remaining two replicates were analyzed at 60 days as described in Section 3.5. Concern was expressed that maximum contaminant uptake would not be manifest over the 30-day test period. Thus, the data presented in Table 3.1 and Appendix B, Table B.4, reflect three replicate exposures per station rather than 5.

Quality assurance parameters outlined in Section 2.10.2 were met for control survival (98% in Sequim Bay), water temperature, and dissolved oxygen. Water quality limits were exceeded for pH and salinity. The pH and salinity deviations occurred over a relatively long period of time and are probably the result of the long-term nature of the exposure. High survival for all stations, however, suggests that these deviations had little effect on the test results, and that these data are therefore considered valid.

The summary results for the 30-day clam exposures are presented in Table 3.1 and Figure 3.1. They show that survival at all stations was $\geq 85\%$ and usually above 90%. The ANOVA of the transformed survival data indicated no significant differences existed between stations (p = 0.05).

3.5. <u>60-DAY_CLAM</u>

The 60-day clam experiment was an extension of the 30-day exposure described above. Two of the five replicates for each station were used in this test. Summary results are presented in Table 3.1 and Figure 3.1, and individual data for each replicate is presented in Appendix B, Table B.5.

The quality assurance parameters discussed in Section 2.10.2 were met for water temperature, dissolved oxygen, and salinity, but were not met for pH (Appendix B, Table B.6). The reported range for pH was experiment wide, and the variation between replicate containers was within acceptable ranges. No quality assurance parameters are available for survival in the 60-day test. However, given the relatively high survival of clams in sediment from most stations relative to the control, the results of this test are considered valid.

The 60-day summary data for clams presented in Table 3.1 and Figure 3.1 show a range of survival from 67% (Station 1AC) to 98% in Station 11AC. Five of the 17 stations exhibited survival of \geq 90%, and 13 of the 17 stations exhibited survival of \geq 80%. The ANOVA of the transformed data indicated no significant differences between stations (p = 0.05). In 15 of the 17 stations, mortality increased from 2 to 28% compared with the 30-day results. At one station (8A-C), no change in mortality occurred from 30 to 60 days, and at another station (11A-C), a 4% improvement in survival occurred for the two containers over the 60-day period compared with the three containers over the 30-day period. These data indicate that after 60 days of exposure to sediment from stations, or station composites, from the Grays Harbor area, a decrease in survival is apparent compared with 30-day data. No significant difference between the Grays Harbor sediments and the uncontaminated sediment collected from Sequim Bay and West Beach during the 60-day exposure is apparent.

4.0 ANALYTICAL CHEMISTRY RESULTS

4.1 SEDIMENT DIOXIN/FURANS AND TOTAL ORGANIC CARBON

The concentration of dioxin/furans was measured in 48 sediment samples from the Grays Harbor area and in uncontaminated reference sediment samples from West Beach and Sequim Bay. Total organic carbon was measured in sediment from 17 samples, including 15 Grays Harbor samples and samples from West Beach and Sequim Bay. Summary information for the sediment samples from the station or station composites that were tested are presented in Table 4.1. Data from all analyses are presented in Appendix C, Tables C.1 and C.4.

Quality assurance summary information has been compiled for these analyses and is presented in Appendix C, Table C.5 (dioxins/furans) and Table C.8 (total organic carbon). Quality assurance requirements summarized in Section 2.9.3 were generally met for these analyses. Our target detection limit for 2,3,7,8 TCDD was 1.0 ng/Kg. Actual detection limits for 2,3,7,8 TCDD were generally between 1 and 3 ng/Kg, although in some sediment samples, it reached 6 ng/Kg. The higher detection limits were probably a result of suppression or interference of the ion beam by some compound present in the sediment. This occurrence was noted in a few individual samples, but should not raise concern about the extraction methodology or machine performance. The acceptable limit for instrument calibration variation is 25%. The measured calibration ranged between 1 to 10%, with an average of about 5%, and is within acceptable limits. Acceptable method blanks exhibit 2,3,7,8 substituted congeners of ≤110% of the desirable detection limit. The method blank data presented in Appendix C, Table C.5 shows that only one of the nine blanks indicated the presence of 2,3,7,8 TCDD (at 0.39 ng/kg dry). This is essentially the detection limit. The PCDF or PCDD congeners were present in two blanks at levels of less than 1.0 ng/kg; non-total HCDF or HCDD congeners were present in 5 of 9 blanks at levels of less than 1.0 ng/kg; and non-total HCDF or HCDD congeners were present in most blanks at concentrations ranging from 0.45 to 3.9 ng/kg. The presence of OCDF or OCDD was detected in all method blanks at concentrations no greater than 31 ng/kg. These detected isomers do not represent 110% of the desirable detection limit, but their presence in method

blanks should be noted when evaluating the data, as the sediment concentrations have not been blank corrected. The presence of OCDF and OCDD in method blanks is not considered a problem according to EPA 8290 Method (USEPA 1988) because of their ubiquitous nature. Acceptable matrix spikes must show a percent recovery of 40-120%. Evaluation of four matrix spikes presented in Appendix C, Table C.5 shows that percent recovery was generally about 90% for all isomers, with only one isomer in one spike less than 80%, and only four isomers in one spike greater than 120%. Surrogate recoveries were calculated for all sediment samples and ranged from 41 to 134%, which is slightly above the acceptable range of 40 to 120%. On the basis of the quality assurance data presented, these data were viewed as acceptable for use and interpretation when interpreting suspected dioxin/furan contamination in Grays Harbor area sediments. Quality assurance summary information for sediment total organic carbon data indicates acceptable analytical precision based on comparison of duplicate analysis results on two samples.

Table 4.1 summarizes the dioxin/furan concentrations for 2,3,7,8 TCDD, total TCDD, 12378 PeCDD, and 2,3,4,7,8 PeCDF observed in samples that were also used for toxicological tests. These isomers were chosen for closer examination because of their relatively high toxicity, based on EPA's toxicity equivalence factors (TEFs) (USEPA 1988). The dioxin/furan concentrations for all isomers from the remaining samples are presented in Appendix C, Table C.1. In the 17 samples tested for toxicological response, 2,3,7,8 TCDD concentrations were nondetectable in 12 of the 15 samples and ranged from 0.7 to 2.9 ng/kg in the remaining four samples. Total TCDD was nondetectable in 9 of 15 samples and ranged from 1.9 to 9.5 in the remaining 6 samples. 1,2,3,7,8 PeCDD was present in 13 of 15 samples at concentrations of 0.43 to 4.0 ng/kg, and 2,3,4,7,8 PeCDF was present in only 4 of 15 samples at concentrations of 0.48 to 3.1 ng/kg. The highest concentrations of these isomers were found in sediment samples from Stations 11A-C and 13A-C, which are located in the Aberdeen Reach-Elliott Slough region of Grays Harbor. Figure 4.1 presents the values of TCDD and PeCDD compared with observed total organic carbon concentrations. This figure shows that the highest concentration of the isomers is in sediment with organic carbon levels exceeding

Summary
Data
Chemistry
Sediment
4.1.
TABLE

;

4

anic Acids	Elutriate (g/L)	of Detected (c)	ġ	PE	pu	'nġ	pu	pa	nd	'nđ	pu	pq	nđ	pq	pq	pq	pq	pa	pq	g	nđ
Gua i aco ls/0rg	Sediment (g/kg)	of <u>Betected</u> (b)		498	353	432	658	1882	252	1136	1823	538	1342	36	879	1896	700	151	N/A	868	69.86
	2,3,4,7,8	PecDF	nd (.32)	g .48	nd (g.17)	nd (1.3)	nd (.57)	nd (.5)	nd (1.1)	nd (g .83)	nd (8.7)	nd (1.3)	3.1	B .27	nd (9.74)	nd (g.75)	N/A	N/A	nd (#.73)	nd (8.69)	B.72
(ng/kg drv wt)	1,2,3,7,8	PeCDD	B .43	1.2	B. 55	nd (2.8)	g _96	1.2	2-8	2.1	nd (3.5)	nd (2.6)	4.0	<u>8</u> .74	2.5	1.3	N/A	N/A	1.6	nd (9.64)	g .95
ioxins/Furans		1CD0	2.4	4.0	nd (2.1)	nd (6.1)	nd (3.2)	nd (1.8)	nd (3.6)	5.1	nd (9.2)	nd (4.1)	9.5	2.0 (1.8)	4.5	nd (5.2)	N/A	N/A	7.4	() pu	1.9
		2,3,7,8 TCDD ^(a)	nd (g .87)	0.7	nd (2.1)	nd (6.1)	nd (3.2)	nd (1.8)	rd (3.6)	1.5	nd (9.2)	nd (4.1)	2.9	nd (1.8)	2.1	nd (5.2)	N/A	N/A	1.7	nd (2.3)	nd (2.6)
	TOC	(% dry wt)	0.41	1.30	Ø.87	1.13	1.92	1.22	1.96	2.13	1.30	1.63	2.21	1.56	1.88	1.71	N/A(d)	N/A	2.28	B.B 6	2.03
	Sediment	Samp le	1 A-C	2 A	3 A-C	4 A-C	5 A-C	6 A-C	7 C	8 A-C	9 A-C	10 A-C	11 A-C	12 A-C	13 A-C	14 A-C	15 A-C	16 C	17 A	West Beach	Sequim Bay

.

r"

4.3

•

⁽a) Nondetectable; detection limit is included in parenthesis.
(b) Detection limit = 30-400 g/kg.
(c) Detection limit = 1-5 g/L.
(d) Analyses not performed.

FIGURE 4.1. (a) TCDD, (b) PeCDD and (c) PeCDF, and Total Organic Carbon Concentrations in Sediment Samples Tested for Toxicological Response

1.5%. The results of the other sediment samples tested for dioxin/furan, but not evaluated toxicologically, are presented in Appendix C, Table C.1. These data show levels of 2,3,7,8 TCDD below 2.0 ng/kg at Stations 2A, 8C, 11A, and 17A, and at levels of between 2 and 3 ng/kg at Stations 8A, 8B, 11C, and 13C. 2,3,7,8 TCDD was nondetectable at the remaining stations. PeCDF and PeCDD followed a similar pattern with detectable concentrations above 1.0 ng/kg occurring at Stations 2A, 5C, 8, 9C, 10, 11, 13, 14, and 17.

4.2 SEDIMENT AND ELUTRIATE GUAIACOLS/ORGANIC ACIDS

Sediment and elutriate guaiacols/organic acids were measured in 19 samples, including 17 Grays Harbor samples and samples from West Beach and Sequim Bay. Table 4.1 summarizes data for the total detected guaiacols/organic acids found in each sediment and elutriate sample. The concentrations for each measured compound in sediment and elutriate samples are presented in Appendix C, Tables C.2 and C.3, respectively.

Quality assurance parameters for sediment gualacol/organic acids are summarized in Appendix C, Table C.6. Acceptable instrument calibration is \leq 25%, and the actual calibration produced a relative standard difference of \leq 25%. Our target detection limit of 50 μ g/kg was generally met, although in some samples, the detection limit was 400 μ g/kg. No compounds were detected in the method blanks with the exception of almitoleic, linolenic, oleic, and stearic acid in the West Beach method blanks for matrix and matrix spike duplicates. Acceptable matrix spike and duplicate matrix spike recoveries of 40-120% were met, as recoveries were above 80% for most spiked compounds. Recoveries were low for neoabietic acid at 1.6% for the matrix spike, and 22.7% for the matrix spike duplicate. This is not surprising, because a rapid loss of neoabietic acid in preserved samples (pH 2) has been documented, along with a concurrent increase in abietic acid (NCASI 1986). This is caused by acid-catalyzed isomerization and is present in samples preserved for as few as 7 days. Abietic acid was not measured in the spikes for this project, but method validation data provided to MSL by ARI, Inc. showed a 44% recovery for neoabeitic acid and an accompanying 179% recovery for abietic acid spiked into water, confirming the documented loss and gain of these acids. The relative

percent difference in matrix spike duplicates was 13% or less in all matrix spike compounds, except for the neoabietic acid spike. Appendix C, Table C.2 shows that in all samples, the recovery of the surrogate O-methyl podocaprate acid was within the 40 to 120% stipulated in the quality assurance guidelines in Section 2.9.3. These results allow us to qualify the sediment guaiacol/organic acid data as acceptable for use in analysis.

Quality assurance data related to the elutriate guaiacols/organic acid data is presented in Appendix C, Table C.7. Instrument calibration produced an acceptable relative standard difference of ≤25%, and no compounds were detected in the method blanks with the exception of almitoleic, linolenic, oleic, and stearic acid in the West Beach method blanks for matrix and matrix spike duplicates. These compounds were detected at levels of less than 10 μ g/L. Our target detection limit of 10 μ g/L was met, with actual detection limits of 1 to 5 μ g/L. Matrix spike and matrix spike duplicate recoveries ranged from 38 to 106%, excluding neoabietic acid. Neoabietic acid recoveries were zero in both the matrix spike and matrix spike duplicate because of the reasons discussed above. The relative percent difference between the matrix spike and matrix spike duplicate was less than 20%, except for 4-chlorogualacol, where a 30% RPD was noted. Acceptable RPD is 20% or less. Appendix C, Table C.3, shows that the recovery of the surrogate O-methyl podocaprate acid in all samples was within the acceptable range of 40 to 120% indicated in the quality assurance guidelines discussed in Section 2.9.3. These results allow qualification of the sediment gualacols/organic acids data as acceptable for use in analysis.

The summary results of total detected guaiacols/organic acids found in each sediment and elutriate sample are presented in Table 4.1. They show a range of concentrations from nondetectable to 6900 μ g/kg in sediment and nondetectable concentrations in all of the elutriate water preparations. The Grays Harbor-area sediment samples generally contained less than 1000 μ g/kg, except in samples from Stations 8A-C, 11A-C, and 14A-C. The highest concentration of guaiacols/organic acids was found in Sequim Bay sediment. These data indicate that guaiacols/organic acids concentrations in Grays Harbor sediment samples are similar to the uncontaminated West Beach sample and are much

lower than the Sequim Bay sample. Little transport of acids to water is possible, given the nondetectable results in the elutriate samples. It was also observed that the color of the elutriate water was not extractable with the present technique.

4.3 <u>30-DAY AND 60-DAY TISSUE DIOXINS/FURANS AND LIPIDS</u>

The 30- and 60-day bioaccumulation studies were conducted by exposing the clams to 15 sediment samples from the Grays Harbor area and uncontaminated reference sediment from Sequim Bay and West Beach. After exposures, the tissue of all living clams in a test aquaria were dissected and composited into a single sample for dioxin/furan analysis. Background dioxin/furan levels in clam tissue were determined by randomly removing 30 clams from the shipment, dissecting the tissue, and analyzing a composite of that tissue. The results of that analysis are presented in Appendix D, Table D.1 and show that the only dioxin/furans present in the background tissue sample were very low levels of TCDF, HpCDF, HpCDD, OCDF, and OCDD. All tissue data (or calculation based on tissue concentrations) presented reflect a background correction of 0.0744 ng/kg TEC (for detected values). This represents approximately 19% of the mean TEC for all tissues of clams that were exposed for 30 days to sediment from those stations (mean of detected values), and approximately 8% of the highest TEC recorded in the 30-day tissues as the mean of the detected values. The background sample contained only 2,3,7,8 TCDF (0.35 ng/kg); 1,2,3,4,6,7,8 HpCDF (0.53 ng/kg); 1,2,3,4,6,7,8 HpCDD (1.6 ng/kg); OCDF (1.10 ng/kg); and OCDD (17.00 ng/kg), all as wet weights.

The quality assurance summary for the 30-day tissue data is presented in Appendix D, Table D.2. Associated tissue lipid data are presented in Appendix D, Table D.3. Instrument calibration variation was within the accepted limit of 25% and ranged between 1 and 10%, with a mean of about 5%. Our target detection limit of 1.0 ng/kg was met, because the detection limit for each isomer was below 1.0 ng/kg (wet wt). The five method blanks for the 30-day tissue analysis indicated the presence of PeCDF in one blank, HXCDF in most blanks, HxCDD in one blank, HpCDF in one blank, and OCDF and OCDD in all blanks. The levels of these congeners were generally below 0.5 ng/kg, except

for the OCDF and OCDD congeners, where levels of 1 to 2 ng/kg were noted. These levels are extremely low and are not indicative of method blank contamination (EPA Method 8290). Acceptable matrix spike recovery levels of 40-120% were generally met, as the 5 matrix spikes run for the 30-day tissue data produced recoveries ranging from 80-125%. Surrogate recovery data presented in Appendix D, Table D.3 show that most surrogate recoveries were within the acceptable range of 40-120%, except for a 20% recovery of 1,2,3,7,8 PeCDD-C13 in tissue from clams exposed to Station 4 sediment, and recoveries of some isomers in excess of 120% in one replicate of sediment from Stations 8, 12, 14, and West Beach. These data are considered valid based on the low frequency of isomers where recovery ranges were not met. Quality assurance associated with tissue lipid data was evaluated through the RPD between duplicate samples in six samples. The RPD level for lipids ranged from 3.1 to 66.7% in the six samples duplicated (Appendix D, Table D.2). These data, therefore, are conditionally qualified as acceptable for use, but an attempt will be made to determine the reason for the high RPDs in some of the samples.

The quality assurance summary for 60-day tissue dioxins/furans and lipid data are approximately 80% complete. These data will be presented, and a complete quality assurance review will be conducted when all data are available.

The results of the 30- and 60-day bioaccumulation tests are presented in Table 4.2 for 2,3,7,8 TCDD; 2,3,4,7,8 PeCDF; and 1,2,3,7,8 PeCDD congeners. These congeners were chosen for further consideration because they are considered the most toxic forms of dioxin, based on toxicity equivalance factors (USEPA 1988). Dioxin/furan concentrations for all congeners are presented in Appendix D, Table D.1. These summary results show that the three most toxic isomers were nondetectable in the majority of tissue samples. 2,3,7,8 TCDD was detected in only one replicate 30-day tissue sample (Rep. 1 of 5A-C). The levels of 2,3,7,8 TCDD were less than 0.50 ng/kg and are essentially at detection limit. 2,3,4,7,8 PeCDF occurred in a number of 30-day tissue samples, but all except one (11A-C) were below 0.50 ng/kg. 1,2,3,7,8 PeCDD was detected in only three tissue samples, and all except replicate 1 at Station

ų.

Concentrations of 2,3,7,8 TCDD; 2,3,4,7,8 PeCDF; and 1,2,3,7,8 PeCDD in Clam Tissues After 30-and 60-Day Exposures (background corrected) **TABLE 4.2**.

							•								
	2,3	,7,8 TC	00	2,3,7,8 i 60-Dav Evr	TCDD	2,3,4 30-Da	1,7,8 Pe	CDF	2,3,4,7, 60-Dav E	8 PeCDF xposure	1,2,3 30-De	3,7,8 Pe ay Expos	Sure	1,2,3,7,8 60-Day Ex	PeCDD
Seanment Sample	Rep.1	Rep.2	Rep.3	Rep. 4(3)	Rep. 5	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5
1A-C	(q) ^{pu}	pu	ри	pu	ри	pu	Ø .49	pu	pu	pu	pu	0.48	pu	pu	pu
2A	pu	pu	pu	pu	pu	р	ри	pu	pu	0.50	р	pu	р	pu	р
3A-C	pu	pu	ри	pu	pu	0.15	р	Ø .29	pu	pu	ри	pu	pu	pu	pu
4A-C	pu	ри	ри	pu	pu	G .34	Ø.28	pu	pu	pu	pu	ри	ри	pu	þ
5A-C	pu	Ø.44	pu	pu	pu	pu	ри	Ø.18	pu	pu	pu	ри	pu	pu	ри
6 A -C	pu	pu	pu	pu	pu	pu	pu	g . g 3	р	g .33	pu	ри	pu	pu	р
70	pu	pu	pu	pu	pu	pu	pu	Б	pu	nd	nd	р	pq	ри	p
8A-C	ри	pu	pu	pu	pu	pu	pu	0.41	pu	pu	pu	ри	g .41	pu	pu
9A-C	ри	pu	pu	pu	pu	ри	pu	pu	pu	pu	р	pu	pu	pu	pu
10A-C	pu	pu	pu	pu	pu	pu	pu	ри	pu	pu	pu	pu	ри	ри	р
11A-C	ри	pu	pu	pu	pu	0.60	pu	р	pu	pu	ри	ри	pu	pu	ри
12A-C	pu	pu	ри	pu	pu	pu	pu	ри	ри	pu	pu	ри	pu	pu	pu
13A-C	ри	pu	pu	pu	pu	ри	0.40	pu	pu	pu	р	pu	р	р	pu
14A-C	pu	pu	ри	pu	pu	pu	р	ри	pu	pu	Р	pu	ри	ри	pu
17A	ри	ри	ри	pu	pu	р	Ø.19	pu	pu	nd	P	pu	р	ри	pu
West Beach	pu	ри	pu	ри	pu	Ø.23	ри	pu	pu	pu	Ø.15	pu	þ	pu	ри
Sequim Bay	pu	pu	ри	pu	pu	g .33	pu	pu	ри	pu	g .22	ри	р	pu	þ
												ı.			

(a) Five replicate containers were originally set up; replicates 1, 2, and 3 are 30-day exposures; replicates 4 and 5 are 60-day exposures. (b) Nondetectable.

11A-C were at levels below 0.5 ng/kg. The 60-day tissue data show no detectable 2,3,7,8 TCDD or PeCDD and only two occurrences of PeCDF, both at less than 0.5 ng/kg.

In summary, Table 4.2 shows that in only 19 of 255 determinations was dioxin present. In the 19 positive determinations, 4 were associated with reference or control sites. The most noteworthy observation was that the most toxic congener of dioxin, 2,3,7,8 TCDD was accumulated only in tissues from one sediment station. This congener was near the detection limit and was not reported again in the 60-day exposure to the same sediment.

These data indicate that dioxin/furan bioaccumulation at levels exceeding 0.5 ng/kg (wet wt) for 2,3,7,8 TCDD; 2,3,4,7,8 PeCDF; and 1,2,3,7,8 PeCDD did not occur in the clams exposed to Grays Harbor-area sediments over periods of 30 and 60 days. When these isomers were detected, the levels were just above detection limits.

Toxicity equivalance concentrations were calculated for the 30- and 60-day tissue data by multiplying the mean of the detected value of each isomer by a toxicity equivalance factor (TEF). These factors are available in USEPA (1988). Summation of the isomer TEC values generates a TEC number that reflects the total toxic load of each tissue sample. Table 4.3 summarizes the TECs for the 30- and 60-day tissue sample results as the mean of detected values and mean of detected plus one-half of the detection limit.

This table shows that steady-state was probably reached at 30 days, because in the majority of the tissue samples, the 60-day TEC decreased compared with 30-day values, based on the mean of detected values. Figure 4.2 illustrates the changes in TEC between 30- and 60-day tests and relates the TEC values to the reported mean lipid concentrations for each station. This figure shows that TEC values were highest in samples from Stations 1, 5, 8, and 11, but did not exceed 1.0 in any sample.

The 30-day tissue lipid data summarized in Appendix D, Table D.2 and Figure 4.2 show that concentrations did not vary greatly between samples. Mean percent tissue lipids ranged from 0.13 to 0.28%, with a mean value of 0.19 (sd = 0.04; cv = 21.05; n = 17). The ANOVA of all replicate data show no

Sediment Sample	<u>Mean of 30-day</u>	Detected 60-day	Change 60-30	<u>Mean of + 1/</u> <u>30-day</u>	Detected 2 D.L. 60-day	Change 60-30
1-AC 2A 3A-C 4A-C 5A-C 6A-C 7C 8A-C 9A-C 10A-C 11A-C 12A-C 13A-C 13A-C 14A-C 17A	0.9767 0.3588 0.2096 0.3882 0.7006 0.2961 0.1109 0.7288 0.2204 0.2101 0.5888 0.1995 0.4361 0.0929 0.1907	0.0225 0.5277 0.0163 0.2271 0.0369 0.4714 0.1515 0.1320 0.1210 0.1167(a) 0.1175 0.1812 0.1136 0.0486 0.0484	-0.9542 0.1689 -0.1933 -0.1611 -0.6637 0.1753 0.0406 -0.5968 -0.0994 -0.0934 -0.4713 -0.0183 -0.3225 -0.0443 -0.1423 0.2522	1.1221 1.0360 0.9407 0.8566 0.8251 0.9346 0.6438 1.1710 0.7256 0.6968 1.1412 1.0711 0.9925 0.9424 0.9661	1.5471 1.4054 1.1020 1.6289 2.2002 1.2072 1.1817 1.3278 1.8474 1.6454(a) 1.1588 1.1719 0.8035 0.6323 0.8075 1.6070	0.4250 0.3694 0.1793 0.7723 1.3751 0.2726 0.5379 0.1568 1.1218 0.9486 0.0176 0.1008 -0.1890 -0.3101 -0.1586 0.6664
Sequim Bay	0.2572	0.0114	-0.4291	1.1694	1.0803	-0.0891
Mean ^(b)	0.3806	0.1555		0.9377	1.3111	

TABLE 4.3. Toxicity Equivalence Concentrations for 30- and 60-Day Clam Tissue Tests (background corrected)

(a) One replicate was used for the TEC calculation.

(b) Mean does not include Sequim Bay or West Beach.

significant differences between stations based on transformed lipid concentrations (p < 0.05), and Figure 4.2 shows no correlation between calculated TEC values and lipid concentrations for the 30-day values. The 60-day tissue lipid data are summarized in Appendix E, Table E.2. These data ranged from 0.15 to 0.89%, were slightly higher overall in comparison to the 30-day values, and were not significanly different from each other ($p \le 0.05$).

4.4 CRAB TISSUE DIOXINS/FURANS

Dungeness crab were collected at five locations in the Grays Harbor study area, including in the Pacific Ocean off Grayland, at Buoy #3, and in Half Moon Bay, North Bay, and South Bay. At each site, a hepatopancreas and a muscle tissue sample were produced by compositing the tissue of five crab. The results of this analysis are summarized in Appendix F, Tables F.1 and F.2.

FIGURE 4.2. (a) Mean of detected values for 30- and 60-day clam tests, and (b) Summary of 30-day Tissue Lipid Tests. Note: 60-Day lipid data are not yet available. (WB = West Beach; SB = Sequim Bay)

Quality assurance information is presented in Appendix F, Table F.3. Quality assurance data for the crab tissue analysis is incomplete and currently in review. Preliminary results show that our target detection limit of 1.0 ng/kg for 2,3,7,8 TCDD was generally met for muscle tissue, but detection limits for the hepatopancreas tissue ranged from 2.10 to 3.40 ng/kg. This may be because of the smaller hepatopancreas mass relative to the muscle tissue samples. Method blank data are presented in Appendix F, Table F.3, and show that the method blank was clean except for the presence of OCDD. Acceptable spike and matrix spike recoveries are 40-120%, and this was generally met, with the exception of recoveries greater than 125% for TCDF, TCDD, and some hexachloronated isomers. Surrogate recoveries generally met quality assurance requirements of 40-120% recovery, except recoveries of greater than 125% were noted for some isomers associated with the South Bay hepatopancreas sample, and the recovery of 123789-HxCDD-13, which was low in nearly all samples. Surrogate recoveries associated with the matrix spike sample were less than 40%. These data are conditionally accepted until the reasons for the elevated detection limits and low or high recoveries can be explained.

The results of the crab tissue analysis are summarized in Table 4.4 for 2,3,7,8 TCDD; 2,3,4,7,8 PeCDF; and 1,2,3,7,8 PeCDD. Toxicity equivalence concentrations are also calculated for both the detected isomer value and one-half of the detection limit when an isomer was undetected. The table shows that the three dioxin/furan isomers were undetected in all muscle tissue, and detection limits were generally at or less than 1.0 ng/kg (wet wt). The dioxin/furan isomer 2,3,4,7,8 PeCDF was detected in three of five hepato-pancreas samples, and the isomer 1,2,3,7,8 PeCDD was detected in two of five samples.

In crab collected from South Bay, all three dioxin/furan isomers were detected in the hepatopancreas tissue at levels $\geq 2.10 \text{ ng/kg}$ (wet wt), although 2,3,7,8 TCDD was detected at a level below the detection limit of the other four hepatopancreas samples. This suggests that a level of 2,3,7,8 TCDD of approximately 2.00 ng/kg (wet wt) is possible in the other four hepatopancreas samples, and the detection limit is influencing the result.

Equivalence trations	Detected	0r 1/2 U.L.	4.9320	1.0191
Toxicity Concen	Detected	nuiy	1.0130	0.1600
	1,2,3,7,8 PeCDD	(ng/kg wet wt.)	nd (2.30)	nd (0.62)
	2,3,4,7,8 PeCDF	(ng/kg wet wt.)	nd (2.60)	nd (0.24)
	2,3,7,8 TCDD	(ng/kg wet wt.)	nd (3 40) ^(a)	nd (0.86)
		Tissue Sample	<u>san Off Grayland</u>	iepatupaliti cus Auscle

Analysis
Tissue
of Crab
Results o
ABLE 4.4.

4.9320	4.0093	11.1459	9.8486	10.3481
1.0191	0.9471	1.1023	1.4815	1.6211
1.0130	0.9890	6.4389	8.0890	9.7480
0.1600	0.1418	0.2780	0.2340	0.1930
nd (2.30)	nd (1.80)	nd (5.40)	3.80	3.70
nd (0.62)	nd (0.41)	nd (0.46)	nd (0.71)	nd (0.94)
nd (2.60)	nd (1.00)	2.50	1.80	2.10
nd (0.24)	nd (0.26)	nd (0.44)	nd (0.32)	nd (0.30)
nd (3.40) ^(a)	nd (2.40)	nd (2.60)	nd (2.30)	2.10
nd (0.86)	nd (0.88)	nd (0.82)	nd (1.20)	nd (1.30)
<u>Ocean Off Grayland</u>	<u>Buoy #3</u>	<u>Half Moon Bay</u>	<u>North Bay</u>	<u>South Bay</u>
Hepatopancreas	Hepatopancreas	Hepatopancreas	Hepatopancreas	Hepatopancreas
Muscle	Muscle	Muscle	Muscle	Muscle

(a) nd is nondetectable.Detection limit in parenthesis.

Toxicity equivalence concentrations for crab muscle tissue (based on detected concentrations) ranged from 0.1418 at Buoy #3 to 0.2780 at Half Moon Bay. The TEC estimates for crab hepatopancreas based on the detected isomers were 6 to 50 times higher than the corresponding muscle TEC. The TEC estimates based on the detected or one-half of the detection for undetected isomers showed that the hepatopancreas calculation was 6 to 10 times that recorded in the corresponding muscle tissue. These data show that dioxin/ furan isomers are bioaccumulating in the lipid-rich hepatopancreas tissues of crab collected from South Bay, North Bay, and Half Moon Bay, but there is no indication of bioaccumulation in the muscle tissue from crab collected at any of the five stations, based on a detection limit of approximately 1.0 ng/kg (wet wt).

5.0 DISCUSSION AND CONCLUSIONS

The potential toxicity and biological effects of sediment samples collected from the Grays Harbor area were evaluated in a number of ways: toxicological evaluations were performed using standard biological tests employing sensitive invertebrates; sediment chemistry analysis was performed to determine the levels of selected chemicals; elutriates of sediments were tested both chemically and biologically to determine contaminant mobility in water; and bioaccumulation tests were conducted to determine chemical mobility into animal tissues. Additionally, tissue chemistry analysis was conducted on hepatopancreas and muscle tissue of Dungeness crab that were collected within and outside of the study area to determine levels of dioxin/furans in native organisms. The results of these studies are presented in Table 5.1 and are discussed below.

Toxicological evaluations showed that sediment samples collected from the Grays Harbor area did not produce significant mortality in any of the test organisms except oyster larvae. In the oyster larvae test, the percent normal larvae from oysters exposed to sediment from Stations 2A and 15A-C was significantly different from larvae exposed to West Beach control sediment. An effective concentration that produced a 50% decrease in larval survival to normal-D was calculable in four samples, including those from Stations 2A, 3A-C, 12A-C, and 15A-C. When these EC50 elutriate percentages were evaluated with the initial mixing model provided in the Implementation Manual (USEPA/COE 1977), it was determined that levels of elutriate necessary to reduce larvae survival would not be reached during disposal according to John Wakeman (USACE, Memorandum of Record 1989). The results of the toxicological data, therefore, suggest that the sediment samples from the Grays Harbor area are not toxic.

The sediment chemistry evaluations presented in Table 5.1 show that the most toxic dioxin (2,3,7,8 TCDD) was present in detectable quantities in 5 of the 15 sediment samples evaluated. The levels of 2,3,7,8 TCDD ranged from 0.7 ng/kg in sediment collected from Station 2A to 2.9 ng/kg from

Summary of Toxicological and Chemical Evaluations of Grays Harbor Sediment Samples TABLE 5.1.

:

.

_ _

	83		2.63 nd	6966	B	p	6.44 1.17	6.06 6.06 1.82	
	9		9.96 nd	353	R	B	g. 26 g. 94	M/D 9.999 2.23	
	11		2.28	WA	'n,	B	6.19 6.97	nd 9.85 9.81	
	16		NA	157	р	ġ	NA	nd NA NA	
	15	<mark>v</mark>	NA(d) NA	788	ц	멷	HA HA	nd KA NA	
	14		1.71 Ind	1898	P	þ	6-90 9-94	nd 8.85 8.53	
	13		1.88 2.1	878	nd	P	8.44 8.99	в. 88 8.88	
	12	v	1.56 nd	963	pu	pu	8.28 1.97	и/D 8.12 8.37	
	п		2.21 2.9	1342	멷	ри	g .59 1.14	N/D 9-98 1-92	
	s (a) 18		1.63 nd	538	P	ри	8.21 9.76	N/D 8.67 1.19	
	Sample 9		1.38 nd	1823	ри	р	B .22 B .73	g) N/D 8.11 8.94	
	diment 8		2.13 1.5	1136	pu	pu	6 .73 1.17	и/D(6.19 1.38	
	7 Se		1.96 nd	252	ри	рц	6.11 9.64	nd 8.15 1.18	
	م		1.22 nd	1982	pu	<u>0</u> .64	8.35 8.77	nd 8.47 1.21	
I	2		1.82 nd	659	p	Ø.44	9.71 9.83	nd 8.84 2.29	
	4		1.13 nd	432	ņ	p	g .39 g .85	nd 9.91 1.82	
	m	2	ß .87 nd	353	ри	pu	0.21 0.94	nd 6.82 1.19	
2	~		1.38 8.7	490	ри	ри	9.36 1.94	nd 8.53 1.41	
		(q)	9 .41 nd(e)	Ø	ри	pu	g .98 1.12	nd 8.82 1.55	
	Measured Parameter	<u>Toxicoloqical Tests</u> Microtox Amphipod Oyster Clam	Sediment Chemistry (dry wt) TOC (%) 2.3,7.8 TCDD	(ng/kg dry wt) Guaiacols/organics Acids (g/kg)(f)	<u>Elutriate Chemistry</u> Guaiacols/organics Acids (g/L)(f)	<u>30-day Tissue Chemistry</u> 2.3.7.8 TCDD	(ng/kg dry wt)(g) TEC (Mean of detected) TEC (Mean of Det + 1/2 D.L)	<pre>68-day Tissue Chemistry 2,3,7,8 TCDD (ng/kg dry) TEC (Mean of detected) TEC (Mean of Det + 1/2 D.L)</pre>	
						5.2			

Sediment samples are composited of "A" and "C" stations except for samples 2, 7, and 17.

. .

. .

e p

Not significant based on the evaluation criteria for that toxicological test. Significantly different from Vest Beach or EC50 calculation possible for oyster larvae.

Not analyzed.

Compound not detected.

Sum of all detected compounds.

Background corrected; detected values were found in only one replicate. Data not yet available.

Station 11A-C. Where 2,3,7,8 TCDD was detected, organic carbon levels were above 1.5%, leading to the conclusion that dioxin/furans concentrations are related to the available organic carbon. Sediment guaiacol/organic acid analysis showed that these compounds were detectable in all Grays Harbor samples and in samples from West Beach and Sequim Bay. The concentrations of guaiacol/organic acid in most Grays Harbor samples were similar to those found in the West Beach sample. The gualacol/organic acids in Sequim Bay were the highest observed. The only consistent pattern between gualacol/organic acid concentrations in sediment composites was that elevated concentrations of 2,3,7,8 TCDD and total gualacol/organic acids occurred in the same two Grays Harbor sediment composites: 8A-C and 11A-C. This potential suggests a common source for both types of materials. Elutriate chemistry evaluation of guaiacols/organic acids shows that although these compounds were observed in all sediment samples, no detectable concentrations were present in the elutriates. This indicates that the guaiacol/organic acid compounds were not soluble in water, and thus, are not mobile. This is supported by the fact that the extraction method did not remove the color of the elutriate water.

The 30- and 60-day tissue evaluations of clams were conducted to determine whether dioxin/furan compounds observed in the sediment samples could be bioaccumulated by a filter-feeding marine organism. The results of the 30-day study showed 2,3,7,8 TCDD in only two of 50 samples (one from Station 5A-C, one from Station 6A-C). The levels of 2,3,7,8 TCDD were less than 0.5 ng/kg (wet wt), which is very close to the operational detection limit of 0.30 ng/kg. The preliminary results of the 60-day tissue analyses confirms this assumption because no detectable 2,3,7,8 TCDD was observed in any of the samples.

The summary results of the crab tissue dioxin/furan analysis are presented in Table 5.2. These data show no evidence of bioaccumulation of dioxins/furans in the muscle tissue of Dungeness crab collected within and outside the Grays Harbor study area. The levels of dioxins and furans in hepatopancreas tissue suggest bioaccumulation may occur, but when the presence

TABLE 5.2. Summary Results for Crab Tissue Dioxin/Furan Concentrations

	(Ma	Tissue (ximum Obsei	Concentration ved in ng/	lons /kg wet wt)
Measurement	30-daý <u>Clam</u>	60-Day <u>Clam</u>	Crab <u>Muscle</u>	Crab <u>Hepatopancreas</u>
2,3,7,8, TCDD	0.44	nd(a)	nd	2.1
2,3,4,7,8 PeCDF	0.60	0.50	nd	2.5
1,2,3,7,8 PeCDD	0.48	nd	nd	3.8
TEC (Mean of Det.)	0.97	0.53	0.28	9.75
TEC (Mean of Det + 1/2 D.L.)	1.17	2.20	1.62	10.3

(a) Nd is nondetectable.

CONCLUSIONS

Maximums:

- Crab tissue ≤30-day clam = 60-day clam
- Crab hepatopancreas is 5- to 10-fold higher than crab muscle, 30-day clam, and 60-day clam tissue
- The locations of hits in the crab hepatopancreas are:

	1				TEC	
Location	TCDD	PeCDF	PeCDD	X of Det.	<u>X Det. + 1/2</u>	D.L.
South Bay	2.1	2.1	3.7	9,8	10.4	
North Bay	nd (2.3)	1.8	3.8	8,1	9.9	А
Half Moon Bay	nd (2.6)	2.5	nd (5.4)	6.4	11.2	
Buoy #3	nd (2.4)	nd (1.0)	nd (1.8)	1.0	4.0	R
Ocean	nd (3.4)	nd (2.6)	nd (2.3)	1.0	4.9	
				Participation and a state of the second state		

A Group: No real differences within B Group: No real differences within A has a factor of 2 to 10 higher than B Real differences is probably 2-fold of 2,3,7,8 TCDD, PeCDF, and PeCDD is compared among stations, the levels of these chemicals are indistinguishable, given the detection limits where those materials were undetected are compared to their concentrations when they were detected in the Chehalis River collection sites. Table 5.2 separates the five crab collection sites into one group that contains South Bay, North Bay, and Half Moon Bay, and another group that contains samples from ocean sites at Buoy #3 and off Grayland. The groupings suggest that bioaccumulation may occur within the confines of Chehalis River, and toxicity equivalence calculations seem to substantiate these conclusions. The relative similarity of TEC values of detected concentrations when compared with the TEC values of detected or one-half of the detection limits within the Chehalis River area suggests the higher TEC values found in this area may be a product of chance rather than a result of actual differences between river and ocean samples. Also, the TEC of dioxin/furans observed within the hepatopancreas of adult male crabs in the Chehalis River area did not bioaccumulate in the muscle tissue. Lipid data for muscle tissue and hepatopancreas are presented in Appendix F, Table F.2. This table shows that lipids in muscle tissue ranged from 0.05 to 0.13%. Hepatopancreas lipid values ranged from 2.50 to 5.41%. The relatively high lipid concentrations in the hepatopancreas may explain the presence of the lipophyllic dioxin compounds found.

In summary, the toxicological and chemical evaluations of sediment samples from the Grays Harbor area indicate that sediment dioxin/furan and guaiacols/organic acids concentrations were generally low and were non-toxic to all species tested. Elutriate/bioaccumulation studies verify that the detected compounds exhibit little or no mobility from sediment. Tissue studies of Dungeness crab indigenous to the Chehalis River and nearby ocean sites demonstrated no bioaccumulation potential to muscle tissue, but the potential for some bioaccumulation to the hepatopancreas of crab exists in samples collected from South Bay, North Bay, and Half Moon Bay, which are located within the Chehalis River. A true evaluation of the significance of this potential bioaccumulation into hepatopancreas of crabs may require additional studies. Test data indicate, however, that no reason exists to suspect

that sediments from those sites would be toxic to marine organisms, or would produce measurable bioaccumulation in the clam <u>M</u>. <u>nasuta</u> or the crab <u>C</u>. <u>magister</u>.

۳.

....

...

11

8

6.0. <u>REFERENCES</u>

American Society for Testing and Materials (ASTM). 1980. <u>Standard Practice</u> <u>for Conducting Static Acute Toxicity Tests with Larvae of Four Species of</u> <u>Bivalve Molluscs</u>. E724-80. American Society for Testing and Materials, Philadelphia.

Beckman Instruments. 1982. <u>Microtox Operating Manual</u>. Beckman Instruments, Inc. Carlsbad, California.

Chew, V. 1977. <u>Comparisons Among Treatment Means in an Analysis of Variance</u>. Agricultural Research Service of the United States Department of Agriculture, Washington D.C.

National Council of the Paper Industry of Air and Stream Improvement, Inc. (NCASI). 1986. <u>Procedures for the Analysis of Resin and Fatty Acids in Pulp</u> <u>Mill Effluents</u>. Technical Bulletin No. 501. National Council of the Paper Industry of Air and Stream Improvement, Inc., New York.

Puget Sound Dredged Disposal Analysis (PSDDA). 1989. <u>Final Technical Appendix Evaluation Procedures Phase I (Central Puget Sound)</u>. Prepared by the Evaluation Procedures Work Group for Puget Sound Dredged Disposal Analysis, Seattle, Washington.

Puget Sound Estuary Program (PSEP). 1986. <u>Recommended Protocols for Measur-</u> <u>ing Selected Environmental Variables in Puget Sound</u>. Prepared by Tetra-Tech, Inc. for the Puget Sound Estuary Program. Vol. 1 and 2, Bellevue, Washington.

Standard Methods. 1975. <u>Standard Methods for the Examination of Water and</u> <u>Wastewater</u>. 14th Ed. American Public Health Association (APHA), American Water Works Association (AWWA), Water Pollution Control Federation (WPCF), Washington, D. C.

Steel, R. G. D., and J. H. Torrie. 1980. <u>Principles and Procedures of</u> <u>Statistics. A Biometrical Approach</u>. McGraw-Hill, New York.

Swartz, R. C., W. A. DeBen, J. K. P. Jones, J. O. Lamberson, and F. A. Cole. 1985. "Phoxocephalid Amphipod Bioassay for Marine Sediment Toxicity." In <u>Aquatic Toxicology and Hazard Assessment: Seventh Symposium</u>, eds. R. D. Cardwell, R. Purdy, and R. C. Bahner, pp 284-307. ASTM STP 854, American Society of Testing and Materials, Philadelphia.

Tondeur, Y. 1987. <u>Method 8290. Analytical Procedures and Quality Assurance</u> for <u>Multimedia Analysis of Polychloronated Dibenzo-p-Dioxins and Polychloro-</u> <u>nated Dibenzofurans by High-Resolution Gas Chromatography/High-Resolution Mass</u> <u>Spectrometry (Exhibits D and E)</u>. Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. U.S. Environmental Protection Agency (USEPA). 1988. <u>Integrated Risk Informa-</u> <u>tion System (IRIS)</u>. Vols. 1 and 2, EPA 600/8-88/032A,B. U.S. Environmental Protection Agency, Washington, D. C.

U.S. Environmental Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material (USEPA/COE). 1977. <u>Ecological Evalua-</u> <u>tion of Proposed Discharge of Dredged Materials into Ocean Waters: Implemen-</u> <u>tation Manual for Section 103 of Public Law 92-532 (Marine Protection,</u> <u>Research, and Sanctuaries Act of 1972)</u>. Environmental Effects Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

Williams, L. G., P. M. Chapman, and T. C. Ginn. 1986. "A Comparative Evaluation of Marine Sediment Toxicity Using Bacterial Luminescence, Oyster Embryo and Amphipod Sediment Bioassay." <u>Mar. Environ. Res.</u> 19:225-249.

APPENDIX A

SUMMARY INFORMATION FOR FIELD COLLECTIONS

		1		Sample Loca	tion - WA	Water	Core
Station	Type ^(a)	Sampling Date	Sampling Time	State Plan (Northing	Coordinates Easting	Depth (ft. MLLW)	Length (feet)
			447/	(05745 74	1125760 26	20.7	5.0
1-A	VC	8-4-89	1130	607307.30	1125760.20	27.1	۶.0 ۸ n
1-A	VC	8-4-89	1 140	405905 01	1125700.20	27.7	4.0
1-0		0-4-89	1213	405905 01	1124743.78	20 7	5.0
1-6		0-4-07	1000	612576 08	1132060 30	30.2	5.0
2"A 2-A	VC	8-4-07	1000	612576.08	1132960.30	30.2	5.0
2-A 2-A	VC	8-4-07	1015	612576.08	1132960.30	30.2	5.0
2-A	VC	8-3-90	1045	614000.50	1142600-16	19.0	3.5
3-M 7-A	VC	8-3-07	1100	614000.50	1142600.16	19.0	4.0
3-A 3-A	VC(L)	8-3-89	1120	614000.50	1142600.16	19.0	6.7
3-A 3-A	VC	8-3-89	1145	614519.92	1142532.21	34.2	4.3
3-0	VC	8-3-89	1200	614963.93	1142446.88	19.0	3.3
3-0	VC	8-3-89	1215	614963.93	1142446.88	19.0	4.1
4-A	VC	8-2-89	1700	614928.53	1146005.72	23.3	3.6
4-A	VC	8-2-89	1710	614928.53	1146005.72	23.3	5.0
4-B	VC	8-3-89	1005	615255.67	1145980.62	33.8	5.0
4-C	VC	8-2-89	1734	615268.91	1146306.73	23.3	4.2
4-C	VC	8-2-89	1740	615268.91	1146306.73	23.3	5.0
5-A	VC	8-2-89	1505	N/A	N/A	21.4	5.0
5-A	VC	8-2-89	1511	N/A	N/A	21.4	5.0
5-B	VC	8-2-89	1630	N/A	N/A	35.4	4.8
5-C	VC	8-2-89	1529	N/A	N/A	21.4	5.0
5-C	VC	8-2-89	1539	N/A	N/A	21.4	5.0
6-A	VC(L)	8-1-89	1730	613996.39	1157054.23	20.2	8.7
6-A	VC	8-1-89	1754	613996.39	1157054.23	20.2	7.3
6-A	VC	8-1-89	1811	613996.39	1157054.23	20.2	5.0
6-B	VC	8-3-89	0922	614294.57	1157026.99	35.8	4.0
6-C	DC	8-2-89	1335	614721.57	1157145.50	22.2	2.3
6-C	DC	8-2-89	1335	614721.57	1157145.50	22.2	2.3
7-A	VC	8-2-89	1219	613347.85	1160511.99	19.0	2.0
7-C	VC	8-1-89	1540	N/A	N/A	7.6	5.5
7-C	VC	8-1-89	1555	N/A	N/A	7.6	4.2
7-C	VC	8-1-89	1615	N/A	N/A	7.6	7.0
8-A	DC	8-1-89	1321	612840.23	1161628.14	21.1	2.0
8-A	DC	8-1-89	1326	612840.23	1161628.14	21.1	1.7
8-B	VC	8-2-89	0957	612928.36	1161897.58	35.4	4.3
8-C	DC	8-1-89	1410	613426.27	1162039.00	22.1	1.3
8-C	DC	8-1-89	1415	613426.27	1162039.00	22.1	2.8
8-D	DC	8-1-89	1140	612743.23	1163065.82	29.1	2.6

TABLE A.1. Summary of Core Collections

(a) VC is vibra-core; DC is dart-core. L is long vibra-core.

A.1
				Sample Loca	ition - WA	Water	Core
	4 - 1	Sampling	Sampling	State Plan	Coordinates	Depth	Length
Station	Type ^(a)	Date	Time	Northing	Easting	(ft MLLW)	(feet)
	ł						
9-A	VC	8-1-89	0940	610741.70	1164030.01	14.8	7.0
9-A	VC	8-2-89	1042	611359,50	1164381.65	13.0	4.2
9-A	VC	8-2-89	1054	611359.50	1164381.65	13.0	3.4
9-B	VC	8-2-89	1117	611359.50	1164381.65	32.5	5.0
9-C	DC	8-1-89	1020	611531.30	1164502.83	18.9	2.0
9-C	DC	8-1-89	1036	611531.30	1164502.83	18.9	2.5
9- D	VC	8-2-89	1145	N/A	N/A	41.5	5.0
10-A	.VC	7-31-89	1522	610670.28	1168371.52	14.4	3.5
10-A	VC	7-31-89	1545	610670.28	1168371.52	14.4	5.0
10-в	DC	7-31-89	1740	611154.96	1168255.87	28.9	1.3
10-в	DC	7-31-89	1746	611154.96	1168255.87	28.9	2.25
10-C	VC	7-31-89	1619	611324.20	1168200.00	16.6	4.5
10-c	VC	7-31-89	1633	611324.20	1168200.00	16.6	4.5
11-A	VC	8-3-89	1647	612732.71	1171993.95	24.2	3.0
11-A	VC	8-3-89	1652	612732.71	1171993.95	24.2	3.8
11-C	VC	8-3-89	1622	613261.77	1171534.18	23.2	3.0
11-C	VC	8-3-89	1630	613261.77	1171534.18	23.2	2.8
12-A	VC	8-4-89	1345	615670.39	1176892.40	i 34.0	3.8
12-A	VC	8-4-89	1350	615670.39	1176892.40	34.0	5.0
12-в	VC	8-4-89	1420	616008.27	1176856.33	32.5	5.0
12-C	VC	8-3-89	1810	615757.17	1176808.91	26.7	5.0
12-c	vc	8-3-89	1820	615757.17	1176808.91	26.7	5.0
13-A	VC	8-4-89	1443	615873.99	1181086.48	10.8	3.5
13-A	VC	8-4-89	1450	615873,99	1181086.48	10.0	4.0
13-C	VC	8-4-89	1517	615984,66	1181831.48	18.4	4.0
13-C	VC	8-4-89	1532	615984.66	1181831.48	18.4	3.1
13-C	VC(L)	8-4-89	1550	615984.66	1181831.48	18.4	3.2
14-A	VC	8-4-89	1718	613794.59	1181527.91	24.5	3.5
14-A	VC	8-4-89	1727	613794.59	1181527.91	24.5	5.0
14-C	VC	8-5-89	1025	613972.47	1182173.21	8.5	2.5
14-C	VC	8-5-89	1030	613972.47	1182173.21	8.5	4.8
14-D	VC	8-5-89	1050	N/A	N/A	33 1	5.0
17-4	VC	8-3-80	1420	600003 37	1164.053 43	4.0	3.0
17-4	VC	8-3-80	1625	600003 37	1164053 /3	4.0 / 0	5.0
17-4		8-3-80	1/20	600003.37	1164053.43	4.0 /. n	7.0 7 n
17-6	VC	8-3-80	1426	600003 37	116/05% /7	4.U 6.0	5.0
17-0		0-J-07 8_%-90	1515	600573 00	116/02/ 43	4.U 7∡	5.0 / E
17-C	VC	8-3-89	1540	610470.50	1164126.50	7.6	4.5 5.0

TABLE A.1. Summary of Core Collections (Cont'd)

A.2

TABLE A.2. Summary of Grab Sample Collections

Rep #1- cobble w/barnacles Rep #2- cobble w/barnacles Shell fragments present 2 jars - Reps 1 and 2 Rep #1 - 1/2 Gallon SI is silt; SA, sand (F is fine, M is medium, C is coarse); G, gravel; CO, cobble; CL, clay; RO, rocks; WC, wood chips. Comments Rep #2 Rep #1 Rep #2 Rep #2 Rep #1 Rep #1 Rep #2 Sediment Type Sediment Color DO/BL/LBS DO/LBS/BL D0/BL DO/BL DO/BL DO/BL 8 888 88 88 8 8 8 888 RO/CO/G/CSA Ro/co/G/CSA CL/SI/SA/MC CSA/G/WC/SI CL/SI/SA/NC SI/FSA/NC SI/FSA/HC MCSA/SI MCSA/SI **CMSA/SI HSA/SI** SI/FSA **MSA/SI MSA/SI HSA/SI** VSH/1S MFSA FHSA FSA FSA SI IS Penetration Full 2 5 2 4 2 12 4 Grab 5 ~ ŝ ŝ ŝ ŝ Ś Ś S \$ 5 r s 1157026.99 1157145.50 1157054.23 1145980.62 1157054.23 1142600.16 142600.16 1146005.72 1146306.73 1124743.78 1132960.30 1133071.44 1133071.44 1142532.21 1142446.38 State Plan Coordinates 1125760.26 1124997.31 N/A Easting N/A N/A N/A N/A Sample Location - WA 614928.53 615255.67 613996.39 613996.39 614294.57 614721.57 612848.10 612848.10 614519.92 605678.70 612576.08 614000.50 614000.50 615268.91 605365.36 605895.01 614963.93 Northing N/A N/A N/A N/A N/A Sampling Sampling Water Depth (ft MLLU) 20.2 20.0 40.7 22.2 40.8 27.7 30.2 40.3 19.0 19.0 34.2 19.0 20.0 33.7 21.4 21.4 35.4 21.4 21.4 20.2 27.7 40.3 "/" îndîcates domînant first. Time 1715 1020 1451 1613 1550 1545 1655 1702 1309 1330 1135 1112 1212 1000 0320 0320 1035 1039 1147 1158 1440 1727 8-1-89 8-3-89 8-3-89 8-2-89 8-2-89 8-2-89 8-1-89 8-2-89 8-3-89 8-2-89 8-2-89 8-2-89 8-2-89 8-4-89 8-4-89 8-4-89 8-4-89 8-4-89 8-3-89 8-3-89 8-2-89 8-4-89 Date Station 5-A 5-B 2-C 5-C **V-**9 **A**-ð 6-B 0-C 1-B 2-A 2-B 2-B 3-A 3-A 3-B 4-B -1-4 5-2 с-С-С 4-A 1-0 Y-1 (e)

DO is drab olive; BL, black; LBS, light brown surface; G, gray.

Ð

Α.3

atī co	Sampling Date	Sampling Time	Water Depth (ft. MLLV)	State Plan (Northing	oordinates Easting	Penetration (cm)	Sediment Type	Sedîment Color	Comments
7-C 7-C	8-1-89 8-1-89 8-1-89	1441 1525 1534	24.8 7.6 7.6	613347.85 N/A N/A	1160511.99 N/A N/A	0 N 4	si/fhsa si/cl/hc si/cl/hc	00/18 00/18 00/18	1L for archive; no biology Rep #1 Rep #2
8-¥ 8-C 8-C	8-1-89 8-2-89 8-1-89 8-1-89	1314 1000 1400 1132	21.1 35.4 22.1 29.1	612840.23 612928.36 613426.27 612743.23	1161628.14 1161897.58 1162039.00 1163065.82	10 Full 12	FSA/SI/MC SI/MSA SI/FSA SI	00 00/18/01 00	Norms present Extra sediment collected
A -9	8-1-89 8-1-80	0910 1050	14.8 35.3	610741.70 611359.50	1164030.01 1164381.65	Full 12	si/csa/MC si/csa/MC	G/LBS DO/LBS/BL	slîght petroleum odor, sheen
0-C	8-1-89 7-31-89	1003 1840	18.9 41.5	611531.30 N/A	1164502.83 N/A	Fuil 14	sı/a	DO/BL	Area recently dredged
10-A 10-B 10-C	7-31-89 7-31-89 7-31-89 7-31-89	1412 1510 1300	14.4 14.4 28.9 16.6	610670.28 610670.28 611154.96 611324.20	1168371.52 1168371.52 1168255.87 1168200.00	м м 6 б	si/cl si/cl si	00 00/BL/LBS 00	Rep #1 < 1/2 gallon Rep #2 < 1/2 gallon Woody material
11-A 11-B 11-C	8-3-89 8-3-89 8-3-89	1658 1720 1620	24.1 38.1 23.1	612732.71 613109.00 613261.77	1171993.9 1171772 1171534.11	17 4 N	lic/csa S1/MSA/lic/G	00/BL	

TABLE A.2. Summary of Grab Sample Collections (Cont'd)

-

.

A.4

IABLE A.2. Summary of Grab Sample Collections (Cont'd)

Slight petroleum odor, sheen 4 Reps to get enough 3 Reps to get enough SI is silt; SA, sand (F is fine, M is medium, C-is coarse); G, gravel; CO, cobble; CL, clay; RO, rocks; WC, wood chips. Connents Rep #2 Rep #2 Rep #1 Rep 🕌 Sediment Type Sediment Color DO/LBS/BL DO/BL/LBS DO/LBS/BL DO/LBS/BL DO/LBS DO/LBS DO/G/BL **BL/LBS** DO/BL BL/G B R 8 8 88 8 8 SI/MSA/JIC/G CSA,CO/G/SI G/SI/CL/NC SI/FSA/UC CSA/SI CSA/SI SI/FSA SI/FSA G/CSA CSA/G SI/NC SI/JUC SI/CL SI/HC S g 8 IJ Penetration Full Full Full Fuli 4 9 2 2 2 12 2 2 Grab LC1 4 ŝ 9.9 ŝ ŝ 1188599.00 1164126.50 1190460.80 1164053.43 1164024.12 1164126.50 1176892.40 1176856.33 1176808.91 1181086.48 1181451.87 1181831.48 1181790.25 1181790.25 1188532.94 1190170.48 1181527.91 1182173.21 State Plan Coordinates Easting N/A Sample Location - WA 610197.63 609572.00 610470.50 610470-50 615873.99 610536.04 607449.00 607314.55 615670.39 616008.27 615757.17 615903.44 615984.66 613794.59 613808.84 613808.84 613972.47 609003.37 Northing N/A Sampling Mater Depth (ft. MLLW) 19.3 19.7 59.8 4.0 7.6 7.5 34.0 33.5 26.7 10.8 33.8 18.4 24.5 35.5 35.5 8.5 39.6 7.5 33.1 "/" indicates dominant first. Time 1510 1545 1510 0853 9060 0922 5260 1450 1551 1355 1400 1805 1454 1557 1645 1730 1735 1005 1052 Sampling 8-5-89 8-5-89 8-2-89 8-3-89 8-3-89 8-3-89 8-3-89 8-4-89 8-4-89 8-4-89 8-4-89 8-4-89 8-4-89 8-5-89 8-5-89 8-2-89 8-3-89 8-4-89 8-4-89 Date Station 14-B 14-8 14-C 15-A 15-B 16-C 16-B 17-A 17-B 17-C 17-C 12-B 12-C 13-B 13-C 14-D 12-A 13-A 14-A (a)

DO is drab olive; BL, black; LBS, light brown surface; G, gray.

<u>.</u>

A.5

APPENDIX B

BIOLOGICAL DATA

Sediment Sample	Extract Conc. (%)	Perce Illumina 5 Min	nt Change tion Over 15 Min	in Time(a) 30 Min
1A-C	7.27	8.19	9.47	6.03
1A-C	14.53	11.72	11.96	4.01
1A-C	29.07	11.66	7.69	-4.34
1A-C	58.14	13.54	5.17	-8.73
2A	7.27	32.32	34.18	29.49
2A	14.53	12.80	14.39	10.85
2A	29.07	1.57	3.34	5.30
2A	58.14	-23.50	-18.44	-12.30
3A-C 3A-C 3A-C 3A-C 3A-C	7.27 14.53 29.07 58.14	11.60 5.90 34,98 34.33	7.58 3.98 30.05 30.43	0.42 -0.88 13.25 14.61
4A-C	7.27	7.73	10.42	0.95
4A-C	14.53	16.10	15.51	5.11
4A-C	29.07	17.33	16.04	3.50
4A-C	58.14	19.81	19.78	9.37
5A-C	7.27	8.93	7.14	-5.45
5A-C	14.53	14.06	13.24	-5.40
5A-C	29.07	18.19	15.10	-5.11
5A-C	58.14	14.70	12.57	-5.76
6A-C	7.27	11.70	8.34	3.71
6A-C	14.53	14.63	7.58	0.06
6A-C	29.07	20.19	15.03	5.15
6A-C	58.14	26.74	20.83	12.82
7C	7.27	23.11	22.07	7.89
7C	14.53	28.09	25.47	6.40
7C	29.07	34.22	31.89	9.83
7C	58.14	38.27	32.86	11.84
8A-C	7.27	14.12	17.77	6.17
8A-C	14.53	19.27	23.08	7.17
8A-C	29.07	23.72	26.97	10.14
8A-C	58.14	16.67	19.74	9.03
(a) Pos	itive number	s indicate	an incre	ase in icate

TABLE B.1. Microtox Results

.

a decrease in illumination

Sediment Sample	Extract Conc. (%)	Perce Illumina 5 Min	nt Change tion Over 15 Min	in Time(a) 30 Min
9A-C 9A-C 9A-C 9A-C	7.27 14.53 29.07 58.14	8.76 13.47 16.19 13.57	8.85 10.65 12.51 10.63	-1.45 -2.61 -5.87 -5.74
10A-C 10A-C 10A-C 10A-C 10A-C	7.27 14.53 29.07 58.14	31.94 42.70 50.50 43.98	39.17 51.39 58.74 48.77	22.90 33.96 33.01 19.94
11A-C 11A-C 11A-C 11A-C 11A-C	7.27 14.53 29.07 58.14	5.17 9.31 10.28 13.91	7.66 11.90 8.88 9.47	-0.42 -0.97 -7.39 -11.39
12A-C 12A-C 12A-C 12A-C 12A-C	7.27 14.53 29.07 58.14	7.08 10.52 14.72 11.29	7.68 9.90 12.93 10.83	0.28 -1.88 0.95 -2.66
13A-C 13A-C 13A-C 13A-C 13A-C	6.97 13.95 27.90 55.81	7.93 11.99 18.99 20.97	15.72 23.23 32.66 35.53	14.06 20.54 25.81 30.55
14A-C 14A-C 14A-C 14A-C	7.27 14.53 29.07 58.14	-0.71 11.28 16.94 15.78	1.09 10.31 11.73 14.11	-8.48 -5.05 -10.98 -8.47
15A 15A 15A 15A	6.84 13.67 27.33 54.65	6.38 8.19 15.09 17.31	8.50 11.12 20.70 20.64	4.48 1.56 9.14 10.65
16C 16C 16C 16C	6.91 13.81 27.62 55.23	8.51 12.05 14.00 22.95	8.36 14.35 16.30 23.30	5.07 9.37 10.30 13.95
(a) Posit illun a dec	tive numbers nination, neg crease in ill	indicate ative num umination	an increa bers indi	se in cate

TABLE B.1. Microtox Results (Cont'd)

. •

Sediment Sample	Extract Conc. (%)	Perce Illumina 5 Min	nt Change tion Over 15 Min	in _{Time} (a) 30 Min
17A	7.27	11.53	15.55	11.28
17A	14.53	17.07	22.53	10.51
17A	29.07	19.86	25.52	12.34
17A	58,14	20.55	25.57	13.43
West Beach	7.27	2.99	4.33	-0.81
West Beach	14.53	12.84	12.23	1.39
West Beach	29.07	16.89	14.59	-0.01
West Beach	58.14	9.83	4.05	-8.68
Sequim Bay	7.27	15.64	15.47	5.54
Sequim Bay	14.53	20.45	19.22	7.13
Sequim Bay	29.07	23.70	21.75	7.43
Sequim Bay	58.14	28.07	24.34	8.69
(a) Posit illum a dec	ive number lination, r rease in f	rs indicate negative nu illuminatio	an increa mbers ind n	ase in icate

TABLE B.1. Microtox Results (Cont'd)

.

Station	Composite	Rep	Alive	Dead	Total	Percent Survival	Mean Percent Survival
Sta. 1	A-C	1	18	2	20	90	86
Sta. 1	A-C	2	17	3	20	85	
Sta. 1	A-C	3	18	2	20	90	
Sta. 1	A-C	4	16	4	20	80	
Sta. 1	A-C	5	17	3	20	85	
Sta. 2 Sta. 2 Sta. 2 Sta. 2 Sta. 2 Sta. 2	A A A A	1 2 3 4 5	19 18 19 15 18	1 2 1 5 2	20 20 20 20 20	95 90 95 75 90	89
Sta. 3	A-C	1	17	3	20	85	85
Sta. 3	A-C	2	20	0	20	100	
Sta. 3	A-C	3	16	4	20	80	
Sta. 3	A-C	4	17	3	20	85	
Sta. 3	A-C	5	15	5	20	75	
Sta. 4	A-C	1	19	1	20	95	95
Sta. 4	A-C	2	20	0	20	100	
Sta. 4	A-C	3	18	2	20	90	
Sta. 4	A-C	4	19	1	20	95	
Sta. 4	A-C	5	19	1	20	95	
Sta. 5	A-C	1	18	2	20	90	86
Sta. 5	A-C	2	15	5	20	75	
Sta. 5	A-C	3	16	4	20	80	
Sta. 5	A-C	4	20	0	20	100	
Sta. 5	A-C	5	17	3	20	85	
Sta. 6	A - C	1	17	3	20	85	78
Sta. 6	A - C	2	13	7	20	65	
Sta. 6	A - C	3	17	3	20	85	
Sta. 6	A - C	4	15	5	20	75	
Sta. 6	A - C	5	16	4	20	80	
Sta. 7 Sta. 7 Sta. 7 Sta. 7 Sta. 7 Sta. 7	C C C C C C	1 2 3 4 5	18 17 18 18 18	2 3 2 2 2	20 20 20 20 20	90 85 90 90 90	89

1

ж -

TABLE B.2. Amphipod Results

Station	Composite	Rep	Alive	Dead	Total	Percent Survival	Mean Percent Survival
Sta. 8 Sta. 8 Sta. 8 Sta. 8 Sta. 8 Sta. 8	A-C A-C A-C A-C A-C	1 2 3 4 5	19 20 17 18 19	1 0 3 2 1	20 20 20 20 20	95 100 85 90 95	93
Sta. 9 Sta. 9 Sta. 9 Sta. 9 Sta. 9	A-C A-C A-C A-C A-C	1 2 3 4 5	19 16 20 19 18	1 4 0 1 2	20 20 20 20 20	95 80 100 95 90	92
Sta. 10 Sta. 10 Sta. 10 Sta. 10 Sta. 10	A-C A-C A-C A-C A-C	1 2 3 4 5	15 19 19 18 17	5 1 2 3	20 20 20 20 20	75 95 95 90 85	88
Sta. 11 Sta. 11 Sta. 11 Sta. 11 Sta. 11	A-C A-C A-C A-C A-C	1 2 3 4 5	13 20 15 19 17	7 0 5 1 3	20 20 20 20	65 100 75 95 85	84
Sta. 12 Sta. 12 Sta. 12 Sta. 12 Sta. 12	A-C A-C A-C A-C A-C	1 2 3 4 5	19 18 20 18 16	1 2 0 2 4	20 20 20 20 20	95 90 100 90 80	91
Sta. 13 Sta. 13 Sta. 13 Sta. 13 Sta. 13 Sta. 13	A-C A-C A-C A-C A-C	1 2 3 4 5	17 19 17 19 16	3 1 3 1 4	20 20 20 20 20	85 95 85 95 80	88
Sta. 14 Sta. 14 Sta. 14 Sta. 14 Sta. 14 Sta. 14	A-C A-C A-C A-C A-C	1 2 3 4 5	17 20 14 18 16	3 0 6 2 4	20 20 20 20 20	85 100 70 90 80	85

TABLE B.2. Amphipod Results (Cont'd)

,

Station	Composite	Rep	Alive	Dead	Total	Percent Survival	Mean Percent Survival
Sta. 15 Sta. 15 Sta. 15 Sta. 15 Sta. 15 Sta. 15	A A A A A	1 2 3 4 5	15 18 18 20 17	5 2 2 0 3	20 20 20 20 20	75 90 90 100 85	88
Sta. 16 Sta. 16 Sta. 16 Sta. 16 Sta. 16	C C C C C	1 2 3 4 5	18 17 17 19 16	2 3 1 4	20 20 20 20 20	90 85 85 95 80	87
Sta. 17 Sta. 17 Sta. 17 Sta. 17 Sta. 17 Sta. 17	A A A A	1 2 3 4 5	11 17 18 16 17	9 3 2 4 3	20 20 20 20 20	55 85 90 80 85	79
Sequim Ba Sequim Ba Sequim Ba Sequim Ba Sequim Ba	y - y - y - y - y - y -	1 2 3 4 5	17 19 17 14 20	3 1 3 6 0	20 20 20 20 20	85 95 85 70 100	87
West Beac West Beac West Beac West Beac West Beac	:h - :h - :h - :h - :h -	1 2 3 4 5	20 19 20 17 20	0 1 0 3 0	20 20 20 20 20	100 95 100 85 100	96

TABLE B.2. Amphipod Results (Cont'd)

							5 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1	
Sediment Sample	Conc	Rep	Total D-Cell ^(a)	Mean	Prop Surviving 202 per 10-ml Stocking Density	Mean Prop Surviving	ANOVA (b)	EC ₅₀ (c)
							NS	N/A
1 A-C			223		110			
1 4-0	0	2	180		0.94			
1 A-C	0	2	107	202 7	0.97	1.00		
1 A-C	10		220	202.(1 13	1100		
1 A-C	10	י כ	147		0.83		1	
1 4-0	10	2 7	21/	207 7	1.06	1.01		
1 4-0	10		220	203.3	1.00			
1 A-0	50	י י	150		0.74			
(A-C	50	2	201	100 3	1 00	0.94		
1 A-C	100		197	19013	0.03			
1 A-L	100	י 2	107		n 03			
1 A-C	100	2 7	107	177 0	0.78	0.88		
A-U	100	5			0110			
2 A							S	28%
2 A	0	1	178		0.88			
2 A	0	2	214		1.06			
2 A	0	3	216	202.7	1.07	1.00		
2 A	10	1	189		0.94			
2 A	10	2	191		0.95			
2 A	10	3	240	206.7	1.19	1.02		
2 A	50	1	0		0.00			
2 A	50	2	115		0.57			
2 A	50	3	10	41.7	0.05	0.21		
2 A	100	1	0		0.00			
2 A	100	2	0		0.00			
2 A	100	3	1	0.5	0.00	0.00		

Oyster Results TABLE B.3.

(a) Abnormal larvae were counted, but no significant difference was observed. (b) S = Significan at α = 0.05; NS = Not significant relative to West Beach.

(c) As percent elutriate; N/A indicates EC_{50} cannot be calculated.

B.7

Sediment Sample	Conc	Rep	Total D-Cell ^{(a}	Mean	Prop Surviving 202 per 10-ml Stocking Density	Mean Prop Surviving	ANOVA (b)	EC ₅₀ (c)
7 4-0							s	57%
3 4-0	0	1	227		1.12			
3 4-0	n	2	273		1.35			
3 4-0	. 0	3	266	255.3	1.32	1.26		
3 4-0	10	1	218		1.08			
3 A-C	10	2	207		1.02			
3 4-0	10	3	243	222.7	1.20	1.10		
3 4-0	50	1	138	· · · ·	0.68			
3 A-C	50	2	143		0.71			
3 A-C	50	3	199	160.0	0.99	0.79		
3 A-C	100	1	0		0.00			
3 A-C	100	2	0		0.00			
3 A-C	100	3	0	0.0	0.00	0.00		
4 A-C							NS	N/A
4 A-C	0()	d) 1	176		0.87			
4 A-C	0	2	241	208.5	1.19	1.03		
4 A-C	10	1	227		1.12			
4 A-C	10(d) 3	223	225.0	1.10	1.11		
4 A-C	50	1	167		0.83			
4 A-C	50	2	233		1.15			
4 A-C	50	3	179	193. 0	0.89	0.96		
4 A-C	100	1	127		0.63			
4 A-C	100	2	168		0.83			
4 A-C	100	3	159	151.3	0.79	0.75		
5 A-C							NS	N/A
5 A-C	0	1	191		0.95			
5 A-C	0	2	187		0.93			
5 A-C	0	3	209	195.7	1.03	0.97		
5 A-C	10	1	196		0.97			
5 A-C	10	2	139		0.69			
5 A-C	10	3	230	188.3	1.14	0.93		
5 A-C	50	2	122		0.60			
5 A-C	50	$(d)_{3}$	172	147.0	0.85	0.73		
5 A-C	100	1	195		0.97			
5 A-C	100	2	168		0.83			
E A C	100	7	195	186.0	0.97	0.92		

TABLE B.3. Oyster Results (Cont'd)

(a) Abnormal larvae were counted, but no significant difference was observed. (b) S = Significant at $\alpha = 0.05$; NS = Not significant relative to West Beach

(c) As percent elutriate; N/A indicates EC₅₀ cannot be calculated.

-

in i

Sediment Sample	Conc	Rep	Total D-Cell(a) _{Mean}	202 per 10-ml Stocking Density	Mean Prop Surviving	ANOVA(b)	EC ₅₀ (c)
6 4-0				,	an at 44 m		NS	N/A
6 A-C	0	1	238		1.18			
6 A-C	0	2	210		1.04			
6 A-C	. 0	3	157	201.7	0.78	1.00		
6 A-C	10	1	123		0.61			
6 A-C	10	2	171		0.85			
6 A-C	10	3	189	161.0	0.94	0.80		
6 A-C	50	1	144		0.71			
6 A-C	50 ^{(d}) ₂	152	148.0	0.75	0.73		
6 A-C	100	1	201		1.00			
6 A-C	100 ^{(d}) 3	189	195.0	0.94	0.97		
7 C							NS	N/A
7 C	0	1	181		0.90			
7 C	0(d) 3	213	197.0	1.05	0.98		
7 C	50	1	219		1.08			
7 C	50	2	134		0.66			
7 °C	50	3	233	195.3	1.15	0.97		
7 C	100	1	179		0.89			
7 C	100	2	128		0.63			
7 C	100	3	156	154.3	0.77	0.76		
8 A-C							NS	N/A
8 A-C	0	3	180		0.89			
8 A-C	0	1	257		1.27			
8 A-C	0	2	151	196.0	0.75	0.97		
8 A-C	10	1	204		1.01			
8 A-C	10	2	254		1.26			
8 A-C	10	3	138	198.7	0.68	0.98		
8 A-C	50	. 1	164		0.81			
8 A-C	50(0	3) 3	158	161.0	0.78	0.80		
8 A-C	100	1	212		1.05			•
8 A-C	100	2	236		1.17			
8 A-C	100	3	174	207.3	0.86	1.03		

TABLE B.3.	Oyster	Results	(Cont'd)
------------	--------	---------	----------

(a) Abnormal larvae were counted, but no significant difference was observed.

⁽b) $S = Significant at <math>\alpha = 0.05$; NS = Not significant relative to West Beach $(c) As percent elutriate; N/A indicates <math>EC_{50}$ cannot be calculated. (d) Outlier replicate removed from data analyses in calculation of EC_{50} . Outlier replicate removed from data analyses for ANOVA. Inclusion of outlier did not affect conclusion of significance from ANOVA results. Approximately 4% (11 outliers of 245 treatment containers) of data were outliers.

Sediment Sample	Conc	Rep	Total D-Cell ^(a)	Mean	Prop Surviving 202 per 10-ml Stocking Dencify	Mean Prop Surviving	ANOVA (b)	EC ₅₀ (c)
		1					NO	N /A
9 A-C	**						MO	N/A
9 A-C .	0	1	185		0.91			
9 A-C	0	2	170		0.84			
9 A-C	0	3	210	187.7	1.04	0.95	1	
9 A-C	10	1	138		0.68			
9 A-C	10	2	162		0.80			
9 A-C	10	. 3	109	136.3	0.54	0.67		
9 A-C	50(0	¹⁾ 1	130		0.64			
9 A-C	50	2	155	142.5	0.77	0.71		
9 A-C	100	1	116		0.57			
9 A-C	100	2	1 9 0		0.94			
9 A-C	100	3	153	153.0	0.76	0.76		
10 A-C							NS	N/A
10 A-C	0	1	176		0.87			
10 A-C	0	2	217		1.07			
10 A-C	0	3	178	190.3	0.88	0.94		
10 A-C	10	1	192		0.95			
10 A-C	10	2	248		1.23			
10 A-C	10	3	197	212.3	0.98	1.05		
10 A-C	50	1	113		0.56			
10 A-C	50	2	173		0.86			
10 A-C	50	3	97	127.7	0.48	0.63		
10 A-C	100	1	157		0.78			
10 A-C	100	d) 3	118	137.5	0.58	0.68		

TABLE B.3. Oyster Results (Cont'd)

(a) Abnormal larvae were counted, but no significant difference was observed.

(b) S = Significant at α = 0.05; NS = Not significant relative to West Beach.

(c) As percent elutriate; N/A indicates EC₅₀ cannot be calculated.

(d) Outlier replicate removed from data analyses in calculation of EC₅₀. Outlier replicate removed from data analyses for ANOVA. Inclusion of outlier did not affect conclusion of significance from ANOVA results. Approximately 4% (11 of 245 treatment containers) of data were outliers.

Sedi Samp	ment		Rep	Totai D-Cell(2)	Nean	Prop Surviving 202 per 10-ml Stocking Density	Mean Prop Surviving	ANOVA (b)	EC50 ^(c)
		47127877148, KERDURAL & A 18494	1007) 10 TU ¹ L U H						
11	A-C							NS	N/A
11	A-C	0	1	229		1.13			
11	A-C	0	2	200		0.99			
11	A-C	0	3	206	211.7	1.02	1.05		
11	A-C	- 10	1	132		0.65			
11	A-C	10	2	233		1.15			
11	A-C	10	3	208	191.0	1.03	0.95		
11	A-C	50	1	167		0.83			
11	A-C	50	2	220		1.09			
11	A-C	50	3	109	165.3	0.54	0.82		
11	A-C	100	1	167		0.83			
11	A-C	100	2	144		0.71			
11	A-C	100	3	132	147.7	0.65	0.73		
12	A-C	an #	• •					S	68%
12	A-C	0	1	153		0.76			
12	A-C	0(d)	2	188	170.5	0.93	0.85		
12	A-C	10	1	175		0.87			
12	A-C	10	2	180		0.89			
12	A-C	10	3	76	143.7	0.38	0.71		
12	A⊹C	50	1	93		0.46			
12	A-C	50	2	188		0.93			
12	A-C	50	3	188	156.3	0.93	0.77		
12	A-C	100	1	4		0.02			
12	A-C	100	2	0		0.00			
12	A-C	100	3	0	1.3	0.00	0.01		

TABLE B.3. Oyster Results (Cont'd)

dei titele

(a) Abnormal larvae were counted, but no significant difference was coserved.

(b) S = Significant at α = 0.05; NS = Not significant relative to West Beach.

(c) As percent elutriate; N/A indicates EC_{50} cannot be calculated. (d) Outlier replicate removed from data analyses in calculation of EC_{50} . Outlier replicate removed from data analyses for ANOVA. Inclusion of outlier did not affect conclusion of significance from ANOVA results.

B.11

Sediment Sample	Conc	Rep	Total D-Ceil(a)	Mean	Prop Surviving 202 per 10-mi Stocking Density	Mean Prop Surviving	ANOVA (b)	EC50 ⁽⁰⁾
47.4.0							NS	N/A
15 A-C	,	4	234		1.16			
15 A-U	رd)	2	221	227.5	1.09	1.1		
15 A-C	10	. -	215		1.06			
13 A-C	10	2	139		0.69			
15 A-C	10	7	183	179.0	0.91	0.89		
17 4-0	50	1	132		0.65			
13 A-C	50	2	161		0.80	1. 		
13 A-C	50	- - 	189	160.7	0.94	0.80		
13 A-C	100	1	03		0.46			
13 A-C	100	2	138		0.68			
13 A-C	100	د ۲	201	144.0	1.00	0.71		
15 A-U	100	5	20,					
14 4-0					* * *		NS	N/#
14 M-0	'n	1	218		1.08			
14 A-0	n n	2	213		1.05			
14 A-C	n	3	128	186.3	3 0.63	0.92		
14 A-C	10	1	178		0.88	0.97		
14 A-G	10	2	185		0.92			
14 A-0	10	7	226	196.	3 1.12			
14 A-C	50	1	134		0.66			
14 A-0	50	;	150		0.74			
14 A-C	50		57	113.	7 0.28	0.56		
14 A-C	100		195		0.97			
14 A-C	100	:	> 119		0.59			
14 A-C	100	•	3 92	135.	3 0.46	0.67	,	

TABLE B.3. Oyster Results (Cont'd)

(a) Abnormal larvae were counted, but no significant difference was observed.

(b) S = Significant at α = 0.05; NS = Not significant relative to West Beach.

(c) As percent elutriate; N/A indicates EC_{50} cannot be calculated.

(d) Outlier replicate removed from data analyses in calculation of EC₅₀. Outlier replicate removed from data analyses for ANOVA. Inclusion of outlier did not affect conclusion of significance from ANOVA results.

Sedi Samp	ment	Conc	Rep	Total D-Cell ⁽⁾	a) Mean	Prop Surviving 202 per 10-ml Stocking Density	Mean Prop Surviving	ANOVA (b) _{EC50} (c)
15	•						r I	S	19%
15	^	0	1	100		0.99		-	
15	^ A	n	2	157		0.78			
15	<u>^</u>	. 0	3	176	177.3	0.87	0.88		
15	Å	10	1	136		0.67			
15	A	10	2	139		0.69	4		
15	Å	10	3	174	149.7	0.86	0.74		
15	A	50	1	1		0.00			
15	A	50	2	1		0.00			
15	A	50	3	3	1.7	0.01	0.01		
15	A	100(d)	2	0		0.00			
15	A	100	3	4	2.0	0.02	0.01		
16	С							NS	N/A
16	С	0	1	195		0.97			
16	С	0	2	194		0.96			
16	C	0	3	242	210.3	1.20	1.04		
16	С	10	1	172		0.85			
16	С	10	2	201		1.00			
16	С	10	3	170	181.0	0.84	0.90		
16	C	50	î	215		1.06			
16	С	50	2	224		1.11			
16	С	50	3	206	215.0	1.02	1.06		
16	C	100	1	161		0.80			
16	С	100	2	231		1.14			
16	С	100	3	178	190.0	0.88	0.94		

TABLE B.3. Oyster Results (Cont'd)

(a) Abnormal larvae were counted, but no significant difference was observed.

(b) S = Significant at $\alpha = 0.05$; NS = Not significant relative to West Beach.

 (c) As percent elutriate; N/A indicates EC₅₀ cannot be calculated.
 (d) Outlier replicate removed from data analyses in calculation of EC₅₀. Outlier replicate removed from data analyses for ANOVA. Inclusion of outlier did not affect conclusion of significance from ANOVA results.

Sediment Sample	Conc	Rep	Total D-Ceil(a)	Mean	Prop Surviving 202 per 10-ml Stocking Density	Mean Prop Surviving	ANOVA (b)	EC50 ^(c)
17 0							WS	N/A
17 4	0	2	116		0.57			
17 A	0(d	1) 3	100	108.0	0.50	0.54		
17 A	10	1	219		1.08			
17 A	10	2	168		0.83			
17 A	10	3	212	199.7	1.05	0.99		
17 A	50	1	230		1.14			
17 A	50	2	154		0.76	· · ·		
17 A	50	3	153	179.0	0.76	0.89		
17 A	100	1	180		0.89			
17 A	100	2	136		0.67			
17 A	100	3	108	141.3	0.53	0.70		
Secuim Bay							NS	N/A
Secuim Bay	0	1	233		1.15			
Sequim Bay	0	2	154		0.76			
Sequim Bay	0	3	165	184.0	0.82	0.91		
Sequim Bay	10	1	209		1.03		'	
Secuim Bay	10	2	149		0.74			
Secuim Bay	10	3	150	169.3	0.74	0.84		4.
Sequim Bay	50	1	213		1.05			
Sequim Bay	50	2	145		0.72			
Sequim Bay	50	3	150	169.3	0.74	0.84		
Sequim Bay	100	1	172		0.85			
Sequim Bay	100	3	159	165.5	0.79	0.82		

TABLE B.3. Oyster Results (Cont'd)

1

(a) Abnormal larvae were counted, but no significant difference was observed. (b) S = Significant at $\alpha = 0.05$; NS = Not significant relative to West Beach.

(c) As percent elutriate; N/A indicates EC₅₀ cannot be calculated.

(d) Outlier replicate removed from data analyses in calculation of EC50. Outlier replicate removed from data analyses for ANOVA. Inclusion of outlier did not affect conclusion of significance from ANOVA results.

B.14

Sedir Sampi	nent Le	Conc	Rep	Total D-Cell ⁽⁾	a) _{Mean}	Prop Surviving 202 per 10-ml Stocking Density	Mean Prop Surviving	ANOVA (b)) _{EC50} (c)
West	Beach	••						NS	N/A
West	Beach	0	1	230		1.14			
West	Beach	0	2	218		1.08			
West	Beach	0	3	151	199.7	0.75	0.99		1
West	Beach	10	1	229		1.13			
West	Beach	10	2	228		1.13			
West	Beach	10	3	219	225.3	1.08	1.12		
West	Beach	50	1	176		0.87			
West	Beach	50	2	247		1.22			
West	Beach	50	3	234	219.0	1.16	1.08		
West	Beach	100	1	156		0.77			
West	Beach	100	2	146		0.72			
West	Beach	100	3	185	162.3	0.92	0.80		

TABLE B.3. Oyster Results (Cont'd)

, a

1

Maria Marina 🕯 🛛

(a) Abnormal larvae were counted, but no significant difference was observed.

(b) S = Significant at α = 0.05; NS = Not significant relative to West Beach.

(c) As percent elutriate; N/A indicates EC₅₀ cannot be calculated.

(d) Outlier replicate removed from data analyses in calculation of EC₅₀. Outlier replicate removed from data analyses for ANOVA. Inclusion of outlier did not affect conclusion of significance from ANOVA results.

Sedir Samp	ment le	Rep	Number Removed	T Number Alive	<u>erminati</u> Number Dead	on Number Empty	Total	Proportion Surviving
Sta.	1A-C	1	3	26	0	0	29	0.90
Sta.	1A-C	2	1	26	3	0	30	0.87
Sta.	1A-C	3	4	23	2	0	29	0.79
Sta.	2A	1	2	21	5	0	28	0.75
Sta.	2A	2	2	27	0	0	29	0.93
Sta.	2A	3	0	28	0	1	29	0.97
Sta.	3A-C	1	0	31	0	0	31	1.00
Sta.	3A-C	2	1	29	0	0	30	0.97
Sta.	3A-C	3	1	30	0	0	31	0.97
Sta.	4A-C	1	0	28	1	0	29	0.97
Sta.	4A-C	2	1	28	0	0	29	0.97
Sta.	4A-C	3	0	30	0	0	30	1.00
Sta. Sta. Sta.	5A-C 5A-C 5A-C	1 2 3	1 0 1	28 30 29	0 0	1 0 0	30 30 30	0.93 1.00 0.97
Sta.	6A-C	1	0	30	0	0	30	1.00
Sta.	6A-C	2	2	29	0	0	31	0.94
Sta.	6A-C	3	1	29	0	0	30	0.97
Sta.	7C	1	0	30	0	0	30	1.00
Sta.	7C	2	0	30	0	0	30	1.00
Sta.	7C	3	1	29	0	0	30	0.97
Sta.	8A-C	1	0	27	1	1	29	0.93
Sta.	8A-C	2	0	26	0	3	29	0.90
Sta.	8A-C	3	1	27	0	0	28	0.96
Sta.	9A-C	1	0	30	0	0	30	1.00
Sta.	9A-C	2	1	30	0	0	31	0.97
Sta.	9A-C	3	2	27	0	1	30	0.90
Sta.	10A-C	1	0	31	0	1	32	0.97
Sta.	10A-C	2	0	30	0	0	30	1.00
Sta.	10A-C	3	1	28	0	0	29	0.97
Sta.	11A-C	1	2	27	0	0	29	0.93
Sta.	11A-C	2	2	27	1	0	30	0.90
Sta.	11A-C	3	0	29	0	0	29	1.00

TABLE B.4. 30-Day Macoma Results

			T	'erminati	on		
Sediment Sample	Rep	Number Removed	Number Alive	Number Dead	Number Empty	Total	Proportion Surviving
Sta. 12A-C	1	1	25	0	0	26	0.96
Sta. 12A-C	2	1	26	0	0	27	0.96
Sta. 12A-C	3	1	29	0	0	30	0.97
Sta. 13A-C	1	0	27	1	0	28	0.96
Sta. 13A-C	2	0	30	0	0	30	1.00
Sta. 13A-C	3	2	29	0	0	31	0.94
Sta. 14A-C	1	1	29	1	0	31	0.94
Sta. 14A-C	2	0	27	1	0	28	0.96
Sta. 14A-C	3	2	26	0	0	28	0.93
Sta. 17A	1	0	32	0	0	32	1.00
Sta. 17A	2	0	30	0	0	30	1.00
Sta. 17A	3	0	32	0	0	32	1.00
Sequim Bay	1	0	30	1	0	31	0.97
Sequim Bay	2	0	28	0	1	29	0.97
Sequim Bay	3	0	30	0	0	30	1.00
West Beach	1	0	30	0	0	30	1.00
West Beach	2	0	29	0	0	29	1.00
West Beach	3	2	28	0	0	30	0.93

TABLE B.4. 30-Day Macoma Results (Cont'd)

Sediment Sample	Rep	Number Removed	T Number Alive	erminati Number Dead	on Number Empty	Total	Proportion Surviving
Sta. 1 A-C	4	7	21	0	1	29	0.72
Sta. 1 A-C	5	11	18		0	29	0.62
Sta. 2 A	4	6	23	0	0	29	0.97
Sta. 2 A	5	5	23	0	1	29	0.79
Sta. 3 A-C	4	1	27	0	0	28	0.96
Sta. 3 A-C	5	8	22	0		30	0.73
Sta. 4 A-C	4	5	24	0	1	30	0.80
Sta. 4 A-C	5	1	29	0	0	30	0.97
Sta. 5 A-C	4	2	28	0	0	30	0.93
Sta. 5 A-C	5	1	31	0	0	32	0.97
Sta. 6 A-C	4	4	25	0	0	29	0.86
Sta. 6 A-C	5	2	27	0	0	29	0.93
Sta. 7 C	4	3	22	2	0	27	0.81
Sta. 7 C	5	1	30	0	0	31	0.97
Sta. 8 A-C	4	2	25	0	0	27	0.93
Sta. 8 A-C	5	2	29		0	31	0.94
Sta. 9 A-C	4	2	28	0	0	30	0.93
Sta. 9 A-C	5	5	25	0	0	30	0.83
Sta. 10 A-	C 4	3	25	0	0	28	0.89
Sta. 10 A-	C 5	2	28	0	0	30	0.93
Sta. 11 A-	C 4	1	28	0	0	29	0.97
Sta. 11 A-	C 5	0	30	0	0	30	1.00
Sta. 12 A-	C 4	3	28	0	0	31	0.90
Sta. 12 A-	C 5	4	25	1	0	30	0.83
Sta. 13 A-	C 4	5	24	1	0	30	0.80
Sta. 13 A-	C 5	5	27	0	0	32	0.84
Sta. 14 A-	C 4	2	27	0	1	30	0.90
Sta. 14 A-	C 5	2	24	1	1	28	0.86

-

TABLE B.5. 60-Day Macoma Results

۲,

п

			- The second sec	ind	30-Dav P	lacolla	60-Day	Macoma ^(a)	Dyster L	BLYBE
parameter	Mic Required	rotax Observed	Required	Coserved	Required	Observed	Required	doserved	Required	diserved
Control Survival (%)	(q)	N/N	R	8	8	8	N/N	መ-ሜ	R	8
Reference Toxicant (mg/L) Response (EC- or LC- ₅₀)	₂₆ (c)	7.68-18.99	A/A	N/A	N/N	N/A	N/A	N/A	0.61 ^(d)	1.9
Hater Quality Temp. Range (°C)	N/A	N/A	15 ± 1	13.9-18.1 ^(e)	ambient	11.1-15.7	ambient	10.6-13.5	20 ± 2	18.7-21.0
D.O. Range (mg/L)	N/A	N/A	0*≁⋜	6.2-8.2	0*%≂	5.7-8.6	≥ 6.0	6.1-8.6	1°%	6.7-8.5
pH Range	N/N	N/A	ambîent ±0.4	7.56-8.62	ambient ± 0.5	734-8.07	ambîent ± 0.5	6.70-8.03	anbient ± 0.5	7.92-8.58
Salinity Range (°/ ")	N/A	N/A	ambîent ±1.0	28.0-33.0	ambîent ± 1.0	30.0-33.0	ambient ± 1.0	30.0-32.5	Z7.0 ± 1.0	<u>5.0-3.0(е)</u>
Flow Rate (ml/min)	N/A	N/A	N/A	N/A	125 ± 10	114-139 ^(e)	125 ± 10	108-132 ^(e)	N/N	N/N
 (a) Summary for Day 31 t (b) N/A - not applicable (c) Reported in Beckman (d) Reported in (TetraTe (e) Out of accentable ra 	hrough Day coperating cch 1985) 1	y 60, only Manual (Beckma for 48-hour tes	n 1982) t							

Quality Assurance Summary for Toxicological Tests TABLE B.6.

4

B.20

Out of acceptable range

Tests
Toxicological
for
Summary
Assurance
Quality
B.6.
TABLE

Parameter	Mic Required	rotox Observed	Amp ^r Required	ni pod Observed	30-Day I Required	Macoma Observed	60-Day Required	Macoma ^(a) Otserved	Oyster L Required	arvae Observed
Control Survival (%)	(q) N/N	N/A	8	8	8	88	V/N	87-07	02	8
Reference Toxicant (mg/L) Response (EC- or LC- ₅₀)	26 (c)	7.68-18.99	N/N	N/A	N/A	V/N	N/N	N/N	0.61 ^(d)	1.9
Water Quality Temp. Range (°C)	N/A	N/N	15 ± 1	13.9-18.1 ^(e)	anbient	11.1-15.7	ambient	10.6-13.5	20 ± 2	18.7-21.0
D.C. Range (mg/L)	N/A	N/A	0.4≤	6.2-8.2	0.4≤	5.7-8.6	≥ 6. 0	6.1-8.6	26.0	6.7-8.5
pH Range	N/A	N/A	ambient ± 0.4	7.56-8.62	ambient ± 0.5	7.34-8.07	ambient ± 0.5	6.70-8.03	ambient ± 0.5	7.92-8.58
Salinity Range (°/)	N/A	N/A	ambient ± 1.0	28.0-33.0	ambient ± 1.0	30.0-33.0	ambient ± 1.0	30.0-32.5	27.0 ± 1.0	25.0-28.0 ^(e)
Flow Rate (ml/min)	N/A	N/A	N/A	N/A	125 ± 10	114-139 ^(e)	125 ± 10	108-132 ^(e)	N/N	N/A
 (a) Summary for Day 31 1 (b) N/A - not applicable (c) Reported in Beckman (d) Reported in (TetraTe (e) Out of acceptable re 	through Day e Operating sch 1985) f	/ 60, only Manual (Beckman or 48-hour test	1982)							

B.20

APPENDIX C

SEDIMENT AND ELUTRIATE CHEMISTRY DATA

<u>IABLE C.1</u>. Sediment Dioxin Results Concentrations in ng/Kg dry

Native Isomer	Sta. Conc.	1A D.L.	Sta. Conc.	1C D.L.	Sta. 1 Conc.	A-C D.L.	Sta. Conc.	2A D.L.	Sta. Conc.	3A D.L.	Sta. : Conc.	38 D.L.	Sta. Conc.:	3C D.L.	sta. Conc.	3A-C D.L.
2378-TCDF Total TCDF	2.10 2.10		ק פ פ	1.16 	1.8 8 2.30	1 1	3.70 5.40	1 1	ים קיים	1.30 	. pr	1.16	pu pu	1.06 	모믿	1.36
2378-TCDD Total TCDD	nd 1.50	3.5Ø 	nd 1.80	1.60 	nd 2.40	Ø.81 	0.67 4.00		ри	1.40	nd 1.76	2.26	pu pu	1.10	pu	2.10
12378-PeCDF 23478-PeCDF Total PeCDF	nd 0.49 1.50	g .62 	pr pr	0.35 0.47 	nd nd 1.50	g .21 g .32	8.31 6.48 5.68	111	nd nd	6.38 6.24	pu pu	6 .34 6 .31	pu pu	6.45 6.44	ק ה חק	6 .27 6 .17
12378-PeCDD Total PeCDD	pu	Ø.44 	ри	B .52	Ø.43 Ø.88	; ;	1.20 3.20		8.52 1.18		ø.82 ø.82		pu	g .85 	Ø.55 1.10	
123478-H×CDF	ри	1.60	pu	g .46	þ	g .32	Ø .84	ł	р	0.30	pu	g .68	р	6 .91	ри	g .55
123678-HxCDF	nd 6 82	6 .34	nd 8_63	B .53 	ри Ри	Ø.18 Ø.67	Ø.65 1.20	1	pup	B .19 B .19	p p	g.55 g.78	2 P	g .82 g .67	pu pu	g .59 g .66
234678-HxCDF Total-HxCDF	nd 4.30	Ø.68 	nd Ø.63	B .53	קק	6 .43	nd 13. 66	1.10	0.74 0.74		p p	g .32	<u> </u>	B .59 	pu	6 .56
123478-HxCDD 123678-HxCDD 123789-HxCDD 123789-HxCDD Total-HxCDD	nd 0.68 1.10 7.80	6 .85	nd nd nd 2.50	0.56 1.00 0.59	nd 1.56 9.46	d .66	6.39 2.56 3.36 26.68		nd nd 1.50 9.30	6.48 6.82 	nd nd 2.46	g .62 g.91 	nd nd 2.26	8.78 8.58 	nd nd 1.68 11.88	g .53 g .44
1234678-HpCDF 1234789-HpCDF Total HpCDF	2.80 nd 7.50	6.98	ק ק ק	Ø.59 Ø.84	3.00 nd 7.60	6.61 	6.50 nd 17.00	 1.2 6 	6.42 nd 1.36	6.54 	pu pu	0.60 0.60 	p p p	Ø.96 1.80	nd nd 3.1 6	1.48 9.64
1234678-HpCDD Total HpCDD	11.00 21.00		3.50 6.60		9.70 20.00		32.00 64.00		4.90 9.50		8.80 18.00		5.60 12.00	11	6.40 12.90	1
OCDF OCDD	6.60 89.00		1.60 37.00		5.20 68.00		14.00 200.00		2.00 45.00	1 1	1.26		nd 37. 6 0	1.50	7.80 48.00	

TABLE C.1. Sediment Dioxin Results (Cont'd) - Concentrations in ng/Kg dry

Native	Sta. 4	1A	Sta.	4B	Sta. 4		Sta. 4A	ې	Sta.	5A	Sta. 5	8	Sta. 5(
Isomer	Conc.	D.L.	Conc.	D.L.	Canc.	D.L.	Conc.	D.L.	Conc.	D.L.	Conc.	D.L.	Conc.	D.L.
2378-TCDF	5.00	ł	1.30		pu	2.70	2.90	ł	pu	1.50	2.30	ł	1.40	ł
Total TCDF	5.00	1	1.30		pu	ł	4.50	ł	ри	ł	2.30	ļ	1.40	1
2378-TCDD	pu	1.80	pu	2.60	pu	3.10	pu	6.10	pu	3.60	pu	ł	pu	2.00
Total TCDD	3.00	}	2.40		pu	1	pu	1	р	}	Þ	7.80	1.80	ł
12378-PeCDF	pu	Ø.73	pu	0.42	pu	0.90	рц	g .86	pu	1.10	pu	1.40	9.4 7	}
23478-PeCDF	Ø.89	ł	pu	G .49	pu	Ø.63	nd	1.30	pu	Ø.51	pu	1.90	Ø .39	ł
Total PeCDF	8.20		1.50	1	pu	-	pu	1	pu	1	6.49	 ·	8.39	I
12378-PeCDD	pq	1.50	1.00	ł	pu	g .92	ри	2.00	þu	1.10	pu	3.20	1.20	{
Total PeCDD	4.10	ł	1.80		ри		pu		3.80	ł	pu	I	1.20	I
123478-HxCDF	1.80	1	Ø.80	!	pu	1.30	pu	1.90	ри	g .8 g	2.90	1	1.70	ł
123678-HxCDF	1.40	ł	0.47	•	Þ	B .75	ри	1.90	pu	0.50	pu	1.80	1.40	. {
123789-HxCDF	1.20		0.80	ł	pu	B .99	pu	2.10	þ	Ø .94	P	1.70	9 .64	1
234678-HxCDF	рц	Ø .69	pu	B.64	pu	g .92	pu	6.00	þ	1.60	P	1.50	pu	· Ø.74
Total-HxCDF	30.00	ł	9.90		pu	ł	pu	1	þ	1	32.00	I	25.00	ł
123478-HxCDD	0.90	1	g.56	1	ри	g .66	pu	3.80	рц	6 .78	pu	3.40	ри	1.10
123678-HxCDD	3.00	1	1.90	ł	pu	1.40	2.40	ł	1.30	1	3.10	ł	1.70	1
123789-HxCDD	3.40	1	2.90	1	3.20	1	'n	1.80	3.60	1	3.70	1	2.70	1
Total-HxCDD	32.00		20.00	1	20.00	ł	34.00	ļ	21.00	1	56.00	1	23.00	I
1234678-HpCDF	16.00	!	5.60	1	pu	g .84	13.00	1	Ø.95	1	20.00	ł	23.00	1
1234789-HpCDF	pu	Ø .63	pu	1.99	ри	1.10	pu	1.40	pu	0.97	pu	4.86	pu	Ø .93
Total HpCDF	53.00	1	15.00	!	pu	1	35.00	ł	Ø.95	1	77.00	1	46.00	
1234678-HpCDD	66.00	{	23.00	1	9.00	-	40.00	!	9.80	ł	89.90	ł	23.00	ł
Total HpCDD	140.00	ł	50.00	1	20.00	ł	68.00	ł	19.00	1	220.00	ł	48.00	1
OCDF OCDD	43.00 660.00	11	8.40 150.00		nd 41.00	2.80	27.00 370.00		5.10 55.00		38.00 750.00		44. 66 33 6.66	

TABLE C.1. Sediment Dioxin Results (Cont'd) - Concentrations in ng/Kg dry

Nat ive	Sta.	5Â-C	Sta.	БА	Sta. 6	8	Sta. (۔ بر	Sta 6A-	ې	Sta. 7	ن ن	Sta. 8	λ
Isomer	Conc.	D.L.	Conc.	D.L.	Conc.	0.L.	Conc.	D.L.	Conc.	ŋ.L.	Conc.	U.L.	conc.	n.L.
2378-TCDF	p	1.60	pu	0 .94	3.30	1	2.30	•	pu	1.20	pu	2.00	7.60	ł
Total TCDF	ри	ł	pu	1	3.30		20.00	!	pu		pu	1	14.00	ł
2378-TCDD	pu	3.20	pu	1.70	pu	4.80	pu	3.10	pu	1.80	pu	3.60	2.50	ł
Total TCDD	pu .	1	pu	ł	ри		ри	1	pu	1	pu	-	2.50	ł
12378-PeCDF	pu	Ø.69	pu	B .75	pu	g .86	pu	g .95	pu	0.50	ри	1.60	pu	1.10
23478-PeCDF	ри	0 .57	pu	0.72	pu	0.64	pu	1.40	pu	0.50	pu	1.10	5.80	1
Total PeCDF	pu	ł	'nġ	1	3.30	ł	28.00	1	8.90	 	pu		8.16	1
12378-PeCDD	g .96	ł	pu	1.20	pu	1.20	pu	1.90	1.20		2.90		2.30	ł
Total PeCDD	0 .96	{	pu		ри	ł	pu	1	3.48	1	2.60	1	6.80	I
123478-HxCDF	pu	Ø.84	ри	1.20	pu	1.10	5.50	I	pu	1.10	pu	1.90	2.10	ł
123678-HxCDF	pu	B .54	pu	g .68	pu	4.40	4.00	ł	1.00		Ъ	g .93	pu	1.60
123789-HxCDF	g .93	ł	р	1.50	р	1.35	pu	1.70	g .89	ł	ри	1.40	1.70	1
234678-HxCDF	pu	Ø.78	pu	1.20	pu	1.50	pu	2.89	р	Ø .75	P	2.60	pu,	1, 78
Total-HxCDF	2.60	1	pu	ł	16.00	ł	120.00	1	27.00	ł	pu	ľ	32.00	ł
123478-HxCDD	pu	0.60	pu	0 .78	ри	1.50	pu	2.00	6.76	ł	pu	2.30	pu	2.10
123678-HxCDD	1.20	1	pu	2.00	р	2.80	5.70	1	2.30	1	nđ	1.50	6.99	ł
123789-HxCDD	3.10		Lid	2.00	4.10	ł	6.00	1	2.70	1	3.70	1	6.10	1
Total-HxCDD	18.00	1	10.00	!	29.00	1	19. 00		26.00	ł	23.00	I	52.00	ł
1234678-HpCDF	4.20	ł	pu	2.40	16.00	ł	91.00	.1	22.00	1	pu	1.90	22.88	ł
1234789-HpCDF	pu	Ø .86	ри	1.70	pu	1.90	pu	4.50	pu	0.70	pu	2.40	pu	2.80
Total HpCDF	11.00	1	pu	{	74.00	ł	250.00	1	63.00	1	pu	I	66.00	1
1234678-HpCDD	11.00	ł	14.00		120.00	ł	150.00	1	41.00	ł	11.60		83. 60	١
Total HpCDD	26.00	ł	29.66		260.00	1	300.00	ł	89 . 88	ł	28.89	1	140.66	1
OCDF	7.60		7.40	١	86.99	1	220.00	ł	54.00	}	3.00	1	91.00	ł
0000	73.00	1	93.00	ł	1466.60	ł	1169.60		300.00	ł	65.00	1	510-00	1

dry
ng/Kg
in
- Concentrations
(Cont'd
Results
Dioxin
Sediment
ABLE C.1.

3

13.00 Sta. 9A-C Conc. D.L. 9.20 8.20 1.70 0.70 3.50 1.90 1.60 1.29 1.40 2.50 3.50 4.50 ł ł 1 ł ł 1 1 1 1 1 240.00 nd nd 4.75 29.88 6.30 nd 15.00 28.**69** 57.**69** ри 밀밀 pu pu 말말말 g g Papa 2 2 1.60 1.80 1.30 1.70 2.00 1.60 4.56 1.19 2.2B | | | ľ ł ł 1 1 1 1 1 1 11 ł Sta. 9C 24.00 370.00 13.00 34.00 55.00 110.00 4.28 6.7**8** 9.30 4.60 3.50 3.50 18.00 8.60 51.00 Conc. pu Ы 믿믿 밀밀 p p Ъ Б 1.40 1.50 1.20 1.80 2.00 2.90 **9**.63 **9**.55 0.91 **g**.76 **Ø**.58 0.77 D.L. ł 1 ĺ 1 1 | | 1 1 1 Sta. 9B Conc. D nd 1.20 nd 12.*0*9 2.60 10.00 20.00 3.30 p p 말말 pu pu Б 25 5 밀밀 pu pu pu 1.70 **g**.68 **g**.56 0.41 **g**.64 **g**.68 0.97 Ø.37 0.60 0.97 **B**.39 0.41 1 ł 1 1 -1 1.1 -1 ł 1 1 Sta. 9A onc. D.1 2.50 1.60 4.20 8.70 nd 24.69 4.70 8.70 10.00 1.50 **g**.91 Conc. 면면 Б Б Б פפפ 밀밀 밀밀 g g 2.10 1.80 **g**.83 1.80 1.30 Ø.84 ٥.٢. ł | | -1 11 ł | | ł Sta. 8A-C 1 1 1 85.00 1100.00 nd 5.80 5.40 58.09 16.00 nd 46.00 87.00 160.00 Conc. 8.90 1.50 5.10 1.30 11.00 2.18 6.18 nd Ø.98 nd nd 27.88 7.00 Б Ø.45 D.L. ł 1 1 -1 | | | | ł 1 1 1 1 1 1 1 1 1 1 1 ł Sta. 8C nd 9.87 8.99 1.20 15.00 Ø.75 74.00 29.00 460.00 4.70 2.20 8.00 1.40 0.53 25.00 1.00 6.20 5.50 39.00 6.30 16.00 1.80 50.00 Conc. -- 2.3 3.8 2.1 ٥.٢. 1 1 t ł ; | | 1 ł -1 1 1 1 1 1 | | ł i Sta. 8B 78.0 1100.9 3.3 19.Ø nd 48.Ø 98.Ø 170.0 6.8 12.0 2.8 11.0 14.0 11.0 3.0 2.5 nd 35.09 11.0 82.0 1.7 2.1 5.4 4.1 Conc. B 1234678-HpCDD Total HpCDD 123678-HxCDD 123789-HxCDD 1234678-HpCDF 1234789-HpCDF 234678-HxCDF Tota I-HxCDF 123478-HxCDD 123678-HxCDF 23789-HxCDF 123478-HxCDF 123³-PeCDD fota 1-HxCDD Total HpCDF Total PeCDF Total PeCDD 12378-PeCDF 23478-PeCDF Total TCDF Total TCDD 2378-TCDD 2378-TCDF Native Isomer 0CDF 0CDD

2
σ
5
×
9
2
E
S
E .
. <u></u>
Ę,
Ľ
÷
a
ũ
0
ŭ
•
1
<u> </u>
Ę
5
Ū,
\sim
S
÷
3
ð
Ř
-
÷
X
÷
0
د
u.
Ĕ
÷
BG
Ś
•,
-
ات
ы
9
Ĩ

Native Isomer	Sta. Conc.	10A D.L.	Sta. 1 Conc.	ØB D.L.	Sta. 10 Conc.	о. С.	Sta. 1 Conc.	ØA-C D.L.	Sta. 1 Conc.	11A D.L.	Sta. 1 Conc.	1C D.L.	Sta. 1. Conc.	D.L.
2378-TCDF	pu	1.30	7.6		4.30		pu	2.5	2.30		3.30		3.10	
Total TCDF	P		12.60	1	21.00	1	4.0	ł	22.00	1	29.00	ł	22.00	1
2378-TCDD	pu	2.60	pu	3.50	pu	2.10	pu	4.1	1.70	١	2.40	1	2.90	١
Total TCDD	pu	ł	pu	ł	6.60	1	ри	1	1.78		7.50	1	9.50	1
12378-PeCDF	pu	0.45	pu	1.00	pu	0.70	pu	1.5	1.60	I	1.66	١	3.50	ł
23478-PeCDF	pu	Ø.58	рц	1.48	рu	g .75	pu	1.3	1.30	1	1.60	١	3.10	1
Total PeCDF	pu		4.69		23.00		12.8	I	41.60	1	31.66	ł	37.60	1
12378-PeCDD	pu	9 .84	1.80	ł	2.90	ł	pu	2.6	2.10		2.19	1	4.00	1
Total PeCDD	pu		1.80		12.60	ł	pu		3.80	1	9.66		7.16	۱
123478-H~CNF	pu	1 60	pu	2 00	4.96	ł	4.5	ł	7.60	ļ	3.98	1	5.98	1
123678-HxCDF	pu	g .55	pu	6 .93	3.49	ł	2.1	ł	4.60	ł	3.68	ļ	4.50	ł
123789-HxCDF	pu	1.20	pu	1.96	pu	2.00	pu	2.2	1.60	ł	2.20	ł	3.60	1
234678-HxCDF	pu	1.20	pu	2.66	pu	1.30	pu	1.1	06.90	ł	0.40	1	1.80	۱
Total-HxCDF	pu	-	20.00	1	80.08	ł	59.0	ł	150.06	ł	166-86		130.00	
123478-HxCDD	pu	0 .73	pu	1.59	pu	1.40	pu	2.3	1.30	1	2.30	١	2.70	ł
123678-HxCDD	pu	0 .60	4.10	ľ	9.36	ł	6.9	1	5.60	}	9.30		8.40	ł
123789-HxCDD	2.20	1	6.90	1	9.30		8.3	1	5.86		9.10	1	7.69	ŀ
Total-HxCDD	9.70	-	47.00	1	98. 8 0	1	68.0		59.00		87.00	I	71.60	
1234678-HpCDF	pu	1.50	15.00	ł	67.00	ł	40.0		210.00	ľ	98.99	ł	160.00	ł
1234789-HpCDF	pu	1.60	ри	1.90	pu	2.99	pu	3.4	4.10	ł	2.19	1	3.40	1
Total HpCDF	pu		39.00	1	220.00	1	169.0	1	400.00	1	246.69	ł	300.00	I
1234678-HnCDD	9.40	1	66.00	ł	220.00	ł	170.0	ł	86.99	ł	200.00	1	130.00	1
Total HpCDD	15.00		120.00	ł	420.00	ł	380.0	ł	186.60	ł	400.00	1	270.00	1
DCDF	JL	5.10	31.68		210.00	ł	160.0	ł	130.00	1	150.00	1	140.00	1
OCDD	81.60		420.60	1	1700.00	1	1700.0	1	560.00	1	1500.00	1	1666.60	ł

IABLE C.1. Sediment Dioxin Results (Cont'd) - Concentrations in ng/Kg dry

1.30 1.90 1.70 1.00 1.99 **8**.95 1.28 **g**.78 | | | | 1 | | 1 1 1 1 1 ł Conc. D.L. Sta. 14C 28.69 130.66 24.60 45.00 2.90 75.00 5.30 36.00 49.20 7.00 1.90 4.40 **Ø**.95 30.00 Б P 5 22 밀밀 Б Б 밀밀 1.20 **B**.42 0.54 0.70 0.60 1.10 2.10 1.10 D.L. **9**.66 **9**.61 0.53 Ø.65 1.20 1.80 1 ł | | | | ł 1 Sta. 14A 1.40 2.20 40.00 Conc. 6.40 13.00 ри ри 9.79 P P 22 פפפ ם פ Б ЪБ p p Б В 1.10 **6**.83 **g**.93 D.L. ł 1 1 1 | | 1 ł 1 1 1 1 1 | | | | Sta. 13A-C 59.00 420.00 7.46 51.60 34.00 84.30 62.00 120.00 38.00 **g.**88 3.98 4.40 2.18 8.90 2.50 9.90 1.30 1.50 2.40 2.30 Conc. B ри 5 5 1.10 **9**.69 0.72 8.77 D.L. 1 1 | | 11 L 1 1 1 -1 | | 1 | | | | Sta. 13C 3.28 32.*0*0 66.00 17.00 200.00 2.1**0** 5.20 g.93 3.98 7.80 50.00 **9**.63 3.30 1.40 Ø.58 3.20 3.20 2.80 16.90 Conc. pu 말멸 P 1.50 3.50 5.30 **Ø**.67 4.79 D.L. ł ł | | | | ł 1 1 ł 1 | 11 1 ļ 1 1 Sta. 13A 41.00 97.60 74.00 440.00 nd 5.50 45.90 1.10 3.80 6.50 52.00 63.00 130.00 13.00 1.80 2.40 1.60 2.60 1.60 0.81 Conc. 5 Б р Б 1.80 0.54 **g**.58 **0**.64 D.L. | | Sta. 12A-C 1 1 ۱ 1 1 1 1 1 1 1 ł ! 1 ł ! ł 1 16.00 220.00 21.00 6.80 19.00 29.00 69.00 1.90 2.60 nd 2.89 nd Ø.27 3.50 0.74 **0**.42 0.75 0.20 10.00 1.80 2.80 0.74 Б 0.60 Б Conc. **g**.36 0.55 Ø.47 1.90 1.30 1.20 **g**.89 0.44 0.31 9.74 0.97 D.L. ł ł ł ł 1 ł 1 | | 1 1 1 4 Sta. 12C 24.00 350.00 13.60 7.60 26.09 29.00 64.00 1.40 **g**.39 8.10 0.91 Conc. pu Б Б p p Бb g g P Б Б pg Pg 0.090 0.091 D.L. ł ł ł 1 -1 1 | 1 ł 1 ł 1 1 1 | 1 1 ł ł -Sta. 12A 0.970 1.100 2.900 6.629 9.889 4.400 8.500 19.000 3.709 60.000 9.180 0.700 **Ø. 0**45 0.130 0.130 5.800 1.600 0.770 1.300 Ø.26Ø 0.180 0.074 0.061 Conc. Б Б 1234678-HpCDF 1234789-HpCDF 1234678-HpCDD 123678-HxCDF 123789-HxCDF 234678-HxCDF 123478-HxCDD 123678-HxCDD 123789-HxCDD 123478-HxCDF Total HpCDD Tota 1-HxCDF Fota 1-HxCDD Tctal HpCDF 12378-PeCDD Total PeCDD 23478-PeCDF Total PeCDF 12378-PeCDF Total TCDD Total TCDF 2378-TCDD 2378-TCDF Native somer OCDF 0000

<u>TABLE C.1.</u> Sediment Dioxin Results (Cont'd) Concentrations in ng/Kg dry

Native	Sta. 14	A-C	Sta. 1	JA.	Sta. 17	8	Sta. 17C		Sequim	Bay	West Be	each
Isomer	Conc.	D.L.	Conc.	D.L.	Conc .	D.L.	Conc.	D.L.	Conc.	D.L.	Conc.	D.L.
2378-TCDF	ри	2.40	1.60	1	pu	2.30	pu	1.50	1.98	ł	pu	2.60
Total TCDF	pu	ł	13.00	ł	ри	ł,	pu	1	6.79	1	pu	I
2378-TCDD	ри	5.20	1.70	ł	pu	5.70	pu	2.20	;- •	2.60	pu	2.30
Total TCDD	pu	1	7.40	{	pu	ł	1.30	۱	1.90	ł	pu	ł
12378-PeCDF	pu	ß.66	pu	B .85	pu	g .97	Ø.54	ł	ри	1.16	p	B .68
23478-PeCDF	pu	0.76	pu	B .73	ри	6.95	pu	g .32	B .72	1	ри	g .63
Total PeCDF	3.70	ł	12.00	ł	pu	ł	Ø.54	ł	2.40	1	pu	ł
12378-PeCDD	1.30	ł	1.60	1	pu		1.30	ł	B .95	ł	pu	<u>6</u> .64
Total PeCDD	2.80	1	4.30	ł	ø.95	1	1.30	1	2.30	1	ри	1
123478-HxCDF	£.64	ł	3.20	ł	ри	1.40	pu	6 .37	g .97	ł	ри	0.70
123678-HxCDF	0.72	-	1.90	ł	ри	0 .73	pu	0.30	pu	g .86	pu	g .51
123789-HxCDF	pu	1.16	1.50		pu	1.16	B .95	1	g .97	ł	, pu	g .73
234678-HxCDF	Ø.73	1	pu	0 .57	pq	6.92	0°40	1	pu	g .88	pu	B .75
Total-HxCDF	15.00		52.00	1	pu	ł	1.40	ł	8.40	1	pu	1
123478-HxCDD	pu	1.10	1.60		pu	g .61	pu	8.72	1.69	ł	pu	9 .52
123678-HxCDD	1.49	1	3.50		pu	1.00	pu	B .73	3.10	1	р	B .83
123789-HxCD ^ŋ	3.70	1	4.96	ł	3.20	1	g .86	1	2.19	1	рц	1.30
Tota 1-HxCDD	27.00	ł	45.00	1	22. 00		16.00	1	33.00	ł	p	ł
1234678-HpCDF	28.00	ł	45.00	ŀ	1.80	1	р	g .87	5.20	Ì	ри	2.99
1234789-HpCDF	ри	g .92	р	2.10	pu	1.40	р	B .92	ри	1.40	р	6 .95
Total HpCDF	47.80		110.00		13.66	ł	'n	ł	14.00	I	р	1
1234678-HpCDD	16.00	ł	61.69		16.99	ł	6.30	ł	36.00	ł	2.49	ļ
Tctal HpCDD	32.99		140.60	ł	29.66		14.00	ł	78.00	ł	2.40	1.
OCDF	13.00	1	75.00	ł	18.00		2.30	ł	13.00		pu	4.50
OCDD -	169.69	ł	430.99	I	88.00	1	45.00	1	230.00	1	19.60	1

<u>TABLE C.2</u>. Sediment Guaiacols/Organic Acids Results Concentration in μ g/Kg dry

Laboratory ID Compound	Method Blank	1A-C	2A	ЗА-С	4A-C	5A-C	6A-C
Guatacol	67 U	7Ø U	82 U	81 U	75 U	11Ø U	11Ø U
4-Chlorogualacol	67 U	7Ø U	82 U	81 U	75 U	110 U	11Ø U
Isoeugeno l	67 U	7Ø U	82 U	81 U	75 U	110 U	11Ø U
Eugenol	67 U	70 U	82 U	81 U	75 U	110 U	11Ø U
4.5-Dichloroguaiacol	67 U	7Ø U	82 U	81 U	75 U	110 U	11Ø U
4.5.6-Trichloroguaiacol	67 U	7Ø U	82 U	81 U	75 U	110 U	110 U
3.4.5-Trichloroguaiacol	67 U	70 U.	82 U	81 U	75 U	110 U	11ø U
Tetrachlorogualacol	67 U	7Ø U	82 U	81 U	75 U	11Ø U	11Ø U
Catechol	67 U	70/U	82 U	81 U	75 U	11Ø U	11Ø U
4-Chlorocatechol	67 U	70/U	82 U	81 U	75 U	110 U	11Ø U
4,5-Dichlorocatechol	67 U	70 U	82 U	81 U	75 U	110 U	11Ø U
6-Chlorovanillin	67 U	70 U	82 U	81 U	75 U	110 U	110 U
3,4,5-Trichlorocatechol	67 U	70/U	82 U	81 U	75 U	110 U	11Ø U
Trichlorosyringol	67 U	7Ø U	82 U	81 U	75 U	110 U	11Ø U
5,6-Dichlorovanillin	67 U	700 U	82 U	81 U	75 U	11Ø U	11Ø U
Tetrachlorocatechol	67 U	7Ø U	82 U	81 U	75 U	110 _. U	11Ø U
Heptanoic Acid	67 U	7Ø U	82 U	81 U	75 U	11Ø U	110 U
Palmitoleic Acid	13Ø U	140 U	260	180	24Ø	38Ø	36Ø
Linoleic Acid	67 U	7Ø U	82 U	81 U	75 U	110 U	11Ø U
Linolenic Acid	67 U	7Ø U	82 U	81 U	75 U	110 U	110 U
Oleic Acid	33Ø U	35Ø U	410 U	400 U	38Ø U	53Ø U	53Ø U
Stearic Acid	67 U	700 U	110	88	92	130	22Ø
Hexadecanedioic Acid	13Ø U	14Ø U	16Ø U	160 U	150 U	21Ø U	21Ø U
Pimario Acid	67 U	70 U	82 U	81 U	75 U	11Ø U	11Ø U
Sandaracopimaric Acid	67 U	7Ø U	82 U	81 U	75 U	110 U	11Ø U
Isopimaric Acid	67 U	70 U	82 U	81 U	75 U	11Ø U	11Ø U
Palustrate Acid	67 U	70 U	82 U	81 U	75 U	11Ø U	11Ø U
Dehydroabietic Acid	67 U	7Ø U	120	85	100	14Ø	36Ø
Abietic Acid	67 U	70 U	82 U	81 U	75 U	11Ø U	62 J
Neoabietic Acid	67 U	70 U	82 U	81 U	75 U	110 U	11Ø U
1,4-Chloroabietic Acid	67 U	70 U	82 U	81 U	75 U	110 U	11Ø U
1,2-Chloroabietic Acid	67 U	7Ø U	82 U	81 U	75 U	11Ø U	11Ø U
Dichloroabietic Acid	67 U	7Ø U	82 U	81 U	75 U	11Ø U	11Ø U
Surrogate Recovery (%):							
Dihydroxy-d4-Benzene	50.5	46.2	29.6	40.9	40.8	65.5	70,8
Ø-Methyl Podocaprate Acid	94.7	106	115	113	116	116	114

U - undetected; J - estimated because result less than detection limit;

TABLE C.2. Sediment Guaiacols/Organic Acids Results (Cont'd) Concentration in μ g/Kg dry

Laboratory ID											
Compound	7A-0	84	V-C	9A-	-C	1ØA-	·C	11A-	-C	12A-	-C
Gualago	86 (. 86	5 11	97	Ш	88	U	96	U	94	U
4-Chloroquatacol	86 1	i 86	3 11	97	U.	88	ŭ	96	ŭ	94	ŭ
Isoeugenol	86 1	, 0. I 8f	ŝ	97	U.	88	ŭ	96	ŭ	94	Ū.
Fugenol	86 1	, O. I 86	3 11	97	ŭ	88	ŭ	96	Ŭ	94	ŭ
4.5-Dichloroguatacol	86 1	1 86	3 11	97	ŭ	88	U	96	Ŭ	94	ŭ
4.5.6-Trichloroguatacol	86 1	1 86	5 U	97	ŭ	88	Ū	96	ŭ	94	ŭ
3.4.5-Trich]croquatacol	86 1	1 86	3 U	97	ŭ	88	ŭ	96	ŭ	94	Ŭ
Tetrach lorogua laco l	86 (J 80	5 U	97	Ŭ	88	U	96	Ū	94	Ŭ
Catechol	86 l	J 80	5 U	97	U	88	U	96	U	94	U
4-Chlorocatechol	86 l	J 86	5 IJ	97	U	88	U	96	U	94	U
4,5-Dichlorocatechol	86 l	J 86	3 U	97	U	86	U	96	U	94	U
6-Chlorovanillin	86 l	J 80	3 U	97	U	88	U	96	U	94	U
3,4,5-Trichlorocatechol	86 l	J 81	3 U	97	U	88	U	96	U	94	U
Trichlorosyringol	86 l	J 80	3 Ų	97	U	88	U	96	U	94	U
5,6-Dichlorovanillin	86 l	J 80	3 U	97	U	88	U	96	U	94	U
Tetrachlorocatechol	86 1	J 81	5 U	97	U	88	U	96	U	94	U
Heptanoic Acid	86 l	J 8	3 U	97	U	88	U	96	U	94	U
Palmitoleic Acid	17Ø (J 591	8	540		2708		360	М	29Ø	
Linoleio Acid	86 l	J 81	3 U	97	U	88	U	96	U	94	U
Linolenic Acid	86 l	J 81	3 U	97	U	88	U	96	U	94	U
Oleic Acid	43Ø l	J 11	8 M	48Ø	U	44Ø	U	48Ø	U	470	U
Stearic Acid	61 M	1 18	2	220		14Ø		190	M	22Ø	
Hexadecanedioic Acid	17Ø (J 17	8 U	190	U	180	U	190	U	190	U
Pimaric Acid	86 (J 81	6 U	97	U	. 88	Ų	96	U	94	U
Sandaracopimaric Acid	86 (J 8	5 U	97	U	88	U	96	U	94	U
Isopimaric Acid	86	J 8	5 U	97	U	88	U	96	U	94	U
Palustrate Aoid	86 (U 8	5 U	97	U	88	U	96	U	94	U
Dehydroabietic Acid	160	19	8	190		120		520		300	
Abietic Acid	31 .) 3	2 J	40	J	88	U	140		49	J.
Neoabietic Acid	86 (J 8	5 U	97	U	88	U	96	U	94	U
1,4-Chloroabietic Acid	86 (U 8	6 U	97	U	88	U	96	U	94	U
1,2-Chloroabietic Acid	86	U 4	BM	33	M	88	U	87		68	M
Dichloroabietic Acid	86 (U 3-	4 M	97	U	88	U	45	М	36	М
Surrogate Recovery:						<i>w</i> = 1					
Dihydroxy-d4-Benzene	64.7	43.	4	48.6		75.2		42.3		59.6	
Ø-Methyl Podocaprate Acid	116.0	121.	Ø	115.0		114.0		113		98.4	
II - undetectedu 1 - estima	tod boom		1+ 1			ataatio					

U - undetected; J - estimated because result less than detection limit;

Laboratory ID						
Compound	13A-C	14A-C	15A	160	SB	WB
Gualacol	100 U	94 U	110 0	66 U	13Ø U	63 U
4-Chiorogua taco i	100 U	94 U	110 0	66 U	13Ø U	63 U
Isoeugenol	100 U	94 U	11Ø U	66 U	13Ø U	63 U
Eugenol	100 U	94 U	110 U	66 U	130 U .	63 U
4,5-Dichlorogualacol	100 U	94 U	110 U	66 U	13Ø U	63 U
4,5,6-Trichloroguaiacol	100 U	94 U	11Ø U	66 U	13Ø U	63 U
3,4,5-Trichloroguaiacol	100 U	94 U	11Ø U	66 U	13Ø U	63 U
Tetrachlorogualacol	100 U	94 U	11Ø U	66 U	13Ø U	63 U
Catechol	100 U	94 U	11Ø U	66 U	13Ø U	63 U
4-Chlorocatechol	100 U	94 U	110 U	66 U	13Ø U	63 U
4,5-Dichlorocatechol	100 U	94 U	110 U	66 U	13Ø U	63 U
6-Chlorovanillin	100 U	94 U	110 U	66 U	13Ø U	63 U
3,4,5-Trichlorocatechol	100 U	94 U	11Ø U	66 U	13Ø U	63 U
Trichlorosyringol	100 U	94 U	11Ø U	66 U	13Ø U	63 U
5.6-Dichlorovanillin	100 U	94 U	110 U	66 U	13Ø U	63 U
Tetrachlorocatechol	100 U	94 U	110 U	66 U	13Ø U	63 U
Heptanoic Acid	100 U	- 94 U	110 U	66 V	13Ø U	63 U
Palmitoleic Acid	21Ø U	500 M	500	130	4800	79Ø
Linoleia Acid	100 U	94 U	110 U	66 J	130 U	63 U
Linolenic Acid	100 1	94 U	110 1	66 U	130 U	63 U
Oleig Acid	520 U	470 1	550 U	33Ø U	1600	260 J
Stearic Acid	180	220	209	27 M	500	78
Hexadecanedioic Acid	21Ø U	19Ø U	22Ø U	130 U	26Ø U	13Ø U
Pimaric Acid	100 U	94 U	110 U	66 U	· 130 U	63 U
Sandaracopimaric Acid	220	470	110 U	66 U	13Ø U	63 U
Isopimaric Acid	100 1	94 U	110 0	66 U	130 U	63 U
Palustrate Acid	100 U	94 U	110 U	66 U	130 U	63 U
Dehydroabietic Acid	340	510	110 1	70 U	130 U	6Ø U
Abietic Acid	130	190	110 11	66 U	130 U	63 1
Neoabietic Acid	100 0	94 11	110 1	66 U	130 U	63 11
1.4-Chloroabietic Acid	100 1	94 11	110 11	66 11	130 1	63 11
1.2-Chloroabietic Acid	100 1	94 11	110 11	66 U	130 11	63 11
Dichloroabietic Acid	100 U	94 U	110 U	66 U	13Ø U	63 U
Surrogate Recovery (%):						
Dihydroxy-d4-Benzene	48.6	44.4	52.2	43.8	50.5	93.1
Ø-Methyl Podocaprate Acid	109	118	116	111	111	111

<u>TABLE C.2</u>. Sediment Guaiacols/Organic Acids Results (Cont'd) Concentration in μ g/Kg dry

U - undetected; J - estimated because result less than detection limit;
<u>TABLE C.3</u>. Elutriate Guaiacols/Organic Acids Results Concentration in μ g/L

Laboratory ID	Method					
Compound	81ank	1A-C	2A	3A-C	4A-C	5A-C
Guaiacol	1 U	1 U	1 U	1 U	1 U	1 U
4-Chloroguaiacol	1 U	1 U	10	1 U	1 U	1 U
Isoeugenol	1 U	10	1 U	10	10	10
Eugenol	1 U	. 1 U	1 U	· 10	10	10
4,5-Dichloroguaiacol	1 U	1 U	1 U	10	1.0	1 U
4,5,6-Trichloroguaiacol	1 U	1 U	1 U	10	10	10
3,4,5-Trichloroguaiacol	10	1 U	10	10	1 U	10
Tetrachloroguaiacol	, I U	1 U	1 U	1 U	10	1 U
Catechol	1 U	1 U	1 U	1 U	1 U	1 U
4-Chlorocatechol	1 U	1 U	1 U	1 U	1 U	1 U
4,5-Dichlorocatechol	τU	1 U	1 U	1 U	1 U	1 U
6-Chlorovanillin	1 U	1 U	1 U	1 U	1 U	1 U
3,4,5-Trichlorocatechol	1 U	1 U	1 U	1 U	1 U	1 U
Trichlorosyringol	1 U	1 U	1 U	1 U	1 U	1 U
5,6-Dichlorovanillin	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachlorocatechol	1 U	1 U	1 U	<u>1</u> U	1 U	1 U
Heptanoic Acid	1 U	1 U	1 U	1 U	1 U	1 U
Palmitoleic Acid	2 U	2 U	2 U	2 U	2 U	2 U
Linoleic Acid	1 U	1 U .	1 U	1 U	1 U	1 U .
Linolenic Acid	1 U	1 U	1 U	1 U	1 U	1 U
Oleic Acid	5 U	5 U	5 U	5 U	5 U	5 U
Stearic Acid	1 U	1 U	1 U	1 U	1 U	1 U
Hexadecanedicic Acid	2 U	2 U	2 U	2 U	2 U	2 U
Pimaric Acid	1 U	1 U	1 U	1 U	1 U	1 U
Sandaracopimaric Acid	1 U	1 U	1 U	1 U	1 U	1 U
Isopimaric Acid	1 U	1 U	1 U	1 U	1 U	1 U
Palustrate Acid	1 U	1 U	1 U	1 U	1 U	1 U
Dehydroabietic Acid	1 U	1 U	1 U	1 U	1 U	1 U
Abietic Acid	1 U	1 U	1 U	1 Ü	1 U	1 U
Neoabietic Acid	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Chloroabietic Acid	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Chloroabietic Acid	1 U	1 U	1 U	1 U	1 U	1 U
Dichloroabietic Acid	1 U	1 U	1 U	1 U	1 U	1 U
Surrogate Recovery (%):						
Ø-Methyl Podocaprate Acid	62.1	101	96.3	97.4	91.8	91.7

U - undetected; J - estimated because result less than detection limit;

C.11

TABLE C.3. Elutriate Guaiacols/Organic Acids Results (Cont'd) Concentration in μ g/L

Laboratory ID	والمراد وبالتركين ويترك والمراد والمراجع					illing singly bin on the 12
Compound	6A-C	70	8A-C	9A-C	1ØA-C	11A-C
Guatacol	1	1	1 11	1 11	2 11	1 U
4-Chloroguaiacol	1 1	1 1	1 1	1 1	2 1	1 0
Isoeugenol	1 11	1 1	1 U	1 U	2 0	1 U
Eugenol	1 0	1 Ŭ	1 Ŭ	1 U	2.0	1 U
4.5-Dichloroguaiacol	1 U	1 U	1 U	· 1 U	2 U	1 U
4.5.6-Trichloroguaiacol	1 U	·1 Ū	1 0	1 U	2 U	1 U
3.4.5-Trichloroguaiacol	1 0	1 Ŭ	1 U	1 U	2 0	1 U .
Tetrachloroguaiacol	1 U	1 U	1 U	1 U	2 U	1 U
Catechol	1 U	1 U	1 U	1 U	2 U	1 U
4-Chlorocatechol	1 U	1 U	1 U ·	1 .U	2 U	1 U
4,5-Dichlorocatechol	1 U	1 U	1 U	1 U	2 U	1 U
6-Chlorovanillin	1 U	1 U	1 U	1 U	2 U	1 U
3,4,5-Trichlorocatechol	1 U	1 U	1 U	1 U	2 U	1 U
Trichlorosyringol	1 U	1. U	1 U	1 U	2 U	1 U
5,6-Dichlorovanillin	1 U	1 U	1 U	1 U	2 IJ	1 U
Tetrachlorocatechol	1 U	1 U	1 U	1 U	2 U	1 U
Heptanoic Acid	1 U	1 U	1 U	1 U	2 U	1 U
Palmitoleic Acid	2 U	2 U	2 U	2 U	4 U	2 U
Linoleic Acid	1 U	1 U	1 U ·	1 U	2 U	1 U
Linolenic Acid	1 U	1 U	1 U	1 U	2 U	. 1 U
Oleic Acid	5 U	5 U	5 U	5 U	1Ø U	5 U
Stearic Acid	1 U	1 U	1 U	1 U	2 U	1 U
Hexadecanedioic Acid	2 U	2 U	2 U	2 U	4 U	2 U
Pimaric Acid	1 U	1 U	1 U	1 U	2 U	1 U
Sandaracopimaric Acid	1 U	1 U	1 U	1 U	2 U	1 U
Isopimaric Acid	1 U	1 U	1 U	1 U	2 U	1 U
Palustrate Acid	1 U	1 U	1 U	1 U	2 U	1 U
Dehydroabietic Acid	1 U	1 U	1 U	1 U	2 U	1 U
Abietic Acid	1 U	1 U	1 U	1 U	2 U	1 U
Neoabietic Acid	10	1 U	10	10	2 U	1 U
1,4-Chloroabietic Acid	1 U	1 U	10	1 U	2 U	1 U
1,2-Chloroabietic Acid	1 U	1 U	10	10	2 U	1 U
Dichloroabietic Acid	1 U	1 U	1 U	1 U	2 U	1 U
Surrogate Recovery:	1.60. 0	00 5	01 F	05.0	00 A	
U-METNYI PODOCAPRATE ACID	103.0	88.5	AT'2	95.9	99.0	101

U - undetected; J - estimated because result less than detection limit;

TABLE C.3. Elutriate Guaiacols/Organic Acids Results (Cont'd) Concentration in μ g/L

Laboratory ID Compound	12A-C	13A-C	14A-C	15A	160	SB	WB
Guatacol	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-Chloroguaiacol	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Isoeugenol	1 U	1 U -	1 U	1 U	1 U	1 U	1 U
Eugenol	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4,5-Dichloroguaiacol	1 U.	1 U	1 U	1 U	1 U	1 U	1 U
4,5,6-Trichloroguaiacol	1 U	1 U	1 U	1 U	1 U	1 U	1 U
3,4,5-Trichloroguaiacol	· 1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachlorogualacol	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Catechol	1 U	1 U	1 U	1 U	1 U	' 1 U	1 U
4-Chlorocatechol	1 U	. 1 U	1 U	1 U	1 U	1 U	1 U
4,5-Dichlorocatechol	1 U	1 U	1 U	1 U	1 U	1 U	1 U
6-Chlorovanillin	1 U	1 U	1 U	1 U	1 U	1 U	1 U
3,4,5-Trichlorocatechol	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichlorosyringol	1 U	1 U	1 U	1 U	1 U	1 U	1 U
5,6-Dichlorovanillin	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachlorocatechol	1 U	1 U	1 U	1 U	1 U -	1 U	1 U
Heptanoic Acid	1 U	1 U	1 U	` 1 U	1 U	1 U	1 ປ
Palmitoleic Acid	2 U	2 U	3 U	2 U	2 U	2 U	2 U
Linoleic Acid	1 U	1 U	1 U	1 U	1 U	1 h	1 U
Linolenic Acid	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Oleic Acid	5 U	5 U	7 U	5 U	5 U	5 U	5 U
Stearic Acid	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexadecanedioic Acid	2 U	2 U	3 U	2 U	2 U	2 0	2 U
Pimaric Acid	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Sandaracopimaric Acid	1 U	1 U	1 U	1 U	<u>1</u> U	1 U	1 U
Isopimaric Acid	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Palustrate Acid	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dehydroabietic Acid	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Abietic Acid	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Neoabietic Acid	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Chloroabietic Acid	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Chloroabietic Acid	1 U	1 U	1 U	1 U	10	10	1 U
Dichloroabletic Acid	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Surrogate Recovery (%):	_	_					
Ø-Methyl Podocaprate Acid	74.2	92.Ø	76.3	98.6	72.5	96.9	80.5

U - undetected; J - estimated because result less than detection limit;

Station	TOC (% dry wt)
1 A-C 2 A 3 A-C 4 A-C 5 A-C 6 A-C 7 C 8 A-C 9 A-C 10 A-C 11 A-C 12 A-C	0.41 1.30 0.87 1.13 1.02 1.22 1.96 2.13 1.30 1.63 2.21 1.56
13 A-C 14 A-C 15 A 16 C 17 A West Beach Sequim Bay	1.88 1.71 N/A(a) N/A 2.28 0.06 2.03
(a) N/A - analyse	es not performed

TABLE C.4. Sediment Total Organic Carbon (TOC) Results

	9-27	-89	9-29-	·89	9-29 MB 1)-89	10- MB 1	5-89	1Ø-	6-89 9 1
Native Isomer	MBI Conc.	D.L.	Conc.	D.L.	Conc.	D.L.	Conc.	D.L.	Conc.	D.L.
2378-TCDF	nd	1.70	nd	2.20	nd	Ø.34	nd	1.30	nd	1.00
Total TCDF	nd		nd		nd		nd		nd	
2378-TCDD	nd	1.60	nd	2.60	nd	Ø,53	nd	1.10	nd	2.70
Total TCDD	nd		nd		Ø.39		nd		nd	
12378-PeCDF	nd	Ø.49	nd	1.40	. nd	Ø.13	Ø.34		nd	Ø.99
23478-PeCDF	nd	Ø.25	nd	1.20	nd	0,08	Ø.36		nd	Ø.8Ø
Total PeCDF	nd		nd		nd		0:70		nd	
12378-PeCDD	nd	Ø.38	nd	Ø.52	nd	0.20	nd	Ø.46	nd	Ø.95
Total PeCDD	nd	·	nd		nd		nd		nd	
123478-HxCDF	nd	Ø.45	nd	Ø.98	nd	Ø.11	nd	Ø.66	nd	1.40
123678-HxCDF	nd	Ø.23	nd	0.45	nd	Ø.Ø9	nd	Ø.32	nd	Ø.68
123789-HxCDF	Ø.57		nd	1.20	Ø.3Ø		Ø.31		nd	1.20
234678-HxCDF	nd	0.56	nd	1.30	nd	Ø.13	nd	Ø.98	nd	2.00
Total-HxCDF	0.57		nd		Ø.3Ø		Ø.31		nd	
123478-HxCDD	nd	Ø.51	nd	Ø.57	nd	0.10	nd	Ø.41	nd	1.70
123678-HxCDD	nd	Ø.44	nd	1.10	Ø.27	1.10	nd	Ø.59	nd	1.90
123789-HxCDD	nd	Ø.71	nd	2.200	Ø.19	2.20	nd	Ø.29	nd	1.00
Total-HxCDD	nd		nd		1.70		Ø.88		nd	
1234678-HpCDF	nd	0.84	nd	1.00	nd	Ø.36	nd	Ø.29	nd	1.30
1234789-HpCDF	nd	1.20	nd	1.40	nd	0.19	nd	Ø.76	nd	1.50
Total HpCDF	nd		nd		nd		nd		nd	
1234678-HpCDD	1.80		nd	3.1Ø	Ø.45		1.90		3.90	
Total HpCDD	1.80		nd		Ø.96		4.00		8,90	
OCDF	nd	1.40	nd	3.30	Ø.69		1.70		1.6Ø	
OCDD	18.00		27.00		10.00		31.00		30.00	

<u>TABLE C.5</u>. Quality Assurance for Sediment Dioxins (Cont'd) Method Blank Data

-	10-1	Ø-89	10-17-	89	10-1	8-89	10-19	3·-89
Native Isomer	MB Conc.	D.L.	MB1 R Conc.	8 D.L.	MBI Conc.	D.L.	MBI H Conc.	D.L.
2378-TCDF	nd	1.30	nd	2.80	nd	2.40	nd	1.50
Total TCDF	nd		nd		nd		nd	·
2378-TCDD	nd	1.90	nd	1.70	nd	1.80	nd	Ø.89
Total TCDD	nd		nd		nd		nd	
12378-PeCDF	nd	Ø.65	0.78		nd	Ø.34	nd	1.00
23478-PeCDF	nd	Ø.62	nd	Ø.98	nd	Ø.42	nd	Ø.63
Total PeCDF	nd		0.78		nd		nd	
12378-PeCDD	nd	1.50	nd	1.00	nd	Ø.57	nd	1.00
Total PeCDD	nd	'	nd		nd		nd	
123478-HxCDF	nd	Ø.48	nd	1.10	nd	Ø.49	nd	0.77
123678-HxCDF	nd	Ø.48	nd		nd	Ø.26	nd	Ø.75
123789-HxCDF	nd	Ø.86	nd	1.50	0.60		nd	1,00
234678-HxCDF	nd	0.62	nd	Ø.74	nd	Ø.62	nd	Ø.69
Total-HxCDF	nd		1.10		Ø.6Ø		nd	
123478-HxCDD	nd	Ø.46	nd	Ø.81	nd	Ø.35	nd	1.30
123678-HxCDD	nd	0.56	nd	1.00	nd	Ø.29	nd	Ø.62
123789-HxCDD	nd	Ø.78	1.10		nd	Ø.36	nd	1.20
Total-HxCDD	nd		1.10		Ø,87		nd	
1234678-HpCDF	nd	Ø.68	nd	1.10	0,96		nd	1.10
1234789-HpCDF	nd	Ø.75	nd	1.10	nd	0.71	nd	1.10
Total HpCDF	nd		nd		0.96		nd	
1234678-HpCDD	1.60		1.90		1,90		nd	1.50
Total HpCDD	1.6Ø		1.90		1.90		nd	
OCDF	nd	1.90	2.50		2.00		nd	1.60
OCDD	17.00		15.00		15,00		9.10	a = '

<u>TABLE C.5</u>. Quality Assurance for Sediment Dioxins (Cont'd) Method Blank Data (Cont'd)

Nativo	S.n.	9-28-89	_3	1	Ø-3-89	2	1	0-11-89)	1 Sr	Ø-19-8	9
Isomer	Qs	Qm	%Rec	Qs	Qm	%Rec	Qs	Qm	%Rec	Qs	Qm	%Rec
2378-TCDF	Ø.8Ø	Ø.78	98	Ø.8Ø	Ø.94	118	Ø.8Ø	Ø.82	1Ø3	Ø.8Ø	Ø.86	108
Total TCDF	0.80	Ø.78	98	Ø.8Ø	Ø.94	118	Ø.8Ø	Ø.82	1Ø3	Ø.8Ø	Ø.86	108
2378-TCDD	Ø.8Ø	Ø.82	1Ø3	Ø.8Ø	1.00	125	0.80	Ø.89	111	0.80	Ø.86	1Ø8
Total TCDD	Ø.8Ø	Ø.82	1Ø3	Ø.8Ø	1.00	125	Ø.8Ø	Ø.89	111	Ø.8Ø	Ø.86	1Ø8
12378-PeCDF	4.00	3.60	90	4.00	4.20	105	4.00	3.70	93	4.00	4.10	1Ø3
23478-PeCDF	4.00	3.60	90	4.90	4.30	1Ø8	4.00	3.8Ø	95	4.00	4.10	1Ø3
Total PeCDF	8.00	7.20	90	8.00	8.50	1Ø6	8,00	7.50	94	8.00	8.20	1Ø3
12378-PeCDD	4.00	3.5Ø	88	4.00	4.20	105	4.00	3.80	95	4.00	3.80	95
Total PeCDD	4.00	3.50	88	4.00	4.20	1Ø5	4,00	3.80	95	4.00	3.80	95
123478-HxCDF	4,00	4.10	1Ø3	4.00	4.70	118	4.00	3.60	90	4.00	3.80	95
123678-HxCDF	4.00	3.30	83	4.00	3.90/	98	4.00	3.80	95	4.00	3.90	98
123789-HxCDF	4.00	3.7Ø	93	4.00	4.20	105	4.00	3.70	93	4.00	3.9Ø	98
234678-HxCDF	4.00	3.70	93	4.00	4.30	1Ø8	4.00	3.80	95	4.00	3,9Ø	98
Total-HxCDF	16.00	15.00	94	16.00	17.00	106	6.00	15.00	94	16.00	16.00	100
123478-HxCDD	4.00	3.40	85	4.00	7.90	123	4.00	4.40	110	4.00	4.40	110
123678-HxCDD	4.00	3.90	98	4.00	3.8Ø	95	4.00	3.40	85	4.00	3.50	88
123789-HxCDD	4.00	3.40	85	4.00	3.90	98	4.00	3.30	83	4.00	3.10	78
Total-HxCDD	12.00	11.00	92	12.00	13.00	1Ø8	12.00	11.00	92	12.00	11,00	92
1234678-HpCDF	4.00	3.7Ø	93	4.00	4.30	1Ø8	4.00	4.10	1Ø3	4.00	4.10	1Ø3
1234789-HpCDF	4.00	3.70	93	4.00	4.30	108	4.00	4.10	103	4.00	4.10	1Ø3
Total HpCDF	8.00	7.40	93	8.00	8.GØ	1Ø8	8.00	8.20	103	8,00	8,2Ø	1Ø3
1234678-HpCDD	4.00	3.60	90	4.00	4.20	105	4,00	3.70	93	4.00	3,70	93
Total HpCDD	4.00	3.60	9Ø	4.00	4.20	105	4.00	3.70	93	4.00	3,70	93
OCDF	8.00	7.40	93	8.00	10.00	125	8.00	8.90	111	8.00	8.30	1Ø4
OCDD	8.00	7.30	91	8.00	8.70	1Ø9	8.00	7.60	95	8.00	7,70	95

<u>TABLE C.5</u>. Quality Assurance for Sediment Dioxins (Cont'd) Matrix Spike Data

 $Q_{A:}$ = Quantity measured

%Rec = Percent recovered

..

щ

.

· (p) ·

.

TABLE C.5. Quality Assurance for Sediment Dioxins (Cont'd)
Surrogate Recovery (%)

Native	na's					e.	rcent Ke	covered					
Isomer	Added	IA	1C	1A-C	2Å	AE .	38	30	3A-C	4 A	4 B	40	4A-C
2378-TCDF-C13	2.60	53	49	51	67	46	72	81	75	67	82	64	75
2378-TC00-C13	2.99	54	53	56	69	50	73	80	72	70	83	65	76
12378-PeCDF-C13	2.99	11	66	67	84	76	81	69	95	79	196	68	11
23478-PeCDF-C13	2.00	73	64	<u>66</u>	89	79	85	65	104	81	115	88	63
12378-PeCDD-C13	2.90	75	80	75	101	93	106	78	169	84	121	36	53
123478-HxCDF-C13	2.66	58	65	41	69	70	53	5	5	50	62	69	185
123678-HxCDF-C13	2.00	60	ន	58	<i>1</i> 9	<u>66</u>	<u>66</u>	<u>66</u>	38	42	28	64	8 6
123789-HxCDF-C13	2.60	60	64	65	78	74	61	68	65	5 2	75	28	87
234678-HxCDF-C13	2.08	63	67	68	81	75	65	67	68	65	88	61	99
123478-HxCDD-C13	2.98	ខ	80	Ц	82	70	68	88	ш	ន	91	67	85
123678-HxCDD-C13	2.00	69	64	68	88	79	73	70	67	72	11	62	86
1234678-HpCDF-C13	2.69	55	64	83	74	72	62	57	57	56	76	88	184
1234789-HpCDF-C13	2.00	67	11	76	89	83	73	75	73	74	85	ន	134
1234678-HpCDD-C13	2.60	64	11	63	78	75	65	72	68	69	86	64	127
OCDD-C13	4.00	49	65	61	75	67	81	91.	11	67	87	54	148
1234-TCDD-C13	2.60	ทล	na	na	na	na	na	na	na	па	na	Пâ	na
123789-HxCDD-C13	2.00	na	na	na	na	ทส	na	na	ทส	na	na	na	na
2378-TCDD-C137	g .89	57	55	56	72	51	(a)	73	68	8	78	11	10
(a) _{No} data													

C.18

TABLE C.5. Quality Assurance for Sediment Dioxins (Cont'd)
Surrogate Recovery (%) (Cont'd)

Native	ng's					Pei	rcent Re	ecovered					
Isomer	Added	5A	58	50	5A-C	БA	68	90	6A-C	70	8A	88	38
2378-TCDF-C13	2.00	52	56	78	65	69	28	99	68	<u>66</u>	63	79	11
2378-TCDD-C13	2.00	55	58	79	<u>66</u>	70	53	<u>66</u>	11	റ്റ	67	88	73
12378-PeCDF-C13	2.66	68	69	68	79	76	75	69	73	ន	68	69	89
23478-PeCDF-C13	2.00	59	58	66	79	64	69	57	71	68	.67	64	82
12378-PeCDD-C13	2.66	64	60	71	86	69	75	66	76	<u>3</u> 7	73	72	88
123478-HxCDF-C13	2.60	59	79	64	56	53	51	66	56	28	28	67	64
123678-HxCDF-C13	2.80	44	62	66	55	65	62	75	10	66	73	67	73
123789-HxCDF-C13	2.80	57	78	63	66	61	55	68	ន	68	<u>66</u>	69	68
234678-HxCDF-C13	2.80	69	58	65	72	64	21	62	79	62	68	67	72
123478-HxCDD-C13	2.88	62	69	79	11	69	58	99	<u>66</u>	<u>66</u>	73	84	11
123678-HxCDD-C13	2.00	65	9 6	62	69	61	65	68	69	66	76	64	81
1234678-HpCDF-C13	2.00	53	55	55	58	28	56	73	1 9	68	89	. 19	11
1234789-HpCDF-C13	2.99	67	48	71	76	11	69	92	74	75	81	85	83
1234678-HpCDD-C13	2.00	59	65	66	73	58	99	11	67	65	88	81	78
0000-013	4.00	59	43	32	76	69	11	199	69	11	85	47	81
1234-TCDD-C13	2.90	ทล	na	ทล	na	na	па	ทล	na	na	na	na	ทส
123789-HxCDD-C13	2.60	na	па	na	na	na	na	na	na	na	na	na	na
2378-TCDD-C137	Ø.8Ø	51	58	74	68	71	59	89	72	68	64	73	(a)
(a) No data													

Quality Assurance for Sediment Dioxins (Cont'd) Surrogate Recovery (%) (Cont'd) TABLE C.5.

Native	s bu					Per	cent Re	covered					
Isomer	Added	8A-C	9A	8 6	30	9A-C	184	168	100	1 6 A-C	11A	11C	11A-C
2378-TCDF-C13	2.00	83	61	57	65	68	89	81	57	ន	83	81	11
2378-TCDD-C13	2.00	84	8	62	64	69	78	11	60	65	79	86	11
12378-PeCDF-C13	2.00	11	<u>66</u>	70	75	69	72	79	58	64	3 8	94	81
23478-PeCDF-C13	2.96	<u>66</u>	64	68	11	69	67	11	56	65	111	88	83
12378-PeCDD-C13	2.00	70	64	75	11	75	71	78	61	79	120	93	88
123478-HxCDF-C13	2.69	56	50	51	54	58	55	44	47	43	68	ß	6 8
123678-HxCDF-C13	2.98	70	56	66	23	69	78	19	56	51	11	78	65
123789-HxCDF-C13	2.69	<u>66</u>	51	61	55	56	65	65	54	57	166	63	64
234678-HxCDF-C13	2.69	66	83	6 6	58	59	67	65	54	ន	75	13	69
123478-HxCDD-C13	2.00	75	66	62	11	64	73	ш	64	72	83	86	11
123678-HxCDD-C13	2.00	72	61	72	53	67	74	64	64	62	74	73	8 8
1234678-HpCDF-C13	2.00	55	62	58	56	54	65	53	51	56	67	66	89
1234789-HpCDF-C13	2.99	74	11	78	78	64	84	75	61	63	81	76	81
1234678-HpCDD-C13	2.60	72	75	64	62	ន	79	67	62	6 6	74	74	11
ocdd-c13	4.63	35	82	55	75	53	42	61	11	73	6/	76	83
1234-TCDD-C13	2.00	Па	na	па	na	па	na	Па	Ъã	na	na	na	па
123789-HxCDD-C13	2.00	ทล	ทล	na	na	na	na	na	na	na	na	na	na
2378-TCDD-C137	8.89	11	66	21	65	65	72	82	61	69	88	85	(a)
(a)													
NO DATA													

IABLE C.5. Quality Assurance for Sediment Dioxins (Cont'd)
Surrogate Recovery (%) (Cont'd)

9 50 2 72 SB na na 170 na na 61 178 na na 83 17A (a) na na 14A-C na na 11 14C na na 64 Percent Recovered 13A-C 14A 1 80 na na na na 8 130 na na 68 13A 79 na na 12A-C 78 79 86 88 88 88 73 76 88 88 88 88 88 88 88 88 88 77 97 Па Па (a) 120 na na 33 12A na na 64 ng's Added 2.00 2.00 2.00 2.00 2.00 2.00 2.60 2.60 2.60 2.60 2.80 2.80 2.00 2.99 4.00 2.88 2.89 9.80 1234678-HpCDF-C13 234678-HpCDD-C13 I 234789-HpCDF-C13 123478-HxCDD-C13 123678-HxCDD-C13 123478-HxCDF-C13 123678-HxCDF-C13 123789-HxCDF-C13 234678-HxCDF-C13 123789-HxCDD-C13 23478-PeCDF-C13 [2378-PeCDD-C13 12378-PeCDF-C13 2378-TCDD-C137 1234-TCDD-C13 2378-TCDD-C13 2378-TCDF-C13 0CDD-C13 Native Isomer

. .

data

Ŷ

(a)

C.21

	nethou	Diam	ts and	PICOT 17	v op i				
Nat,ive Isomer	ngʻs Added	MBL R1	Percent MBL R1-14	Recover MBL R8	ed MBL R2Ø	Spike R12	Percent f Spike R-3-3	Rechvered Spike R9	spike R21
2378-TCDF-C13	2,00	70	37	35	70	39	66	56	77
2378-TCDD-C13	2.00	70	41	39	71	37	72	59	71
12378-PeCDF-C13	2,00	95	56	54	6Ø	53	75	81	78
23478-PeCDF-C13	2.00	104	58	56	59	55	79	84	88
12378-PeCDD-C13	2,00	111	48	62	57	58	85	90	92
123478-HxCDF-C13	2.00	67	6Ø	55	63	45	64	74	71
123678-HxCDF-C13	2.00	66	64	56	64	52	64	70	70
123789-HxCDF-C13	2.00	65	61	55	65	49	65	71	64
234678-HxCDF-C13	2.00	66	6Ø	59	66	51	64	74	63
123478-HxCDD-C13	2,00	8Ø	69	63	76	49	74	71	67
123678-HxCDD-C13	2.00	7Ø	63	57	63	52	72	83	30
1234678-HpCDF-C13	2,00	62	56	54	61	48	59	62	62
1234789-HpCDF-C13	2.00	74	63	67	77	56	70	8Ø	72
1234678-HpCDD-C13	2,00	73	6Ø	66	73	51	70	74	76
OCDD-C13	4.00	72	48	65	81	43	74	64	72
1234-TCDD-C13	2.00	na	na	na	na	xx	xx	XX	XX
123789-HxCDD-C13	2,00	na	na	na	na	XX	XX	XX	XX
2378-TCDD-C137	Ø.8Ø	(a)	47	47	67	39	59	55	68

<u>TABLE C.5</u>. Quality Assurance for Sediment Dioxins (Cont'd) Surrogate Recovery (%) Method Blanks and Matrix Spikes

(a) No data

- <u>1</u> - P

1.111

Laboratory ID	Method	West Beach	West Beach
Compound	Blank	Matrix Spike	Spike Duplicate
Guaiacol 4-Chloroguaiacol Isoeugenol Eugenol 4,5-Dichloroguaiacol 4,5,6-Trichloroguaiacol 3,4,5-Trichloroguaiacol Tetrachloroguaiacol	67 U ^(a) 67 U 67 U 67 U 67 U 67 U 67 U 67 U	61 U 61 U 61 U 61 U 61 U 61 U	68 U 68 U 68 U 68 U 68 U 68 U 68 U
Catechol	67 U	61 U	68 U
4-Chlorocatechol	67 U	61 U	68 U
4,5-Dichlorocatechol	67 U	61 U	68 U
6-Chlorovanillin	67 U	61 U	68 U
3,4,5-Trichlorocatechol	67 U	61 U	68 U
Trichlorosyringol	67 U	61 U	68 U
5,6-Dichlorovanillin	67 U	61 U	68 U
Tetrachlorocatechol	67 U	61 U	68 U
Heptanoic Acid	67 U	61 U	68 U
Palmitoleic Acid	130 U	930	1100
Linoleic Acid	67 U	61 U	68 U
Linolenic Acid	67 U	61 U	68 U
Oleic Acid	330 U	310 J(b)	330 J
Stearic Acid	67 U	59 J	58 J
Hexadecanedioic Acid	130 U	120 U	140 U
Pimaric Acid Sandaracopimaric Acid Isopimaric Acid Palustrate Acid Dehydroabietic Acid Abietic Acid Neoabietic Acid 1,4-Chloroabietic Acid Dichloroabietic Acid	67 U 67 U 67 U 67 U 67 U 67 U 67 U 67 U	61 U 61 U 61 U 61 U 61 U 61 U	68 U 68 U 68 U 68 U 68 U 68 U 68 U
Surrogate Recovery (%): Dihydroxy-d4-Benzene O-Methyl Podocapric Acid (a) U indicates compound (b) L indicates estimated	50.5 94.7 undetected	74.6 110 d at given detect	77.2 115

<u>TABLE C.6</u>. Quality Assurance for Sediment Guaiacols/Organic Acids Method Blank Data

. .

<u>Matrix Spike Recovery</u>			1.	
	Spike Added (µg/Kg)	Sample Conc (µg/Kg)	MS Conc (µg/Kg)	MS% Rec
4-Chloroguaiacol	3200	0	2771	86.6
Tetrachloroguaiacol	3200	0	3116	97.4
Sandaracopimaric Acid	3200	0	2789	87.1
Dehydroabietic Acid	3200	0	3224	101.0
Neoabietic Acid	3200	Ō	52	1.6
Dichloroabietic Acid	3200	0	2551	79.7

<u>TABLE C.6</u>. Quality Assurance for Sediment Guaiacols/Organic Acids (Cont'd)

Matrix Spike Dulicate Recovery

	Spike Added (µg/Kg)	MSD Conc (µg/Kg)	MSD % Rec	% RPD
4-Chloroguaiacol	3200	2661	83.2	4
Tetrachloroguaiacol	3200	3549	111.0	-13
Sandaracopimaric Acid	3200	2982	93.2	-7
Dehydroabietic Acid	3200	2998	93.7	7
Neoabietic Acid	3200	725	22.7	-173
Dichloroabietic Acid	3200	2870	89.7	-12

Laboratory ID Compound	Method Blank	Sta. 15 Matrix Spike	Sta. 15 Spike Duplicate
Guaiacol 4-Chloroguaiacol Isoeugenol Eugenol 4,5-Dichloroguaiacol 4,5,6-Trichloroguaiacol 3,4,5-Trichloroguaiacol Tetrachloroguaiacol	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 	1 U 1 U 1 U 1 U 1 U 1 U 1 U
Catechol 4-Chlorocatechol 4,5-Dichlorocatechol 6-Chlorovanillin 3,4,5-Trichlorocatechol Trichlorosyringol 5,6-Dichlorovanillin Tetrachlorocatechol	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U
Heptanoic Acid Palmitoleic Acid Linoleic Acid Linolenic Acid Oleic Acid Stearic Acid Hexadecanedioic Acid	1 U 2 U 1 U 1 U 5 U 1 U 2 U	1 U 3 1 U 1 U 7 J 1 J 3 U	1 U 3 1 U 1 U 7 J 1 J 3 U
Pimaric Acid Sandaracopimaric Acid Isopimaric Acid Palustrate Acid Dehydroabietic Acid Abietic Acid Neoabietic Acid 1,4-Chloroabietic Acid J,2-Chloroabietic Acid Dichloroabietic Acid	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U
Surrogate Recovery (%): O-Methyl Podocaprate Acid	62.1	95.8	102

<u>TABLE C.7</u>. Quality Assurance for Elutriate Guaiacols/Organic Acids (Concentrations in μ g/L)

<u>Matrix Spike Recovery</u>				
	Spike Added (µg/L)	Sample Conc (µg/L)	MS Conc (µg/L)	MS % Rec
4-Chloroguaiacol	71.0	0.0	36.4	51.3
Tetrachloroguaiacol	71.0	0.0	72.0	101.0
Sandaracopimaric Acid	71.0	0.0	60.5	85.3
Dehvdroabietic Acid	71.0	0.0	55.4	78.1
Neoabietic Acid	71.0	0.0	0.0	0.0
Dichloroabietic Acid	71.0	0.0	48.7	68.6

<u>TABLE C.7</u>. Quality Assurance for Elutriate Guaiacols/Organic Acids (Cont'd)

Matrix Spike Dulicate Recovery

 \mathbf{T}

	Spike Added (µg/Kg)	MSD Conc (µg/Kg)	MSD %Rec	% RPD
4-Chloroguaiacol	71.0	26.9	37.9	30
Tetrachloroguaiacol	71.0	75.4	106.0	- 5
Sandaracopimaric Acid	71.0	65.3	92.0	-8
Dehydroabietic Acid	71.0	61.0	86.0	-10
Neoabietic Acid	71.0	0.0	0.0	N/A
Dichloroabietic Acid	71.0	56.0	78.9	-14

TABLE C.8. Quality Assurance for Sediment Organic Carbon

<u>Duplicate Sa</u>	<u>mple Result</u>	<u>S</u>	
<u>Sample</u>	<u>Rep 1</u>	<u>Rep_2</u>	<u>%_RPD</u>
10 A-C Sequim Bay	1.63 2.03	1.64 2.03	0.61 0.00

No spike or blank data required for this analysis.

APPENDIX D

30-DAY TISSUE CHEMISTRY DATA

TABLE D.1. 30-Day Tissue Dioxin Results, background corrected, ng/Kg wet

STATION 14-C							Average Con	gener Concent	rations		Average	TEF Concentra	ut ions
	Ren		Ren	2	Ren	ñ	Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc.	р.Г.	Conc.	D.L.	Conc.	D.L.	Values	+ 1/2 D.L.	D.L.	TEF	Va lues	+ 1/2 0.L.	D.L.
2378-TCDF	Pu	15 18	89.8	1	pu	1.40	6.69	B .32	9 .96	6.16	0.0000	6.0318	Ø.0960
Total TCDF	g. P		0.00	;	P		0.00	0.00		0.000	0000	6.660	1
2378-TCND	ЪС С	a 76	pu	G 52	pu	1.50	pu	6,46	6.93	1.00	'n	0.4600	g .9267
Total TCDD	pu		pu		pu		pu	N/A		6.99	pu	N/A	}
12378-PeCDF	pu	0.25	6 .49	ł	'nd	0.41	0 .49	B .27	g .33	B. B5	g . <u>6</u> 245	6.0137	0.0165
23478-PeCDF	pu	0.21	0.49	1	pu	6 .39	0.49	g .26	0.30	0.50	8 .2450	B .1317	0.1500
Total PeCDF	pu	8	Ø.98	ł	pu	1	G .98	B .98	}	000.0	8888.8	0.0030	}
12378-PeCDD	nd	B .25	B .48	-	ри	0 .46	Ø.48	B .28	g .36	0.50	B.2469	G .1392	9.1809
Total PeCDD	pu	ł	0.48	ł	pu	ł	g .48	B .48	{	0.666	0.0000	6.6600	1
123478-H×CDF	pu	0.50	Ø.58	ł	pu	0.40	B .58	6.34	0.45	0.10	0.0580	8.8343	0.0450
123678-HxCDF	pu	0.14	g .62	!	nđ	g .25	B .62	B .27	0 .20	0.10	0 .0620	B.B 272	0.0200
123789-HxCDF	Ø.42	1	0.60	ł	pu	0.47	0.51	0.42	0.47	0.10	0.0510	9.9418	0.0470
234678-HxCDF	pu	B .42	G .54	-	аu	0 .56	B .54	B .34	B .49	9.10	9.9548	0.0343	B . B 49 B
Total-HxCDF	0.42	;	2.30	!	pu	ł	1.36	1.36	1	6.6660	8.6969	9.6889	1
123478-HxCDD	ри	6 .41	B .59	1	pu	g .83	g .59	9.40	g .62	0.10	g.g298	6.6463	8 . 8 62 8
123678-HxCDD	pu	Ø.58	Ø.55	!	ри	B .78	B .55	0.41	B .68	0.16	0.0550	0.0410	9-9689
123789-HxCDD	рц	Ø .58	0.37		nd	g .59	B .37	g .32	B .59	0.10	0.0370	0.0318	0.0590
Total-HxCDD	1.90	1	1.50	!	1.90	ł	1.77	1.77	1	0.6969	6.8669	9,6999	I
1234678-HpCDF	B .27	ł	0.30	ł	pu	g .99	B .29	0.36	B .99	0.01	8 .8829	B.BB 36	8 .8899
1234789-HpCDF	pu	Ø.39	pu	Ø.79	ри	Ø.65	pu	6.31	g .61	10.0	pu	0.0631	g.gg 61
Total HpCDF	1.97	ł	0.30	1	1.07	1	1.11	1.11	1	53	0.0000	0.0000	
1234678-HpCDD	1.90	1	0.30	1	2.20	ł	1.47	1.47	1	0.01	8.0147	8.0147	1
Total HpCDD	2.50	. 1	0.00	ł	3.40	1	1.97	1.97	1	63	9.0009	9.0000	I
DCDE	3 20	ļ	9 69	i	4 10	!	2 63	2.63	1	6, 801	9,0026	0.0026	I
0000	75.00	1	5.00	ł	133.00	-	71.60	71.66	ł	9.601	0.6710	0.0710	1
Total TEF adju:	sted val	nes									ß.9767	1.1221	

0.1600 0.0210 0.0570 0.9040 1.0333 **g**.2833 0405 9.6620 0.0700 0.0527 1 1 0.0540 1 0.0350 1 1 1 1 Mean Average TEF Concentrations 0.0125 0.0000 + 1/2 D.L. 9.9800 0.1000 0.0195 0.0195 0.0353 0.0310 9.0303 0.0425 **9.9**269 9.0060 0.0020 Ø. ØØ27 Ø. Ø623 1.0360 9.9999 0.0000 0.0000 0.0600 9.9999 0.0000 Mean Det. 0.5167 0.0430 0.6094 0.0033 Mean Det. 0.0000 0.0000 5.6969 0 **8.6200** 0.0033 0.0036 0.0125 0.0000 Ø. ØØ27 Ø. Ø623 Ø.3588 0.0510 0.0000 0.0090 0.9180 0.0380 0.0000 0.0000 5 Б Б Б 0.0710 0.0710 Б Va lues 0.10 0.10 0.000 1.00 0.00 0.05 0.50 0.000 0,59 0.000 0.10 0.10 9.10 01.0 0.0000 0.10 0.10 0.0000 9.01 0.01 6 0.01 6 100'0 100'0 臣 Average Congener Concentrations Mean 1.03 0.32 **9**.35 **9**.62 0.70 0.57 **g**.53 0.40 ٥.٢. Ø.54 0.41 0.21 **g**.41 | | 1 1 1 ł 1 + 1/2 D.L. Ø.16 Ø.18 0.43 0.51 0.52 0.79 0.19 0.20 0.34 0.20 0.20 **g**.35 Ø.31 Ø.65 0.30 0.43 **Ø**.26 2.37 **9**.33 **9**.20 **1**.46 1.25 3.20 2.7Ø 62.33 Mean Det. Mean Det. **9**.33 nd 1.46 nd 0.79 Ø.18 nd Ø.18 nd Ø.34 **0**.18 **0**.38 0.71 nd Ø.65 0.29 0.71 nd 2.37 1.25 2.7Ø 62.33 0.51 0.51 Va lues Ø.19 **Ø**.29 Ø.45 Ø.36 Ø.23 -0.50 0.20 а.16 1 1 1 ł 1 1 1 1 з D.L. -1 1 1 Rep nd 1.27 nd 2.70 br.79 0.18 nd 0.34 Ø.18 Ø.18 0.20 0.80 0.80 6.30 3.66 Ø.18 Ы ри Conc. 0.27 0.27 'n Ъ 0.71 Ø.19 **Ø**.25 Ø.22 Ø.32 0.46 **g**.38 **g**.38 Ø.34 2 D.L. 1.90 Ø.19 Ø.25 Ø.41 Ø.44 1 1 1 1 ł 1 54 1 1 ł ł , Rep nd nd bu 66. .20 пd 73. Conc. nd D 3.6Ø 51.ØØ 밀밀 ggg pu pu P P р Ø.22 1.70 2.70 1.60 Ø.52 Ø.55 0.70 **g**.95 **g**.58 D.L. Ø.62 Ø.98 9.75 **Ø**.84 ł 1 1 1 1 ł ł ł 1 Total TEF adjusted values Rep 1 Conc. nd 2.07 nd Ø.38 Ø.71 4.2a 133.85 0.75 0.75 p p Ъ 1.10 nd nd 20 nd 6.10 pu pu pu p 0.57 Native Isomer 1234678-HpCDD 1234789-HpCDF 234678-HpCDF 123789-HxCDF [23789-HxCDD [23478-HxCDF 23678-HxCDF 234678-HxCDF [23478-HxCDD [23678-HxCDD otal-HxCDD otal-HxCDF Total HpCDD 12378-PeCDD fotal PeCDD **Fotal HpCDF** [2378-PeCDF 23478-PeCDF otal PeCDF STATION 2A Total TCDF fotal TCDD 2378-TCDD 2378-TCDF 0000 OCDF

STATION 3A-C							Average Cong	lener Concent	rations		Average	TEF Concentra	itions
	Rep		Rep	2	Rep	n	Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc.	D.L.	Conc.	D.L.	Conc.	D.L.	Va lues	+ 1/2 D.L.	D.L.	TEF	Values	+ 1/2 D.i.	D.L.
TOTT OF CO				a 75	VC U		8 8 8	а 26 С	a 75	5	a alos	G 0760	a a75a
23/8-1UF	ст-я	!		C/-7	n. C4	1	n-1)		
Total TCDF	B .15	ł	pu	1	g .58	1	<u>0</u> .37	G .37	1	6.999	0000-0	8888 ° 8	1
2378-TCDD	pu	Ø .61	pu	2.00	pu	Ø.53	pu	g .52	1.85	1.80	pu	Ø.52ØØ	1.0467
Total TCDD	0.73	1	pu	ł	g .39	ļ	Ø.56	Ø.56	-	0.00	0,0000	0.6666	ł
12378-PaCNE	а 2	!	μu	64 8	ņ	G 25	6.20	6,18	6.34	0.05	0.0100	0,0030	8.8176
23478-PeCDF	0.15	ł	pu	g .22	g .29		9.22	G .18	0.22	g .50	6.1100	<u>6.6917</u>	0.1100
Total PeCDF	B .35	ł	pu	}	g .29	ł	B .32	B .32	1	0.000	6.6666	0.0000	1
12378-PeCDD	pu	g .21	pu	Ø.29	ри	B .22	pu	0.12	0.24	8-58	pu	0.0600	6.1286
Total PeCDD	pu	ł	pu	ł	pu		рu	N/A	ł	0.000	pu	N/A	1
123478-HxCDF	pu	0.49	pu	0.41	pu	g _43	pu	B .22	8.44	9.19	ри	9.8229	0.0443
123678-HxCDF	pu	Ø.19	pu	Ø .35	p	g .25	pu	0.13	0.26	0.10	pu	6.6132	0.0263
123789-HxCDF	0.35		pu	Ø .63	pu	Ø.40	g .35	g .29	Ø.52	0.10	0.0350	g .g288	g.g 52 g
234678-HxCDF	pu	0.74	pu	0.71	pu	0 .55	pu	B .33	B .67	9.16	pu	G . B 333	g . g 667
Tctal-HxCDF	G .35	ł	рu	ł	ри	ł	B .35	g .35	1	0.0000	0-0000	9.9999	
123478-HxCDD	pu	0.42	pu	g .34	ри	6.41	pu	0.20	g .39	6.16	pu	g.0 195	0.0390
123678-HxCDD	pu	B .58	pu	0.55	р	1.10	pu	B .37	<u>6</u> .74	0.10	pu	g.g 372	g . b 743
123789-HxCDD	рц	0.80	pu	G .34	pu	6 .97	pu	g .35	0.70	0.10	nd	g_g 352	6.0703
Total-HxCDD	pu	ł	ри	ł	pu	1	pu	N/A		0.0000	pu	8.8688	1
1234678-HpCDF	pu	0.43	pu	9.71	pu	3.00	pu	g .69	1.38	0.01	pu	8.86 69	g.g 138
1234789-HpCDF	pu	Ø.55	ри	Ø .94	pu	Ø.46	pu	g .33	Ø.65	0.01	pu	0.0033	9.9965
Total HpCDF	pu	١	pu	١	pu	ł	pu	N/A	ł	53	pu	N/A	ł
1234678-HnCDD	8.78	1	0,80	ł	0,00	ł	<u>0</u> .50	0.50		10-0	9.9859	8,0950	I
Total HpCDD	0.30	ł	0.40	{	0.00	1	B .23	g .23	I	53	0.0000	8-8866	I
OCDE	0,30	1	2.70	1	pu	1.40	1.75	1.40	1.40	0.601	0.0018	0.0014	9-9014
0000	17.00		63.00	1	5.00	1	28.33	28.33	1	0.601	g .g283	g . g 283	1
Total TEF adju	sted val	lues									Ø.2Ø96	ß_94 <i>6</i> 7	

(Cont'd
Results
Dioxin
Tissue
30-Day
ABLE D.1.

STATION AA-C						verage Cond	Jener Concent	rations		Average	TEF Concentra	ations
	Rep 1	Rep 2		Rep	ო	Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc. D.L.	Conc. D	÷	Conc.	D.L.	Values	+ 1/2 D.L.	D.L.	TEF	Values	+ 1/2 D.L.	D.L.
2378-TCDF	nd 09.77	B.14	ł	Ø.45	1	0.30	B .33	g.77	8.18	g _ <u>8</u> 295	B.B 325	8.8778
Total TCDF	pu	0.14	1	g .45	!	<u>8</u> .30	<u>9</u> .39	1	8.666	8.8988	0.0000	I
2278_TCND	יה מי	נס דיני	5	pu	911	'nd	9.32	<u>0</u> _64	1.66	pu	g .32 g g	0.6400
Total TCDD	pu	Ø.44		u.		B.44	B.44	1	0.00	0.0000	8998-8	1
12378-PeCDF	Ø.36	Ø.24	1	pu	B .23	0.30	9.24	B .23	B.85	0-0150	6.6119	g.8115 g.8215
23478-PeCDF	Ø.34	Ø.28	ł	pu	0.16	<u>6.31</u>	g .23	0.15	8.58	8 .155 8	9-116/	8988-8
Total PeCDF	6.70	1.10	ł	pu	١	0 -30	B .98	ł	999-666	9999 . 9	8.8889	1
12378-PeCDD	nd 0 .84	nd B	.32	pu	0 .57	pu	g .29	g .58	6 .50	pu	g .1442	g .2883
Total PeCDD	pu	B.2B	ł	pu	ł	<u>0.20</u>	B .2B	١	0.000	0.0000	6.6000	1
123478-H×CDF	a 63	G 34		рц	9.46	6,49	Ø.39	8-49	9.19	8 .8485	8.8398	6.6400
123678-HxCDF	B.37	9.27	ł	P	B .27	B .32	g _26	B .27	8.19	g.g32g	g . g 258	6.0270
123789-HxCDF	nd 9.48	nd 6	.81	g .39	ł	g .39	g .35	9 .65	9.19	B.B 39 B	B_B 345	8-8658
234678-HxCDF	nd 8.77	g pu	44	pu	B .55	pu	g .29	g .59	0.19	pu	g . g 293	g . g 587
Total-HxCDF	1.85	g .61	ł	g .39	1	g .67	B .67	1	8999	0000	6.699	Į
123478-HxCDD	nd B .38	g pu	43	pu	9.42	ри	B .21	0.41	Ø.19	р	B_B2B5	8.8418
123678-HxCDD	nd 9.41	69 pu	.56	nđ	G .48	pu	0.24	Ø.48	8.1 8	pu	6.6242	B. 3 483
123789-HxCDD	nd B.54	e pu	.70	pu	<u>0</u> .34	pu	B .26	Ø.53	6.10	pu	g . g 263	9.9 527
Total-HxCDD	G.91	g .75		рu	1	g .83	g .83	1	0.0000	8.8888	5.8888	1
1234678-HpCDF	1.47	ß.26	ł	0 .57	1	<u>8</u> .77	B.77	I	19-9	0.8977	<u>6.6077</u>	ł
1234789-HpCDF	1.50	B .21	ł	pu	y _64	B .86	B .68	5.64	10-01	9.9986	g .6968	B.BB 4
Total HpCDF	4.97	1.87	1	2.27	ł	3.64	3.64	1	63	0.0000	8988	ł
1234678-HoCDD	1.50	Ø.3B	ł	2.70	ł	1.50	1.50	Į.	0.01	0.0150	8888	1
Total HpCDD	3.10	6.60	ł	4.10	ł	2.40	2.48	ł	53	6999.9	0.6150	1
OCDF	1.75	8 .69	I	4.50	1	2.27	2.27	1	6.601	0.0023	9-6696	1
000	6. <i>8</i> ø	8.85	1	93 . ØØ	1	35.67	35.67	Ļ	0.001	8.8357	8.6923	1
Total TEF adjus	sted values									g .3882	g .8566	

STATION 54-C							Averade Con	nener Concent	rations		Average	TFF Concent:	ations
	Ren		Rep	2	Ren	ŝ	Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc.	D.L.	Conc.	D.L.	Conc.	D.L.	Va lues	+ 1/2 D.L.	D.L.	TEF	Values	+ 1/2 D.L.	ם-ר-
2378-TCDF	pu	1.30	<u>0</u> .02	ł	9.68	ł	0.05	B .25	1.30	9.19	0.0050	9.8259	1
Total TCDF	pu	ł	0.02	ł	g-g8	ł	g .g2	9-95		898.8	0.0200	8.6666	1
2378-TCDD	pu	1.35	0.44	ł	pu	B .65	8.44	B.47	g _98	1.66	0.4400	9.4717	B .9758
Total TCDD	pu	1	Ø.68	1	pu	1	g .68	g .63	1	8.88	9.999	8.6999	ł
										1			
12378-PeCDF	pu	g .36	B	Ø.98	pu	Ø.19	pu	6.11	g .21	6 .65	pu	<u>e</u> .6053	2010-0
23478-PeCDF	pu	ß.19	pu	g . g 8	Ø.18	1	B .18	9-11	9.14	B.5B	0.0969	B _ B 527	B . B 675
Total PeCDF	pu	1	g .39	1	Ø.18	1	g .29	B .29	1	9.999	9.9999	9.6699	1
12378-PeCDD	'nđ	0.43	pu	0.07	pu	g .29	pu	0.13	B .26	0 .50	pu	g _ g 662	B .1323
Total PeCDD	pu	ļ	B .27	1	pu	1	B .27	<u>6</u> .27	ł	999-9	99999	8-888	1
123478-HxCDF	pu	g _32	Ē	B .15	Ø.31	1	G .31	g .18	B .24	8.10	8.8316	6 .0188	g . <u></u>
123678-HxCDF	pu	<u>9</u> .27	pu	0.10	B .28	!	g .28	G.16	g .19	0.10	6.9289	B_B 155	B.B185
123789-HxCDF	0.50	ł	Ø.16		0.47	I	Ø.38	g .38		8.16	6 _ 8 377	B_B 377	1
234678-HxCDF	pu	Ø.63	ри	B .17	pu	<u>9</u> .46	pu	3.21	0.42	6.13	рц	8.8218	6.8428
Total-HxCDF	B. 50	1	g .16	ł	1.19	ł	Ø.59	B .59		0000	9-9999	8998-8	I
123478-HxCDD	pu	1.10	pu	0.10	pu	g .39	pu	g .26	B .53	<u>6.16</u>	pu	B _ B 264	B . B 529
123678-HxCDD	pu	<u>0.51</u>	0 .21	í	Ъ	B .31	B .21	8.21	0.41	9.19	0-0210	9-8287	0.0410
123789-HxCDD	pu	0.44	pu	0.21	pu	B .27	pu	B.15	g .31	9.19	p	B.0 153	9.0367
Total-HxCDD	nd	ł	2.99		pu	1	2.99	2.00	1	6.6999	8999-8	8999	1
1234678-HpCDF	pu	0.75	pu	B .52	g .29		B .29	B .29	Ø.54	0.61	8-8829	6.68 29	1
1234789-HpCDF	P	Ø.57	pu	g .17	pu	g .35	pu	9.18	g .36	0.01	pu	9-9918	0.8036
Total HpCDF	pu	ł	Ø.Ø5	1	1.47	1	<u>e</u> .76	Ø.76	-	5	9.9999	6.6869	1
1234678-HpCDD	2.00		0.00	!	1-99	!	1.00	1.86	ł	10-0	0-0130	6.6166	I
Total HpCDD	2.70	1	0.00	ł	0.70	1	1.13	1.13		53	6,6996	8.6993	
OCDF	2.30	ł	09 ° 0	ł	0.36 0	ł	1.07	1.67	ł	199-9	0-0011	0-0011	1
000	54.00	1	3-00	1	45-80	1	34.00	34-00		8.831	0.0340	B. 8349	
Total TEF adju:	sted valu	sa									8.7996	g .8251	

í.

(Cont'd)
Results
e Dioxin
Tissue
30-Day
TABLE D.1.

											1	TEE Concentr	at ione
STATION 6A-C							Average Con	gener Concent	Moan Moan		Hean Det	Mean Det.	Mean
Native Îsomer	Rep Conc.	I D.L.	Rep Conc.	2 D.L.	Rep Conc.	З D.L.	Mean Det. Values	Hean UEL- + 1/2 D.L.	D.L.	TEF	Values	+ 1/2 D.L.	D.L.
					6		55 B	57 8	1 30	6.16	8.8328	6.6430	8 -1369
2378-TCDF	nd.	1.30	12.0	l	55-B		10-35 10-37	6		6.669	9999	8666	
Total TCDF	P	l	17-9	!	C.T. B		17.1	1					
2378-TCDD	, Dr.	6.64	pu	1.10	nd	1.60	pu	0.46	9 .91	1.60	pu	6 .4567	6 .9133
Total TCDD	0.77		pu	١	nd	ł	<u>a</u> .77	0.77	ł	6.69	9999 . 9	8998 - B	l
											1	A BACA	20102
12378-PeCDF	pu	Ø.31	pu	Ø.19	pu	0.15	pu	<u>6</u> _11	9.53 5.53		27		99199 00172-2
23478-FeCDF	pu	Ø.19	ри	g .19	pu	g .22	pu	9-19	87 - R	80-8			
Total PeCDF	pu	1	2.69	•	рц	1	2.80	2-99	I	000 ° 0	6449 ° 9	anga 15	
12378_D&CND	μ	A 24	pu	Ø.39	pu	B.52	pu	8 .19	g .38	0.50	P	g. <u>6</u> 958	g .1917
Total PeCDD	8-44		g.45		pu	1	₫.45	<u>6</u> .45		8.999	8.8888	9-6660	1
			1		t t			55 8	a 25	818	g 8435	6, 6332	8.8258
123478-HxCDF	nđ	ø.25	0.47	I	54.2		- 14 1	0. a	77-a	91.9		a a187	8. 8365
123678-HxCDF	pu	5-47	pu	Ø.28	pu	4C - 8		01-10			DCAD D	G 6333	G G 583
123789-HxCDF	5	8.71	nd	g _45	0.42		9-42	9 .33	ກ ກິນ ເ	51 U U		8 8757	100010 100020
234678-HxCDF	nd	0.39	nđ	6.76	pu	0 .51	pu	g .25	8.58	61 - F			
Total-HxCDF	1.79	!	2.69	ł	2.10	1	2.13	2.13	ł	NNNN - N	99997 9	27777 J	
	1	(T G	נו גי ש	רנ	75 B	pu	6.21	0.41	0110	рц	<u>8</u> .8287	g. 6413
1234/8-HXUUU		4 1 0 0 51 0	3 1	20.2			a 67	57 19	8 19	6.16	9.9678	9 .9432	B.B 625
123678-HxCDD	pu	8 °.	19.9/	1	P.	a 1 1 1	5.6	54-1 2	DV B	0 10	0 0316	9.9279	8-8498
123789-HxCDD	ŋ	ø. 58	Ø.31	1	Du	0.49	15.0	17-18	5	27'A		a 9363	
Total-HxCDD	1.60	1	3.60	1	pu	ł	2.69	7-59	1	8388° 8			
	1	5 7 7	1 27	1	1 27	1	1.27	1.25	2.40	0.01	9 .9127	B_B125	9.8249
17040/0407T	<u>.</u>			, L		A 27	Ţ	a 25	9 49	6.61	p	B.08 25	B. 6649
1234789-HpCDF	P	R 00		77-5	5 5	10-3		21-1 1 57	}	15	8. 8969	8.8888	I
Total HpCDF	3.77	ł	5.57	1	4-01		4-0/	D-+		3			
			50	1	2 50		2,13	2.13	ł	10-01	8.6213	9.8213	I
12346/8-HpLUU	57. T	!	82°T				77 C	11 5		5	9669	8.8898	1
Total HpCDD	8.29	1	3.40		G/~/	1	11-0	17-0		1			
	មួយ ហ	ł	5 88	1	3, 69	1	4.60	4.60	١	<u>6.661</u>	9.9645	8-0046	
0000	38. B 9	1	42-80	1	46.99	1	42.00	42.88	1	199-9	9.8426	g.9420	1
TEC	[c::+-	301									B .2961	9 .9346	
ictal itr auju	STEG VG1	3											

STATICN 7C Native Isomer	Rep Conc.	1 D.L.	Rep Conc.	2 D.L.	Rep Conc.	3 D.L.	<u>Averaqe Con</u> Mean Det. Values	gener <u>Concent</u> Mean Det. + 1/2 D.L.	rations Mean D.L.	臣	<u>Average</u> Mean Det. Values	<u>IEF Concentr</u> Mean Det. + 1/2 D.L.	ations Mean D.L.
2378-TCDF Total TCDF	ଟ୍ଟ କ ଅ ଅ ଅ	11	ສ.33 ສ.33	11	g g	0.70 	9.17 8.17	B.23 E.17	8-78 	6.19 8.809	8.8165 8.8888	6.9227 6.6666	6.8769
2378-TCDD Total TCDD	រាថ ៨.89	87 - 8 8	<u>ק</u>	G .72 	nđ	в.79 	nd 8.89	<u></u> в.32 в.89	g.64	1.88 9.69	nd 19989.9	6.3183 6.9006	9 .E367
12378-PeCDF 23478-PeCDF Total PeCDF	nd nd	6.13 6.67	nd nd	Ø.24 Ø.25	nd nd	6.17 6.18	며 며	81.89 81.88 N/A	9.18 9.17 	8-85 8-58 8-898	ggg	8-8845 6-8417 8-8868	6.9996 9.9833
12378-PeCDD Total PeCDD	nd	B.17	pu pu	ø.28 	pu pu	<u>9</u> .26 	nd nd	ß.12 N/A	B .24 	g.5g g.83g	пđ	6.9 592 6.9963	g .1183
123478-HxCDF 123678-HxCDF 123789-HxCDF 234678-HxCDF 70tal-HxCDF	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.18 8.12 8.21 8.35	nd a 56 a 56 a 56 a 56 a 55	8.33 8.22 8.33 8.39	P P P P P P P P P P P P P P P P P P P	1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	ກດ ກດ 9.58 6.51 8.51 8	9.15 9.98 9.31 9.33 9.33	8-17 8-17 8-65	6.16 6.13 6.13 6.18 6.18 8.18	nd nd 9.£500 9.£500 0.8000	8.8152 8.6152 8.61883 9.9312 9.9325	6.6383 6.9167 6.6435 9.6656
123478-HxCDD 123678-HxCDD 123789-HxCDD 123789-HxCDD Total-HxCDD	пd пd 1.29		יזק על על	ຍ.33 ຍ.29 ຍ.51	ים. ים, ים, ים, ים, ים, ים, ים, ים, ים, ים,	କ. ଟେ ଜ. ମେ ଜ. ମେ	nd nd 1.26	6.21 9.16 9.24 1.29	6.41 6.33 9.49	8.19 8.16 6.16 8.19	nd nd nd 8.6666	8.8295 8.8163 9.9243 9.9999	6.941 0 6.6327 8.6487
1234678-HpCDF 1234789-HpCDF Total HpCDF	nd nd	B.26 B.57	nd nd	2.89 8.57	חם. חם	6.46 9.46	몇몇	6.45 6.27 N/A	19.91 9.53	19-9 19-9 9	888	6.8845 6.6827 6.8366	8.6691 8.6653
1234678-HpCDD Total HpCDD	nd	B.57 	2.88 2.88		89.89 89.89		1.69	81.76 1.88	8 .57	19-9 19-9	<u>8-6109</u> 8- <u>6888</u>	8.9976 8.6368	1.8857
OCDF OCDD Total TEF adjus	nd ø.øø ited valu	1.89 	2.18 83.69		0.00 17.00		1.05 33.33	1. 66 33.33	1.88	199-9 1991	8.8611 8.6333 8.1189	9.9918 9.6333 9.6438	8- 6 918

6.6888 8.6238 9.1799 **3.1575** 8.9785 **B.1623** 0.0603 ł **B_6674** 1 1.6633 **B. £345** 9-9863 **6-668** 6.6179 <u>6.1466</u> 0.0550 1 Mean D.L. Average TEF Concentrations 1.1719 **B_0515** 9_0302 0_0076 9.8844 6.6173 **8**.8823 + 1/2 B.L. 9.1258 **g**.**g**288 9.99.90 9.6966 6.99.99 8.8287 5.6690 6_6150 6.6666 **B.B**812 9.3899 0.0340 Mean Det. Mean Det. **B.6453** 8.6699 B.1208 <u>8.8896</u> 9.9457 0.0402 8.5817 **6000**9-19 pu pu 8.8815 9.8297 **B**.7288 0.2050 0.0000 0.9528 9.6999 6.0173 0.6666 0.0000 g.2659 9.0000 6.6829 9.0962 55 6.0846 E 0.0006 Б B. 833B 6.9228 Values <u>6.16</u> 01 · 0 9.10 0.10 0.10 9.19 **9.65** 9.56 0.000 6.58 6.668 6.16 9.19 0.0600 0.3000 18-81 8-81 5 9.61 5 6-601 6-601 9.999 1.00 6.00 臣 7.40 Average Congener Concentrations 1.7**9** 8.88 **a**.55 **a**.35 8.88 9.58 9.58 Mean 1.40 1.09 **6**.45 **6**.34 **B**.32 0.71 1.62 D.L. | | 1 1 1 1 1 **9**.45 **9**.33 **g**_68 **9**.46 **9**.29 **g**.52 1.29 0.46 0.34 6.30 1.66 0.70 Ø.44 1.73 1.83 2.30 20.67 + 1/2 D.L. 9.58 Ø.24 **G**.81 3.37 N/A **B.**3**B** 9.41 Mean Det. Mean Det. nd 1.29 pu pu bu 1.89.1 6.62 nd 3.37 1.73 1.69 **B**.33 **B**.33 9.44 9.41 9.68 0.41 0.41 **9**.82 Ø.52 Ø.84 nd Di Va lues <u>0</u>.60 D.L. 8.50 Ø.65 Ø.63 Ø.61 0.54 | | | | |1 1 1 1 1 1 | | 1 | | ŝ Rep nd 3.57 pu 2.20 3.84 1.98 3.88 1.96 27.66 Ø.18 Ø.18 0.41 **g**.85 0.41 0.41 Ø.82 Ø.52 <u>n</u> <u>n</u> <u>n</u> <u>n</u> £.57 p p <u>e</u> 44 Conc. g.48 0.46 0.46 B.43 **B.4**B **B.2**8 **g**.27 **g**.18 9.41 0.42 **g**.21 **g**.81 1 1 | | 1 1 D.L. 1 1 2 Rep nd Ø.37 nd 1.69 ŋ 'n 1.50 1.3Ø 9.ØØ **9**.48 gg B ŋġ Ø.67 3.17 Conc. nd D b B B nd Dd 51 G nd 7.40 26.00 ---1.60 1.40 1.79 B.52 B.46 **0**.42 B.83 F.51 1.99 3.86 1.30 0.97 0.81 1.70 | | ł -1 -ם-ר. 1 ł 1 1 Total TEF adjusted values Rep 1 Conc. ק ק ק ק 명명명 p p nd nd nd g g 1.89 9.19 멀멸 p g 1234678-HpCDD 1234789-HpCDF Native Isomer [234678-HpCDF [23478-HxCDD 123789-HxCDD STATION 8A-C 23478-HxCDF 23678-HxCDF 23789-HxCDF 234678-HxCDF 123676-HxCDD Total HpCDF Total HpCDD 12378-PeCDD fotal PeCDD ota 1-HxCDF Tota 1-HxCDD 2378-PeCDF 23478-PeCDF fotal PeCDF rotal ICDD fotal ICDF 2378-TCDF 2378-TCDD OCDF OCDD

.

STATION 9A-C						Averade Cond	lener Concent	rations		Average	TEF Concentra	itions
	Rep 1	Rep	2	Rep	m	Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc. D.L.	Conc.	D.L.	Conc.	D.L.	Values	+ 1/2 D.L.	D-L.	TEF	Values	+ 1/2 D.L.	0-r-
2378-TCDF	R 24	a 56		6 .31	1	ß_37	B .37		9.18	6_6376	<u>6.6376</u>	
Total TCDF	0.41	Ø.56	ł	6.31	١	B .43	B .43	ł	898.9	9.9995	9.9699	1
2378-TCDD	nd Ø.34	pu	Ø .82	nd	g _95	pu	B .35	0.70	1.69	pu	8.3517	G .7 0 33
Total TCDD	B .83	Ø.52	I	9_47	1	g .61	B _61	1	9.69	9699.9	9-9999	
12378-PeCDF	nd Ø.14	pu	g .37	рц	g .24	pu	G .13	0.25	9 .95	pu	9.89 63	g . g 125
23478-PeCDF	nd Ø.Ø8	рц	g .35	שק	g .34	ри	B .13	B .26	0.50	pu	g.8642	g .1283
Total PeCDF	ß.13	pu	ł	ри	1	g .13	g .13	1	6.999	0.0000	0.0000	I
12378-PeCDD	nd Ø.13	pu	Ø.32	р	0.30	pu	0.13	g .25	g.5g	pu	g .8625	g .1258
Total PeCDD	Ø.3Ø	B .42	1	'nđ	1	B .36	g .36	ł	0.000	0.0000	8008	ł
123478-HxCDF	nd Ø.18	'n	Ø.6Ø	pu	Ø.27	pu	0.16	G .35	0-10	рц	8.8 175	8.8358
123678-HxCDF	nd Ø.69	pu	0.40	pu	0.17	рц	8.11	B .22	0.16	pu	0.0110	8.8228
123789-HxCDF	nd Ø.18	pu	ß.67	0.46	1	6.40	g _28	0.43	0.10	0.0-00	g.g275	g _ g 425
234678-HxCDF	nd 0 .24	pu	<u>0</u> .71	pu	<u>0</u> .49	pu	G _24	Ø.48	0.10	nc.	8.8248	8-8488
Tota 1-HxCDF	ß.54	pu	ł	g _96	1	<u>0</u> .75	B .75	1	0.0000	0.000	8888-8	I
123478-HxCDD	nd Ø.15	pu	Ø.35	'n	B .25	pu	B.13	g .25	6.10	рц	9 _ <u>9</u> 125	6.9256
123678-HxCDD	nd Ø.29	<u>6.57</u>	1	pu	<u>0</u> .45	<u>a</u> .57	0.31	B .37	9.19	0.0570	B _ B 313	Ø.0370
123769-HxCDD	nd Ø.27	pu	g .67	g .36	1	g .36	B .28	<u>0</u> .47	9.16	9-8369	8.6277	8.8478
Tota l-HxCDD	1.89	Ø.57	1	g .96	1	1.11	1.11	1	6969-9	8988-8	8-86 88	1
1234678-HpCDF	nd 8.47	6.04		Ø.77	ł	g.41	g _35	6.47	6.61	9.6941	0.0035	6_6647
1234789-HpCDF	nd B .22	pu	g .86	pu	B .41	pu	Ø .25	0.50	6.61	pu	9.8825	0-0050
Total HpCDF	Ø.32	8.84	ł	2.67	I	1.61	1.61	ł	53	0.0000	8.6866	
1234678-HpCDD	0°.60	1.30	1	1.80	1	1.63	1.83	1	19-9	6.0103	6.9183	ł
Total HpCDD	<u> </u>	2.16	1	3.70	1	1.93	1.93	1	5	0.0000	8.8666	
OCDF	<u>6</u> .20	pu	3.69	2.50	ł	1.35	1.58	3.60	6.661	6-9914	8.6015	ł
GCDD	7.69	29.89	ł	68.00	1	34.67	34.67		188.8	0.0347	6.8347	
Total TEF adjus	sted values									B .22 B 4	g .7256	ų

8-8495 <u>8-6846</u> **g.** 8268 0.0413 1 11 8.8549 **B**.6367 0.0370 1 1 B. 8895 8.8988 **B.1509** B_B257 Mean ٥.٢. Average IEF Concentrations + 1/2 D.L. 6.6136 6.6626 6.6663 8-8347 8-8669 6.0046 0.0610 **g**.6968 6.0758 0.0000 **g__0**338 0.0450 0.0000 **g**.**g**137 0.0223 9.9669 9.9974 **g**.3183 6.0000 **6.9128** Mean Det. Mean Det. 0.0000 8.8267 9.8177 9.9999 0.0103 0.0050 8.8998 0010-0 9.9999 9.6966 8-8848 8-8618 0.0000 0.0230 9.9999 0.0160 0.8526 0.0000 8.8347 0.6936 0.0606 **9.2161** 모모 P Б Б Б Б Б 8.6674 0.0020 Va lues 0.10 9.16 0.10 9.10 0.10 9.16 6.0000 19.91 0.50 0.50 0.600 9.59 900.000 0.10 0.0000 0.01 5 0.01 5 199-9 199-9 6.16 6.669 1.00 臣 Average Congener Concentrations 8.37 8.58 8.26 <u>6.46</u> 0.30 Mean <u>6</u>.64 Ø.19 **g**.18 g.26 6.41 Ì 1 1 | | ٥.٢. 9.54 l 1 1 19.47 4.03 0.13 0.09 0.42 Ø.15 Ø.78 0.14 **B**.22 **g**.65 0.18 0.34 Ø.13 8.49 0.74 **6**.26 4.87 3.47 + 1/2 D.L. 0.10 0.02 **g**.32 **g**.56 Ø.13 Mean Det. Mean Det. <u>ø.16</u> 4.03 61.00 nd nd Ø.42 nd Ø.78 nd 9.18 9.23 nd 9.65 **6**.52 nd 8.49 **9**.74 nd 4.87 3.47 0.02 0.02 nd Ø.56 Va lues **Ø**.36 1.50 0.48 1.10 0.14 Ø.39 **Ø**.32 £.30 0.57 1 1 Ø.54 0.27 1 | 1 ł ł ł ł ł 1 3 D.L. nd a.77 Rep nd 23.*0*0 Conc. пd 1.3@ **g**.26 Ø.16 4.70 48.79 **6**.86 93.66 nd 0.74 0.42 'n **0**.26 Ø.52 pu Б Б pd bd **6**.73 6.30 0.50 0.46 0.16 Ø.36 Ø.31 Ø.32 Ø.42 0.48 Ø.51 0.37 | | ł ł | 1 | | D.L. 1 2 Rep nd nd 1.49 nd 1.50 5.60 9.70 16.96 82.66 멑 ри 1.47 Ы Conc. 0.04 0.04 nd d 머머 р р 9.47 밀밀 **B**.23 Ð.35 --0.05 0.11 0.15 9.14 Ø.19 **9**.23 **9**.26 **6**.12 1 1 1 -| | D.L. ł ł ł 1 ł Total TEF adjusted values Rep ì nd 0.30 nd Ø.96 nd 1.37 0.00 **9.48** 8.**9**8 0.10 Conc. **B**.26 0.10 Ø.2B nd D 00.00 0.00 0.00 nd Ø.38 g g nd nd 1234678-HpCDD 1234789-HpCDF 1234578-HpCDF STATION 1BA-C Native Isomer 23478-HxCDD 123789-HxCDD L23678-HxCDF 123789-HxCDF 123678-HxCDD 23478-HxCDF 234678-HxCDF Total-HxCDD Total HpCDD Fotal HpCDF 12378-PeCDD fotal PeCDD otal-HxCDF [2378-PeCDF 23478-PeCDF otal PeCDF otal TCDD fotal ICDF 2378-TCDC 2378-TCDF 0000 OCDF

d,

н¥

STATION 11A-C							Average Cong	gener Concent	rations		Average	TEF Concentr	at ions
	Rep 1		Rep	2	Rep	ŝ	Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc. D.	Ļ	Conc.	D.L.	Conc.	D.L.	Values	+ 1/2 D.L.	D.L.	TEF	Va lues	+ 1/2 B.L.	D.L.
2270 TCDF		5	10 10		τ Ω	1 40	8	а F.	1 25	8	a 6316	a 8528	G 1250
ZJ/0-ILUF Tatal TCAE	יים מיד	A 1	10.0			a+ . T	6 31 0 31	8 31 8 31	<u>.</u>	000	00000	G GGGG	
IULA I LUF		}	10-4		2		10.3	10.3					
2378-TCDD	nd 1.	20	pu	0.57	pu	Ø .93	pu	0.45	Ø.9Ø	1.00	pu	0.4500	0.9000
Total TCDD	pu	;	ри	ł	pu	ł	pu	N/A		0.00	P	N/A	1
12378-PeCDF	0.77	;	р	0.17	pu	0.28	0.77	Ø.33	6.23	0.05	0.0 385	0.0166	0.0113
23478-PeCDF	0.60	1	pu	Ø.33	pu	0.32	0.60	0.31	Ø.33	0.50	0.3000	0.1542	g .1625
Total PeCDF	1.40	ł	1.30	1	pu	1	1.35	1.35		9.999	0.0000	0000	1
12378-PeCDD	nd Ø.	79	pu	0.30	рц	0 .32	pu	0.24	0.47	Ø.5G	pu	0.1175	Ø.235Ø
Total PeCDD	pu	1	pu	ł	pu	ł	pu	N/A	ł	0.000	pu	0.0000	ł
		ŝ	1	00 8	1	37 8	ר ז	CC 10	0 YC	0 I 0	Ţ	0 000B	a axf 7
IC34/8-HXCUF	, na 19.	20		10.00 10.00	2 1	07.0		C7-G	07 B	a 1 0	0 0C30	0.0220 0 0307	G 0375
1230/8-HXUUF	сс.И -	! !		N.34	5 .	ю.41	сс. и	90.00 00		at . a			
123789-HxCDF	nd bu.	23	ק.	Ø.56	ק	0.44 2.21	pu -	19.26 19.26	9.51 1.1	9.19 9	ם ז	CC20.0	atca.a
234678-HxCDF	nd Ø.	61	pu	Ø .62	pu	0.31	pu	97.70	N.5I	0.19	Du -	1020.0	CICA.A
Total-HxCDF	Ø.53	1	2.70	1	1.20		1.48	1.48	;	0.0000	0.0000	0.0000	1
123478-H×CDD	nd Bu.	46	pu	0.57	pu	0.44	pu	0 .25	Ø.49	0.10	р	0.0 245	g . g 49 g
123678-HxCDD	nd bu.	58	pu	0.25	pu	0.77	pu	9.27	Ø .53	0.10	pu	0.0267	g. g 533
123789-HxCDD	nd Ø.	58	pu	0.44	pu	g .62	pu	0.27	0.55	0.10	pu	g.g 273	0.0 547
Total-HxCDD	pu	ł	1.60	ł	3.10		2.35	0.30	ł	0.6666	0.0000	6.9999	!
1234678-HpCDF	2.97	1	3.07	ł	3.27	ł	3.10	3.10	ł	0.01	0.0310	0.0310	1
1234789-HpCDF	nd Ø.	49	pu	g .25	pu	0.45	pu	0.20	Ø.4Ø	0.01	pu	0.0020	0.0040
Total HpCDF	8.57	ł	6.87	1	9.37	ł	8.27	8.27	1	63	0.3000	6.9000	ł
1234678-HpCDD	5.70	ł	2.10	ł	5.80	1	4.53	4.53	ł	0.01	6.0453	g . g 453	
Total HpCDD	8.70	1	3.90	1	12.70	ł	8.43	8.43		6	6.9999	0.0000	1
OCDF	6.10	ł	1.30	1	5.40	ł	4.27	4.27	ł	0.001	0.0043	0.0043	I
0000	153.00	}	11.00	ł	93.ØØ	1	85.67	85.67	1	0.001	0.0857	Ø .Ø857	I
Total TEF adju	sted values										g .5888	1.1412	

2

0.0515 **g.g**68g 0.0120 0.1700 **g**. **g**583 1 1 1 0.0273 0.0737 0.0590 0.0130 1 **Ø**.2233 ł 1.1200 0.0503 0.0317 1 Mean D.L. Average IEF Concentrations 0.0000 0.0012 0.0090 1.0711 **g**.0059 0.0058 0.0000 **Ø.Ø**368 **g**.**g**298 0:0407 0.0103 0.0000 0.0252 0.0158 0.0292 0.0000 0.0197 0.0000 0.0713 0.0000 0.0000 0.0000 0.1117 + 1/2 D.L 0.0850 0.5600 0.0137 Mean Det. 0.0012 0.0090 Ø.1995 Mean Det. 9.0100 0.0103 0.0000 0.0000 0.0000 0.0380 0.0540 0.0000 0.0000 0.0060 0.0713 0.0000 0000-0 0.0000 0.0000 0.0000 0.0000 0.0056 0.0000 0.0000 0.0000 0.0000 0.0000 Va lues 0.10 0.10 0.10 0.10 0.10 0.10 0.0000 9.01 6 5 0.001 0.001 0.50 0.16 0.01 0.01 0.10 0.000 1.00 0.00 0.05 0.50 0.000 0.000 0.0000 TEF 1.3Ø 1.2Ø 6.45 8.58 8.58 8.58 0.59 0.52 0.68 1 1 Average Congener Concentrations Ø.55 Ø.34 0.74 | | Mean 1.12 1 D.L. ł 1 1 1 ł **g**.59 **g**.58 2.67 **6**.41 2.25 1.03 1.20 9.00 + 1/2 D.L. Ø.25 Ø.16 **B**.29 **0**.37 N/A Ø.29 0.30 Ø.22 0.56 0.17 N/A Mean Det. Mean Det. Ø.95 N/A 0.27 N/A nd Ø.38 Ø.54 2.25 0.56 1.05 2.67 1.93 2.17 1.20 9.00 Ø.71 Ø.95 br pr pu pu pu pu nd D Values 1.20 Ø.57 Ø.57 1.60 1.30 Ø.96 0.68 0.64 Ø.31 0.92 0.70 1 1 1 1 2.10 Ø.54 -1 1 ł 1 Ļ. ŝ Rep Ø.8Ø 2.9Ø 2.30 ם הם ה 'n ри Conc. ם ק ם פ ри ри 27 0.60 0.60 pu pu pu pu 2 0.40 **G**.46 **B**.36 Ø.35 Ø.26 0.61 0.30 0.47 **0**.90 Ø.57 1 1 ł 1 1 Ø.62 ł 1 ł 1 l -D.L. \sim Rep 2.10 **6**.87 1.66 2.97 1.60 2.30 0.90 10.00 pu pu Ъ pu **Ø**.39 Ø.39 pq Ъ pu ם ק nd D 5 Conc. р pu Ø.28 Ø.26 Ø.36 Ø.26 Ø.34 0.61 0.42 ł 1 1 1 1 1 Ø.64 Ø.33 Ø.22 ł ł 1 ł D.L. 1 Total TEF adjusted values ----Rep 0.70 0.40 5.00 **Ø**.38 0.25 р 0.54 2.40 2.77 Conc. 1.15 1.85 p p ри ЪЪ ם ק pu pu pu Ъ 1234789-HpCDF 1234678-HpCDD 1234678-HpCDF STATION 12A-C Native Isomer 23789-HxCDF 234678-HxCDF 23478-HxCDD L23678-HxCDD L23789-HxCDD 23478-HxCDF 23678-HxCDF otal-HxCDD Fotal HpCDF Total HpCDD fota 1-HxCDF 23478-PeCDF fotal PeCDF 12378-PeCDD otal PeCDD 12378-PeCDF rotal TCDD otal TCDF 2378-TCDD 2378-TCDF OCDF 0000

STATION 13A-C							Average Cond	Tener Concent	rations		Average	TFF Concentr	at ions
	Rep	1	Rep	2	Rep	ŝ	Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc.	D.L.	Conc.	D.L.	Conc.	D.L.	Values	+ 1/2 D.L.	D.L.	TEF	Va lues	+ 1/2 D.L.	D.L.
2378-TCDF	9 22	1	G 24	1	pu	a . 52	B _23	0.24	Ø.52	6.10	0.0230	0.0240	0 .0520
Total TCDF	0.22	ł	0.24	}	pu		0.23	0.23		0.000	0.0000	0.6660	1
2378-TCDD	pu	0 q7	pu	1 40	pu	Ø. 66	pu	0.51	1.01	1.00	ри	0.5050	1.0169
Total TCDD	pu	,)	pu	2 ;	pu		pu	N/A		0.00	pu	0.0000	
					-	0						0100	0010 0
12378-PeCDF	ק י חק	Ø.19 Ø.20	0 .37		ם ק	Ø.36 Ø.26	0.37 a Ag	0.22 0.21	19.28 19.28	60.00 60 5 60	6810-0 0 2000	10.0108 001050	0.0138 0 1150
<pre>Lotal PeCDF</pre>	pu pu	 	0.77 0.77	ÍI	pi pi	07-A	0.77 0.77	17.0	C	8.888 8	0.0000	0000.0	
12378-PoCND	pu	6 33	, pu	ß 42	pu	0.38	pu	61.0	0.38	0.50	pu	0 .0942	Ø .1883
Total PeCDD	pu	2 2 2	pu Pu	1	e pe		pu	NĨA		0.000	pu	N/A	
123478-HxCDF	pu	0.50	Ø .62	1	pu	Ø .39	Ø.62	Ø.36	G .45	0.16	0 .0620	0.0 355	0.0445
123678-HxCDF	pu	0.24	9.41	ł	Ø .32	!	g .37	Ø.28	0.24	0.10	Ø. Ø365	g . g 283	0.0240
123789-HxCDF	pu	0.37	0 .65	ł	pu	0.76	0.65	9.41	g .57	0.10	0.0650	0.0405	0.0565
234678-HxCDF	pu	1.20	pu	Ø .53	pu	0.46	pu	0.37	0.73	0.10	pu	Ø. Ø365	0.0730
Total-HxCDF	pu	ł	2.30	1	Ø .64	ł	1.47	1.47	1	0.0000	0.0000	0.0000	1
123478-H×CDD	pu	Ø.53	, ,	0.43	pu	B .39	ри	B .23	0.45	0.10	pu	g.g 225	0.0450
123678-HxCDD	pu	0.44	pu	0.51	pu	0.50	pu	Ø.24	g .48	0.10	pu	0.0242	9.0483
123789-HxCDD	pu	0.50	pu	0.70	pu	0.75	pu	g .33	Ø.65	0.10	pu	0.0 325	0.0650
Total-HxCDD	pu	 	pu	1	pu	ł	pu	N/A	1	0.0000	pu	N/A	I
1234678-HpCDF	0.77	-	g .97	ł	2.67		1.47	1.47	-	6.01	0.0147	0.0147	1
1234789-HpCDF	pu	0.55	pu	Ø.55	pu	0.37	pu	B .25	0.49	0.01	pu	0.0025	0.0049
Total HpCDF	2.67	1	2.77	1	6.67	1	4.04	4.04	1	6	9.9.9	0.0000	1
1234678-HpCDD	0.70	{	Ø.8Ø	ł	1.60	1	g .83	Ø.83	1	0.01	g . gg 83	g . gg 83	1
Total HpCDD	1.30	1	1.20	1	00.00	ł	g .83	g .83		63	0.0000	0.0000	.1
OCDF	1.90	1	1.70	ł	2.70	1	2.10	2.10	1	0.001	0.0021	9.9821	1
0CDD	8.00	;	2.00	;	8.00	1	6.00	6.00	+	0.001	0.0060	0,0060	
Total TEF adjus	ted val	san									g .4361	g .9925	

3

1.11

0.0044 1.1000 0.1017 0.0340 **6.6**493 **Ø**. Ø863 **g**. **g**393 0.6407 0.0017 0.0415 ł ł 0.0893 -0.0155 0.1950 0.0163 1 Mean ٥.٢. Average TEF Concentrations **0**.0348 0.0090 0.0013 N/A 0.0203 0.0023 0.0000 0.0083 N/A 0.0432 0.0197 0.0000 Ø.9424 0.0568 0.0975 0.0170 0.0247 N/A 0.0067 0.0051 + 1/2 D.L 0.0447 N/A 0.5500 N/A 0.0078 0.0082 Mean Det. Mean Det. 0.0016 0.0083 0.0023 0.0000 0.0630 0.0000 0.0116 0.0929 pu pu pu 0.0000 Pa nd D pa pa p p Б рц 0.0067 Va lues 0.10 0.000 0.10 0.05 0.50 0.000 0.50 0.000 0.10 0.10 0.10 0.10 0.10 1.00 0.00 0.0000 0.10 0.01 0.01 0.01 5 0.001 0.001 0.0000 5 ΤEF Average Congener Concentrations **Ø**.39 0.34 0.16 0.49 Ø.86 **0**.42 0.44 1.70 Mean Ø.89 1.10 0.31 0.20 D.L. Ø.39 0.41 | | 1 1 1 ł ł 1.32 8.33 + 1/2 D.L. Ø.45 0.10 0.20 0.08 0.25 Ø.43 0.20 Ø.35 Ø.63 **0**.67 **0**.51 2.44 0.23 0.00 Mean Det. Mean Det. N/A Ø.55 N/A 0.16 0.17 N/A 0.20 N/A N/A **g**.63 **g**.63 **0**.67 1.10 2.44 0.23 0.00 1.55 8.33 pu pu рр p p p p p pu pu pu pu ри Va lues 0.50 0.40 Ø.59 1.70 1.10 Ø.22 Ø.22 0.54 Ø.25 Ø.19 1.20 0.47 <u>0</u>.54 1.00 1 1 1 1 D.L. -ŝ Rep nd 16.00 nd 1.97 0.40 0.00 Conc. pu pu pu g g pu pu pg pg рu pu pu pu pu 57 ġ. 0.30 0.46 Ø.39 Ø.53 Ø.17 0.48 1.10 Ø.74 1.20 **g**.48 **g**.22 ł 1 1 ł ł ; ; -ł 1 ł D.L. \sim Rep Conc. **Ø**.63 Ø.63 1.10 0.10 0.00 1.00 0.00 pu pu ри р pu pu pd Dd **0**.97 3.67 nd, nd pg pg pu pu ри 0.50 0.29 Ø.48 Ø.29 Ø.29 Ø.29 1.00 0.23 0.17 --Ø.24 0.24 0.13 Ø.94 --1 | | 1 ם.ר. 1 -1 Total TEF adjusted values ----Rep 0.00 2.10 Conc. ЪБ pu pu ри pq nd 0.47 Б 1.67 0.20 pu pu pu pu pu pu рц 234678-HpCDD 234678-HpCDF [234789-HpCDF STATION 14A-C Native Isomer [23789-HxCDD .23478-HxCDF 23678-HxCDF 123789-HxCDF 234678-HxCDF 23478-HxCDD .23678-HxCDD fotal PeCDF 12378-PeCDD fotal PeCDD otal-HxCDF otal-HxCDD fotal HpCDF fotal HpCDD 12378-PeCDF 23478-PeCDF otal ICDD otal TCDF 2378-TCDD 2378-TCDF 0000 OCDF

CTATION 17A							Averade Con	Tener Concent	rations		Åverage	TFF Concentry	at ions
WIT NOTIVIC	Ren		Ren	~	Ren	'n	Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc.	р.L.	Conc.	D.L.	Conc.	D.L.	Values	+ 1/2 D.L.	D.L.	TEF	Va lues	+ 1/2 D.L.	D.L.
2378-TCDF	nīd	1.00	pu	1.30	0.04	1	0.94	0.40	1.15	0.10	N. 9949	N-039/	acit.a
Total TCDF	pu	8	pu		0.04	ł	<u>0</u> .04	6.94	ł	0.000	0.0000	0.0000	1
2378-TCDD	pu	Ø.97	pu	Ø.98	ри	g .92	pu	Ø.48	g .96	1.00	pu	Ø.4783	Ø.9567
Total TCDD	pu	;	Ø.93	1	B .43	1	Ø.68	Ø .68	ł	0.00	0.0000	0.0000	1
12378-PeCDF	pu	Ø.28	pu	Ø .38	pu	Ø.28	pu	g .16	0.31	0.05	pu	0.0078	9.0157
23478-PeCDF	pu	Ø .23	0.19	ł	pu	0.13	Ø.19	0.12	Ø.18	0.50	0.0950	Ø.0617	0.0960
Total PeCDF	pu	!	Ø.19	-	pu	1	0.19	g .19		0.000	0.6000	0000	1
12378-PeCDD	pu	Ø .21	pu	0.51	pu	Ø.38	pu	Ø.18	0.37	0.50	pu	9.0917	g .1833
Total PeCDD	, pu	ł	pu	1	pu	1	pu	N/A	1	0.000	р	N/A	1
				i t	-	c t	-		Ĩ		7	6 60E7	A 4612
123478-HxCDF	pu .	9.30 2.22	pu .	10.0	pu	ы./3	pu -	07°0	1C.0	81 - R	21	1070-0	CTCA.A
123678-HxCDF	pu	1 .30	pu .	1 .38	pu .	/C. N	pu .	17.0 2 20	14. a	01-0		0070.0	1140.0
123789-HxCDF	pu	0.48	pu	Ø .83	pu	Ø .63	pu	0.32	6 0. 0	9.1V	D''	9-19253	1908.0
234678-HxCDF	pu	0 .60	pu	0 .97	pu	Ø .25	pu	0.30	Ø.61	0.10	pu	0.0303	<u>B.9687</u>
Total-HxCDF	1.20	ł	pu	ł	1.40	ł	1.30	1.30	l	0.0000	6.9999	0.0000	1
123478-HxCDD	pu	0.27	pu	0.60	pu	0 .21	pu	G .18	B .36	0.10	pu	0.0180	0.0360
123678-HxCDD	pu	Ø.29	pu	Ø .91	pu	0.51	pu	g .29	0.57	0.10	pu	g . g 285	0.0570
123789-HxCDD	pu	Ø.35	pu	1.10	pu	Ø.63	pu	0.35	Ø.69	0.10	ри	g.g 347	Ø. Ø693
Total-HxCDD	0.70	ł	pu	ł	Ø.93		Ø.82	G .82	1	0.0000	6.6666	8.6666	1
1234678-HpCDF	1.27	ł	1.17	ł	pu	2.20	1.22	1.18	2.20	0.01	g.g 122	g . g 118	0.0220
1234789-HpCDF	pu	Ø.39	pu	1.50	pu	1.20	pu	Ø.53	1.06	9.01	pu	g . <u></u>	9.0106
Total HpCDF	3.77	1	4.07	ł	pu	!	3.92	3.92	ł	5	6.9009	0.000	1
1234678-HpCDD	0.40	1	3.90	ł	1.80	-	2.03	2.03		0.01	0.0203	g . g 2 g 3	ł
Total HpCDD	2.50	1	6.70	1	3.10	ł	4.10	4.10	ł	6	0.0000	8.6668	1
OCDF	2.10	ł	6.30	ĺ	3.96	ł	3.80	3.80	ł	0.001	0.0038	0.0038	1
0CDD	11.00	1	113.00	ł	42. 00	ł	55.33	55.33	1	0.001	Ø.Ø553	B .8553	
Total TEF adjus	sted valu	sər					-				B .1987	Ø.9661	

30-Day Tissue Dioxin Results (Cont'd) TABLE D.1.

0.0275 0.0340 0.0087 0:1000 0.0158 Ø.1225 Ø.1325 Ø.@467 0.0573 .0320 0.0423 1 1 1.5068 0.0303 1 11 D.L. Mean Average TEF Concentrations 5 0.0090 0.7500 0.0233 0.0280 0.0212 0.0044 0.0000 0.0000 9.0073 1.1594 + 1/2 D.L. 0.0267 0.0000 N/A 0.0098 **g**.**g**958 0.0808 **g**.**g**198 0.0447 0.0000 0.0007 0.0000 9.6666 0.0152 0.0287 0.0000 Mean Det. 0.0041 Mean Det. 0.4405 0.0150 0.0000 0.0135 0.1650 0.0000 0.0045 0.0090 0.0320 0.0250 0.0000 0.0000 0.0000 0.0073 0.0000 0.0585 Б 0.0907 말말 C.1190 0.0000 Б 말말 р Values 0.10 0.666 0.05 0.50 0.000 0.50 0.009 0.10 0.10 0.10 0.19 6.10 0.10 0.0000 0.01 5 5 1.00 0.00 0.10 0.01 0.01 0.601 0.601 0.0000 TEF Average Congener Concentrations **0**.32 **0**.25 Ø.32 Ø.34 **9**.42 --1.50 **B**.3**B B**.28 0.47 ß.57 ---Ø.87 Mean 1.00 Ø.27 | | D.L. 1 1 + 1/2 D.L. Ø.7Ø 7.33 Mean Det. Mean Det. Ø.75 N/A 0.19 Ø.85 0.16 Ø.45 0.15 0.20 Ø.23 **Ø**.29 Ø.32 Ø.28 Ø.45 **0**.21 3.25 0.44 0.82 Ø.9Ø 1.53 **0**.27 **0**.30 0.20 0.41 0.22 0.45 nd Ø.32 nd Ø.32 **B**.25 **B**.59 nd 3.25 0.45 nd 0.82 Ø.9Ø 1.53 Ø.70 7.33 0.15 0.30 £.27 Ø.33 Ø.85 Ъ pu pu Va lues Ø.23 Ø.1Ø 0.70 D.L. Ø.78 0.21 0.20 0.21 Ø.3Ø Ø.32 --0.42 Ø.31 1 | 1 1 ł 1 1 1 ŝ Rep nd Ø.34 nd 2.40 <u>a a a a a</u> Ø.25 0.40 Ø.80 1.40 0.30 17.00 pu pu Conc. 0.04 0.04 p p nd bu 1.57 B.49 B.34 Ø.68 Ø.79 1.60 1.00 2.90 0.40 0.39 Ø.32 9.71 0.34 **0**.51 | | 1 1 ł D,L. ł ł ł 1 \sim Rep Conc. pu 1.10 1.60 밀밀 pu pu pu nd nd 0.77 0.77 pu Pu ր հ 9.70 Ø.22 Ø.39 0.72 Ø.39 Ø.34 Ø.82 -ł | | | | 1 1 1 1 - [1 1 ł D.L. Total TEF adjusted values ---Rep Ø.12 nd nd Ø.32 nd Ø.32 nd 4.10 0.80 1.50 0.20 4.00 Conc. pu 0.77 Ø.26 Ø.56 Ø.85 Ø.22 Ø.55 ŋ 0.12 pd bd **B**.27 **B**.33 1234678-HpCDD 1234789-HpCDF 1234678-HpCDF Native Isomer .23478-HxCDD I 23678-HxCDD 123789-HxCDD 23478-HxCDF 123678-HxCDF 23789-HxCDF 234678-HxCDF Total HpCDD otal-HxCDD Fotal HpCDF lotal-HxCDF 12378-PeCDF 23478-PeCDF **Fotal PeCDF** 12378-PeCDD fotal PeCDD Total TCDD Total ICDF SEQUIM BAY 2378-TCDD 2378-TCDF 0000 OCDF

•

				Venery		Juoj Jou	antratione		Average	a TFF fond	entrations		
	Rep		Rep	2	Rep	3	Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc.	D.L.	Conc.	D.L.	Conc.	D.L.	Va lues	+ 1/2 D.L.	D.L.	TEF	Values	+ 1/2 D.L.	D.L.
2378-TCDF	Ø.18	I I	pu	Ø.73	pu .	1.10	g.18 2.10	0.37 6.50	ß .92	0.10 a ana	Ø.Ø180 9.0000	Ø.Ø365 a aaaa	g . g 915
Total ICDF	ø .58		Pu	1	pu	1	8 с .и	ос - л	1	ала ⁻ а	agga - a	8000 ° 0	
2378-TCDD	pu	Ø.57	pu	Ø.54	pu.	1.70	ц Ч	<u>6.47</u>	Ø.94	1.00	pu	Ø.4683	g .9367
Total TCDD	Ø.52		pu	1	pu		9 .52	9 .52		89 ° 8	NNNN .	88888 ° 8	
12378-PeCDF	G .24	ł	pu	0 .27	ри	0.48	B .24	B .21	g .38	0.65	0.0120	9.9183	gg188
23478-PeCDF	Ø .23	I t	pu	g .25	pu	0 .37	B .23	0.18	0.31	0.50	0.1150	0.0900	G.1550
Total PeCDF	g .58	1	pu	1	pu		Ø.58	B .58	1	0.000	0.0000	9.0009	Ι.
12378-PeCDD	0.15	1	pu	Ø .38	pu	Ø.44	Ø.15	0.19	0.41	6.50	0.0750	g _ <u>8</u> 933	0.2050
Total PeCDD	0.40	ł	pu	ł	pu		0.40	B.4B	-	0.000	0000	9.6666	1
123478-HxCDF	pu	0.14	pu	0 .33	pu	B .72	pu	9.20	0.40	0.10	ри	g . g 198	B . B 397
123678-HxCDF	pu	0.12	pu	B .22	pu	0.51	pu	0.14	Ø .28	0.10	pu	B.B 142	g . g 283
123789-HxCDF	Ø.23	ł	pu	Ø .38	pu	1.50	Ø.23	g .39	Ø.94	0.10	0.0230	0.0390	0.0940
234678-HxCDF	pu	B .22	pu	1.10	pu	2.20	pu	B .59	1.17	0.10	pu	g . g 587	Ø.1173
Total-HxCDF	Ø .23	1	pu	1	pu	-	B .23	Ø .23	I	0.0000	0.0000	0.0000	1
123478-HxCDD	pu	0.12	pu	Ø.34	ри	1.40	pu	g .31	Ø .62	8.19	pu	9.8318	0.0620
123678-HxCDD	pu	0.19	pu	Ø .33	pu	1.70	pu	g .37	Ø.74	6.10	pu	0.0370	0.0740
123789-HxCDD	pu	0.18	pu	g .27	pu	1.20	pu	B .28	Ø.55	0.10	pu	B _ <u>B</u> 275	0.0550
Total-HxCDD	1.23	ł	pu	1	pu	1	1.20	1.20	ł	9.6666	8.8888	6.6666	1
1234678-HpCDF	pu	0.41	pu	Ø.38	pu	1.29	pu	g .33	g .66	0.01	pu	0.0033	0.00 66
1234789-HpCDF	pu	Ø.47	pu	0.45	Ø.95	ł	g .95	B.4 7	g .46	0.01	0.0095	0.0047	0.0046
Total HpCDF	pu	ł	pu	ł	0 .42	1	D .42	B .42		5	0.0000	0.0000	1
1234678-HpCDD	00 ° 0	1	0.00	ł	pu	1.40	0.00	g .23	1.40	0.01	pu	G. GB 23	0.0140
Total HpCDD	0.00	ł	00.00		pu	I	80.80	9.99	ł	53	0.0000	0.0000	
OCDF	0.00	ł	0 .99	1	1.20	ł	0.70	0.78	ł	0.001	0.8887	6.6667	ł
0CDD	5.00	ł	7.00	1	0.00	}	4.00	4.00	I	0.001	0.0040	0.0040	1
Total TEF adjus	sted val	nes									B .2572	9466	

\sim
D.
ية
<u> </u>
9
ts
Г
SI
R
c
ÿ
10
Ò
ē
SU
is
⊢-
2
õ
-0
ŝ
0
ليتنا
BL
IA

	London of	Concert	trations		TFF	Concentra	tions
DALNAKUUND Native Isomer	Conc.	D.L.	1/2 D.L.	TEF	Conc.	D.L.	1/2 D.L.
2378-TCDE	а 35			8,16	g. 8358		
Total TCDF	Ø.35	ł	-	600	0.0000	ł	
2378-TCDD	pu	Ø.49	Ø.25	1.66	ри	0.4900	g .2458
Total TCDD	pu	;	1	0.60	ри	I	
12378-PeCDF	pu	g .13	0.07	0.05	ри	g . <u></u>	0.0033
23478-PeCDF	pu	Ø.18	60.03	0.50	pu	0.0900	0.0459
Total PeCDF	pu	ł	{	0.000	pu	1	1
12378-PeCDD	pu	0 .24	0.12	0.50	pu	g.1289	0.0600
Total PeCDD	pu	1	ł	0.000	pu		1
123478-HxCDF	nd	0.4 5	Ø.23	9.19	pu	0.0450	8.8 225
123678-HxCDF	pu	Ø.25	B .13	0.10	pu	0.0250	g. @125
123789-HxCDF	pu	Ø .31	0.16	0.10	P	0.0310	0.0155
234678-HxCDF	pu	B .56	B .28	0.10	pu	0.0560	9.928
Total-HxCDF	pu	ł	1	0.0000	pu	I	I
123478-HxCDD	pu	Ø.28	0.14	6.10	pu	0.0280	0.0140
123678-HxCDD	pu	Ø.26	g .13	0.10	pu	0.0260	0.0130
123789-HxCDD	pu	0.46	g .23	0.10	pu	0.0460	B. 023B
Total-HxCDD	pu	ł	1	9, 6006	рu	1	1
1234678-HpCDF	Ø.53	ł	ł	6.01	0.0053		1
1234789-HpCDF	pu	0.42	B .21	0.01	pu	0.0042	9.9621
Total HpCDF	Ø.53	1	ł	S	8.8886		1
1234678-HpCDD	1.60	1	1	0.01	0.0160	1	1
Total HpCDD	3.30	ł		63	0.0003	ł	{
OCDF	1.19	1	I	0.021	0.0011	ł	ł
0000	17.00	1	ł	101-0	g.8178	1	I
Total TEF adjusted	values				B.B744	Ø.9677	
Station	Rep	X Lipid	Dup.	RPD			
---------	-----	---------	------	------			
Sta, 1	1	Ø.19					
Sta. 1	2	0,22	0.17	25.0			
Sta. 1	3	0.15					
Sta. 2	1	0.21					
Sta. 2	2	Ø.21					
Sta. 2	3	Ø.18					
Sta. 3	1	Ø.21					
Sta, 3	2	0.28					
Staj 3	3	0.11					
Sta. 4	1	0.29	0.17	52.2			
Sta. 4	2	0.08					
Sta, 4	3	0.14					
Sta. 5	1	Ø.28					
Sta. 5	2	Ø.1Ø					
Sta, 5	3	0.19					
Sta. 6	1	Ø.25					
Sta. 6	2	0.18					
Sta, 6	3	Ø.22					
Sta. 7	1	Ø.18					
Sta. 7	2	0.26					
Sta. 7	3	Ø.33	0.32	3.0			
Sta. 8	1	Ø.17					
Sta. 8	2	0.12					
Sta. 8	3	0.27					
Sta. 9	1	Ø.17					
Sta. 9	2	0.13					
Sta. 9	ş	Ø.21					
Sta. 10	1	0.17					
Sta. 10	2	0.14					
Sta. 1Ø	3	Ø.28					
Sta. 11	1	0.09					
Sta. 11	2	0.20					
Sta. 11	3	Ø.18					

١

TABLE D.2. Thirty-day tissue lipid results.

TABLE D.2.	Thirty-day	tissue	lipid	results	(cont'd).
and the second se			•		

Station	Rep	X Lipid	Dup ,	X RPD
Sta. 12 Sta. 12 Sta. 12	1 2 3	0,04 0,23 0,34	0.08	66.7
Sta. 18 Sta. 13 Sta. 13	1 2 3	0,28 0,28 0,30		
Stm. 14 Stm. 14 Stm. 14	1 2 3	0,12 0,14 0,15		
Sta. 17 Sta. 17 Sta. 17	1 2 3	0,16 0,00 0,16	0.18 0.04	18.2 86.7
Sequim Bay Sequim Bay Sequim Bay	1 2 3	(†. 18 (†. 14 (†. 22		
West Beach West Beach West Beach	1 2 3	0.17 0.21 0.17		

÷,

n.

Native	Ø9-23	-89	Ø9-26	3-89	10-16	1-89	10-12	-89	10-18	-89
laomer	Cona ,	D.L.	Conc.	D.l.,	Cono .	0.1.	Conç.	D.L.	Cono,	D.L.
2378-TCDF	nd	Ø,34	nd	1,30	nd	0.84	nd	1.20	nd	1.20
Total TCDF	nd		nd		nd	**	nd	tel aut	nd	
2378-TCDD	nd	Ø,63	nd	1,10	nd	1.10	nd	0.85	nd	Ø,92
Total TCDD	Ø,39	**	nd		nd		nd		nd	**
12378-PoCDF	nd	0.13	0.34		nd	0,37	nd	0.40	nd	Ø.17
23478-PeCDF	nd	0,08	Ø.36		nd	Ø.15	nd	0.38	nd	Ø.21
Total PeCDF	nd		0.70		nd		nd	-	nd	**
12378-PeCDD	nd	0,20	nd	Ø,46	nd	0,24	nd	Ø.47	nd	0,29
Total PeCDD	nd		nd		nd		nd	~ **	nd	
123478-HxCDF	nd	Ø.11	nd	0,66	nd	Ø,15	nd	Ø.53	nd	0.24
123678-HxCDF	nd	0,09	nd	0.32	nd	0.18	nd	0.42	nd	Ø.13
123789-HxCDF	0,30	-	Ø,31		0.34		nd	Ø.39	0.30	
234678-HxCDF	nd	Ø.13	nd	0,98	nd	Ø,26	nd	Ø.58	nd	Ø,31
Total-HxCDF	0.30		Ø.31	+4	Ø.34		nd		0.30	
123478-HxCDD	nd	0,10	nd	0.41	nd	Ø,39	nd	0.44	nd	Ø.17
123678-HxCDD	Ø.27		nd	Ø,59	nd	0.35	nd	Ø,49	nd	0.14
123789-HxCDD	Ø,19		nd	Ø.29	nd	0,42	nd	Ø.35	nd	0.18
Total-HxCDD	1.70		Ø.88		nd		nd		0,43	
1234678-HpCDF	nd	Ø,36	nd	0,29	nd	0.25	nd	Ø,42	Ø.48	
1234789-HpCDF	nd	Ø.19	nd	0,76	nd	0,30	nd	0,57	nd	Ø,35
Total HpCDF	nd		nd	** **	nd	*** **	nd		Ø,48	*1 #1
1234678-HpCDD	Ø,45		1,90		nd	0.61	1.20		0,96	
Total HpCDD	Ø.96		4.00	~ **	nd		1,20		Ø,96	
OCDF	Ø,69		1.70		nd	0,45	nd	1,50	0,99	
OCDD	10.00		31,00		4.50		18,00		7.40	

<u>TABLE D.3</u>. Quality Assurance for Dioxins and Lipids Method Blank Data (ng/Kg dry)

<u>TABLE D.3</u>. Quality Assurance for Dioxins and Lipids (Cont'd) Matrix Spike Data

	;					g	12-0		6	Call.	16 27	8	Cost	0 10 0	g
Native	Spik	e 119-23	뜅		Ce 12-74		N IK	-97-59 -	괴	20 IX		2			
Isoner	ς¦Σ	8	K Rec	S	8	, Rec	ŝ	ē	Rec	ধ্ব	Ē	r Rec	S	B)	, Kec
2276 TCDE	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	105	5000	30 1	125	8 88	а 78	ğ	8 8 8 8	6 B	115	98 B	9 6 9 6	126
23/0-1UU	80 ° 8	57.1		a) - a					; ;						50.0
Total TCDF	ម្ងេ ។ ល ប មា (1.69	125	19 19 19 19 19 19 19 19 19 19 19 19 19 1	567 - F	125	93 93 93 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94	8-78 6	28 19	83 80 83 80 84	75- 8 8	CT 1	20 51 52 20 53 53 20 53	0, 19 5) 5 5)	125
2378-1000	ភាល ភា	122-1	171	20 - 21 F	57-7	007	50'D	10-2	787	50-5	#D-1	077	30-3	ALC - T]
Total TCDD	B.8B	1.69	125	B.69	91-19	138	09-80	B _81	181	g.83	9 .94	118	6 .8 8	1.98	125
12378-PeCDF	53. 57	4,59	113	4.83	4.59	113	99.4	3.52	83	4.60	3.93	85	4_89	4.19	163
23478-PeCDF	4.00	4.50	113	4.03	4.50	113	4.00	3.56	83	4.00	3.98	38	4.86	4.19	193
Total PeCDF	8.88	9-88	113	8.88	6 .69	113	8.99	7.00	88	8.69	7.89	3 8	8.09	8-29	163
12378-PeCDD	4. 6 8	49 10 1	011	1 .00	4.58	511	100.4	3.55	83	20 V	DD V	198	<u>4</u> . 66	4.28	185
Total PeCDD	99. A	4.50	113	<u>8</u> . 2.	4.50	113	4.60	3.56	88	4.00	4_06	<u>99</u> 1	4.69	4.28	IJ
			r 6 t		1	172	90 V	90 Y	1 0.0	50 V	50 70	80	A 66	A 76	118
123478-HXUUF	57 ° 5	50.4	277	ភូធិ ។		071	1.12	aa - +	511-		5.7	8			3 8
123678-HxCDF	4.99	4.10	123	4.00	4.39	188	4 . 89	3.40	85	55-2	4.69	199	4.60	3.98	3
123789-HxCDF	4.00	97.4	110	50.4	50.2	125	4.00	3.89	ពួ	4.09	4.60	160	4.80	4-29	185
234578-HxCDF	4.89	4.40	110	4.00	4.89	129	4.99	3.89	35	4-00	3.96	38	4-66	4.59	113
Total-HxCDF	16.00	18.00	113	16.83	19.69	119	16.99	15.00	56	16-86	16.09	166	16.69	17.68	196
123476-HxCDD	90 - V	4.00	300 1	4_00	4.29	165	4.00	4.26	<u>195</u>	4.80	4.60	115	4-69	3.83	95
123678-HxCDD	4.00	4.80	129	4.00	4_9g	123	4.60	3.39	ß	4.89	3.58	88	4-96	4.68	115
123789-HxCDD	00't	4.38	168	4.66	4.48	911	4.68	3.28	88	4.03	3.36	ឌ	4.66	3.78	ដ
Total-HxCDD	12-99	13. <i>BB</i>	1 6 8	12.80	14.55	117	12.59	11.92	92	12.00	11-99	32	12-99	12.89	166
1234678-HoCDF	4.80	4.69	115	4.66	4.89	128	4.03	3.89	35	4.60	4.38	168	4.99	4.58	113
1234789-HpCDF	4.00	4.49	110	4.60	4.96	123	4.00	3.80	95	4.69	4.66	1.88	4.00	4.30	168
Total HpCDF	8.99	9.88	113	8.85	9.78	121	8.69	7.69	95	8.69	8.39	184	8.99	8.89	113
1234678-HnCDD	4.66	4.25	105	4.00	4.69	115	00°7	3.69	<u>95</u>	4.60	3.78	ន	4_85	4.28	185
Total Warn		00 4	1.05	A 635	2 RG	115	<u>A</u> 60	3 80	55	4.66	3.70	E	4.00	4.26	185
ומיקה השיטו	1 1 1		-1	a '	5) • •		5	3		;	}			
OCDF	8.69	9.70	121	8.50	10.00	125	8.66	8.88	511	8.86	8.29	183	8.00	9.48	118
0CDD	8.65	8.89	110	8.99	10.00	125	8.99	8.39	104	8.89	8.55	166	8.89	8.26	193

v

. .

.

n f

•

hiji

1 . . .

а.):

Lipids (Cont'd)	
and	
Dioxins	ca(%)
for	r Dat
Quality Assurance	Surrogate Recovery
TABLE D.3.	

Native Vative	no's		Station 1		,	tation 2		St	ation 3		S	tation 4		S	tation 5	
Isomer	Added	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3
2378-TCDF-C13	2.00	68	88	52	62	67	66	ន	96	76	53	8	78	ß	ង	85
2378-TCDD-C13	2.00	<u>1</u>	73	57	66	9 -	65	62	72	72	5	ខ	715	8	8	75
12378-PeCDF-C13	2-30	75	¥б	59	11	83	g	82	88	8 8	<u>66</u>	11	B 6	<u>8</u> 4	ឌ	131
23473-PeCDF-C13	2.99	73	55	58	68	83	78	88	78	Ш	64	72	87	82	86	139
12378-PeCDD-C13	2.99	52	103	61	73	89	82	88	86	85	20	74	92	84	3 8	148
123478-HxCDF-C13	2.60	76	81	83	68	75	11	74	65	21	54	ខ្ល	76	67	5	1
123678-HxCDF-C13	2.00	72	9 6	63	70	75	74	78	75	73	88	83	75	ш	75	86
123789-HxCDF-C13	2.00	67	76	55	64	69	ដ	8	ន	ال ة	8	76	78	8	67	8
234678-HxCDF-C13	2.00	51	54	43	57	58	76	49	68	EB	52	48	5	23	Ħ	88
123478-HxCDD-C13	2.60	76	85	64	72	Li	11	78	8	79	65	81	88	9 3	22	52
123678-HxCDD-C13	2.00	66	81	54	69	72	អ	25	11	37	84	15	Ц	11	ង	23
1234678-HpCDF-C13	2.03	63	76	51	58	23	71	65	55	58	1 8	72	83	69	31	52
1234789-HpCDF-C13	2.00	11	92	53	72	76	(;) (;)	85	67	107	11	8	74	74	ង	<u>9</u> 6
1234678-HpCDD-C13	2.69	67	82	R	64	8	81	72	68	92	6/	86	ខ	ន	81	16
0000-013	4 . BB	73	87	43	5	55	93	84	58	9 11	72	5 <i>1</i>	ទ	49	8	8
1234-TCDD-C13	2.69	ц С	па	na	na	БП	па	na	Па	ца	па	ЪЛ	Ę	na	5	g
123769-HxCDD-C13	2.00	na	ษน	na	ла	na	na	กล	na	กล	ГЛ	g	EU	na	2	20
2378-TCDD-C137	£.88	74	19	57	63	73	67	61	74	81	23	Ľ	8	52	18	81

and Lipids (Cont'd)	
Quality Assurance for Dioxins	Surrogate Recovery Data (%)
TABLE D.3.	

Native	nd's	U.	tation (6		itation 7		م	tation 8		S	tation :	5	S	tation 1	50
Isomer	s en	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep: 3	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3
2378-TCDF-C13	2,00	89	66	65	52	69	6 8	54	68	68	70	11	11	48	88	И
2378-TCDD-C13	2.30	83	68	63	49	11	64	46	61	63	74	74	53	48	£	8
12378-PeCDF-C13	2.96	92	74	74	57	67	86	63	76	11	78	78	86	61	36	86
23478-PeCDF-C13	2.00	89	72	74	52	83	84	53	<u>66</u>	72	11	75	83	69	78	87
12378-PeCDD-C13	2.30	16	79	75	55	72	86	56	73	74	84	79	16	67	83	8
123478-HxCDF-C13	2.06	86	68	59	97	69	62	102	67	83	78	53	71	53	78	60
123678-HxCDF-C13	2.00	81	71	74	113	81	78	151	68	82	5	66	79	8	74	89
123769-HxCDF-C13	2.00	76	68	ន	78	72	66	38	68	70	70	28	72	នេ	ස	99
234678-HxCDF-C13	2.00	69	27	64	48	74	43	52	48	48	57	44	61	ස	ස	ន
123478-HxCDD-C13	2.99	84	79	78	112	75	ន	132	11	81	79	8	74	70	62	ኇ
123678-HxCDD-C13	2.90	80	76	66	87	86	88	123	74	21	ន	<u>8</u> 0	86	67	75	8
1234678-HaCDF-C13	2.00	29	67	58	72	39	54	<u>8</u> 6	67	72	ន	46	61	48	5	12
1234789-HpCDF-C13	2.00	68	86	83	68	87	75	84	88	86	74	19	IJ	67	75	45
1234678-HpCDD-C13	2.80	69	84	17	59	84	ន	74	87	89	70	54	65	72	18	R
0CDD-C13	4.00	51	83	73	28	86	62	35	91	75	28	42	Ц	61	ឌ	23
1234-TCND-C13	2.60	na	na	na	nā	na	กล	na	na	. נו	па	na	na	na	na	na
123789-HxCDD-C13	2.00	па	na	กล	па	па	ทส	na	па	na	มล	na	na	na	Бđ	Ца
2378-TCDD-C137	9.86	88	71	72	21	11	68	47	ន	11	76	ш	11	51	76	ш

TABLE D.3. Quality Assurance for Dioxins and Lipids (Cont'd) Surrogate Recovery Data (%)

Native	na's	Sté	ation 1	Ī	S	tation	12	S	tation 1	3	S	tation 1	4	St	ation 1	7
Isomer	Added	Rep 1 F	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	Rep İ	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3
2378-TCDF-C13	2.60	73	64	71	73	62	53	75	64	60	64	70	59	67	79	70
2378-TCDD-C13	2.00	80	63	78	11	63	50	70	62	57	62	· 75	61	70	76	74
12378-PeCDF-C13	2.00	89	11	93	82	60	81	91	75	68	75	85	63	80	66	84
23478-PeCDF-C13	2.00	87	74	91	81	58	88	87	74	64	72	81	62	76	199	84
12378-PeCDD-C13	2.00	50	79	95	81	58	87	Ø 6	76	69	74	68	65	81	112	89
123478-HxCDF-C13	2.00	79	58	11	81	76	62	76	. 62	84	56	112	8 6	74	70	70
123678-HxCDF-C13	2.00	85	69	87	95	79	81	93	71	92	69	126	3 8	. 80	72	74
123789-HxCDF-C13	2.00	79	63	80	88	11	60	82	65	70	63	100	89	72	64	59
23¢678-HxCDF-C13	2.00	78	54	81	74	60	51	62	49	53	52	79	59	65	64	52
123478-HxCDD-C13	2.00	68	68	81	100	68	67	85	72	78	60	108	88	80	74	70
123678-HxCDD-C13	2.69	83	73	88	80	55	56	94	74	75	75	101	86	82	72	73
1234678-HpCDF-C13	2.00	79	64	82	91	93	66	80	63	72	67	101	66	56	57	35
1234789-HpCDF-C13	2.00	94	76	66	108	127	73	98	74	74	80	116	111	69	11	68
1234678-HpC0D-C13	2.00	06	75	89	103	119	69	91	76	75	76	108	107	69	62	28
0CDD-C13	4.00	78	76	95	98	139	57	84	70	56	40	94	109	58	51	56
						1		1	i	1	5	ŝ		ŝ	ŝ	5
1234-1000-013	2.00	na	กล	Па	na	na	PI	PLI	BII	IId	P					ġ
123789-HxCDD-C13	2.00	na	na	na	ทล	na	ทล	na	na	na	na	na	na	na	na	na
2378-TCDD-C137	Ø.8Ø	83	64	79	76	67	51	74	62	21	65	72	64	68	88	76

Native	ng's		Seguim B	ay	· •	est Bea	ch	Back-
Isomer	Added	Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	ground
2279-TCDE-C13	2 88	71	56	70	68	61	69	74
2370-1007-013	2.00	74	53	66	70	62	72	73
23/0-1000-013	2.00	02	76	00	75	76	00	91
123/8-Pecur-C13	2.00	03	70	04	75	70	00	70
234/8-PeCDF-C13	2.00	/5	/8	65	/1	70		/0
12378-PeCDD-C13	2.00	92	/8	87	86	/6	//	81
123478-HxCDF-C13	2.00	96	67	67	76	6Ø	179	104
123678-HxCDF-C13	2.00	1Ø9	9Ø	79	77	85	163	112
123789-HxCDF-C13	2.00	81	71	71	70	7Ø	132	87
234678-HxCDF-C13	2.00	55	65	73	64	52	89	72
123478-HxCDD-C13	2.00	96	69	77	81	78	126	93
123678-HxCDD-C13	2.00	71	9Ø	81	76	72	93	95
1234678-HpCDF-C13	2.00	67	62	44	36	71	186	58
1234789-HpCDF-C13	2.00	82	72	88	90	88	267	94
1234678-HpCDD-C13	2 00	70	66	86	84	85	245	81
1234070-11p000-013	A 00	97	. 47	1 0 2	82	41	342	80
0000-013	4.00	. 07		102	02	41	076	05
1234-TCDD-C13	2.00	na	na	na	na	na	na	na
123789-HxCDD-C13	2.00	na	na	na	na	na	na	na
2378-TCDD-C137	Ø.8Ø	75	54	69	72	64	72	78

<u>TABLE D.3</u>. Quality Assurance for Dioxins and Lipids (Cont'd) Surrogate Recovery Data (%)

1.0

Ξ

TABLE D.3.	Quality Assurance for Dioxins	and	Lipids	(Cont'd)
	Method Blank and Matrix Spike			
	Surrogate Recovery Data (%)			

Native Isomer	Blank Ø9-23	B1ank Ø9-26	B1ank Ø9-28	Blank 10-03	Blank 10-06	Spike Ø9-23	Spike Ø9-26	Spike Ø9-28	Spike 10-03	Spike 10-06
2378-TCDF-C13	41	5Ø	64	37	39	54	57	77	48	54
2378-TCDD-C13	42	32	72	43	43	54	56	84	47	51
12378-PeCDF-C13	61	61	7Ø	75	6Ø	79	.70	89	58	70
23478-PeCDF-C13	65	61	67	74	66	8Ø	71	86	57	. 71
12378-PeCDD-C13	69	65	75	79	69	85	77	95	55	71
123478-HxCDF-C13	62	82	67	68	67	58	48	74	51	65
123678-HxCDF-C13	73	93	69	78	8Ø	69	62	81	64	87
123789-HxCDF-C13	67	78	65	75	72	59	55	72	54	69
234678-HxCDF-C13	66	66	68	75	69	55	46	64	39	43
123478-HxCDD-C13	66	100	73	76	79	72	66	8Ø	55	8Ø
123678-HxCDD-C13	76	87	69	81	84	6Ø	56	82	65	68
1234678-HpCDF-C13	64	73	61	78	67	59	45	66	51	66
1234789-HpCDF-C13	68	69	74	90	76	76	57	82	67	79
1234678-HpCDD-C13	68	68	65	87	73	7Ø	50	73	66	77
OCDD-C13	51	52	55	84	62	65	54	62	7Ø	72
1234-TCDD-C13	na	na	na	na	na	XX	xx	XX	XX	XX
123789-HxCDD-C13	na	na	na	na	na	XX	XX	XX	XX	XX
2378-TCDD-C137	45	51	7Ø	44	42	56	59	81	57	47

APPENDIX E

60-DAY TISSUE CHEMISTRY DATA

IABLE E.1. 60-Day Tissue Dioxin Results, background-corrected (ng/Kg wet)

: :

STATION 1					Average Conge	ener Concent	trations		<u>Average TE</u>	F Concentr	ations
Native Isomer	Rel Conc.	р4 D.L.	Rep Conc.	5 D.L.	Mean Det. Values	Mean Det. +1/2 D.L.	Mean D.L.	TEF	Mean Det. Values	Mean Det. +1/2 D.L.	Mean D.L.
2378-TCDF	pu	1.50	pu	1.60	pu	Ø.78	1.55	0,1	ри	0.0775	Ø.155Ø
Total ICDF	pu	ł	pu	1	pu	N/A	;	6	pu	N/A	ł
2378-TCDD	pu	Ø.93	pu	2.30	pu	Ø .81	1.62	1	pu	g .8 0 75	1.6150
Total TCDD	ри	1	рu	ł	pu	N/A		6	ри	N/A	1
12378-PeCDF	pu	0.48	pu	g .69	pu	Ø.29	Ø.59	0.05	ри	0.0146	g . g 292
23478-PeCDF	рu	0.41	pu	0.80	pu	0.30	Ø .61	0.5	pu	Ø.1513	0 .3 0 25
Total PeCDF	pu	!	pu	1	pu	N/A		8	pu	N/A	ł
12378-PeCDD	pu	0.33	pu	1.20	pu	Ø.38	0.77	Ø.5	pu	Ø.1913	g .3825
Total PeCDD	pu	ł	pu	1	pu	N/A	;	6	pu	N/A	ł
123478-HxCDF	pu	0.72	pu	g .87	pu	0.40	0 .80	0.1	pu	g . g 398	0.0 795
123678-HxCDF	pu	0.63	pu	0.44	pu	0.27	0.54	0.1	pu	g . g 268	0.0 535
123789-HxCDF	pu	Ø.63	pu	0.87	pu	Ø .38	Ø.75	9.1	pu	0.0375	0.0750
234678-HxCDF	pu	1.60	pu	Ø.93	pu	Ø.63	1.27	0.1	pu	Ø.Ø633	Ø.1265
Total-HxCDF	pu	;	pu	ł	pu	N/A	1	63	pu	N/A	١
123478-HxCDD	pu	Ø.75	pu	Ø.85	рц	0.40	0.80	G.1	pu	0.0400	0.0860
123678-HxCDD	pu	0.77	pu	0.49	pu	0 .32	B .63	0.1	pu	0.0315	0.0630
123789-HxCDD	pu	1.00	pu	Ø.49	pu	0.37	Ø.75	0.1	pu	0.0373	0.0745
Total-HxCDD	pu	{	pu	1	pu	N/A	•	ଷ	pu	N/A	1
1234678-HpCDF	pu	g .39	pu	g .65	ри	0 .26	0 .52	0.01	pu	B .6826	0.0 052
1234789-HpCDF	pu	Ø.73	pu	1.60	ри	G .58	1.17	0.01	pu	g .0058	0.0117
Total HpCDF	pu	ł	pu	;	pu	N/A	-	69	pu	N/A	
1234678-HpCDD	pu	1.20	1.60	ł	1.00	0.80	1.20	0.01	0.0100	0.0080	0.0120
Total HpCDD	pu	1	0.00	ł	0.00	00.00	1	53	0.0000	0.6000	1
OCDF	pu	1.60	pu	1.90	pu	g .88	1.75	0.001	pu	8889.8	0.0018
OCDD	5.00	1	20.00	4 1	12.50	12.50		9.001	0.0125	0 .0125	1
Total IEF									g . <u></u>	1.5471	

0.1135 0.0086 0.0075 0.0530 0.0860 0.1040 0.0750 0.1050 1.2900 0.0205 6.1500 0.2275 0.0670 Mean 0.0011 D.L. Average IEF Concentrations 1 1 ł Ł 1 ł 1 1 1 1 1 Mean Det. Mean Det. Values +1/2 D.L. 0.0375 0.0006 0.0110 0.1138 **g**.**g**265 6.0430 0.0520 0.0000 0.0525 0.0095 0.0000 0.0000 0.0000 N/A 0.0868 N/A 9.9965 0.0037 0.0000 1.4054 0.0770 0.0209 0.1625 **g**.**g**568 0.6450 N/A nd Ø.0118 0.0000 0.0000 0.0000 0.1400 0.0087 0.5277 0.0779 0.0000 0.0315 0.2500 9.9999 밀밀 Ы pu pu nd nd р 0.0095 pu pu 0.5 Ø.5 5 0.01 0.01 6 0.01 5 0.001 0.001 0.05 5 0.1 0.1 0.1 0.1 G.1 0.1 6 5 0.1 9 65 臣 0.1 Average Congener Concentrations 1.14 1.05 **0**.86 **0**.75 1.29 Ø.3Ø Ø.46 **g**.67 **g**.53 Ø.86 1.04 0.75 1.11 0.41 Mean Det. Mean Det. Mean ٥.٢. ł ł 1 ł ł ł 1 1 1 +1/2 D.L. Ø.55 11.00 2.10 **g**.65 **g**.37 Ø.95 0.65 N/A Ø.42 Ø.33 3.20 Ø.23 N/A Ø.87 0.27 Ø.43 0.52 1.40 Ø.38 Ø.57 Ø.53 N/A Ø.65 0.77 0.77 Values Ø.95 2.10 nd 11.00 **Ø**.63 **Ø**.50 3.29 1.40 nd 1.40 рц nd nd **G**.87 0.87 Б pu ри ри nđ pu 0.77 0.77 pu pu 1.30 1.10 Ø.98 --1.60 1.70 **G**.59 **g**.88 Ø.85 Ø.97 g.52 D.L. 1 1 1.1 1 ł 1 1 ł 1 ł 1 ŝ Rep Conc. nd 14.00 1.30 3.50 1.40 nd Ø.87 1.45 ø.63 ø.5ø 3.20 1.40 ри рц ри рц pu ng ng 0.87 pu pu pu pu 1.10 1.30 1.00 **g**.86 Ø.49 **0**.91 Ø.39 0.65 Ø.88 0.30 0.84 0.41 0.67 0.47 D.L. 1 ļ 1 ł 1 1 ł ł 1 1 Rep 4 Conc. 0.70 8.00 nd nd 0.60 рц pu pu 0.09 0.09 p p nd nd nd pu pu pu 1234678-HpCDD 1234678-HpCDF 1234789-HpCDF Native Isomer 123678-HxCDF 123789-HxCDF L23478-HxCDD 123678-HxCDD 123789-HxCDD 123478-HxCDF 234678-HxCDF fotal-HxCDD Total HpCDF Iotal HpCDD 12378-PeCDD otal-HxCDF **Fotal PeCDD** fotal PeCDF 12378-PeCDF 23478-PeCDF Total ICDD Total TCDF Total TEF 2378-TCDD STATION 2 2378-TCDF 0000 OCDF

CIATION 2					onard onemout	nor Concent	ratione		Averade TF	E Concentra	t ions
C WINTING	Ren	4	Ren	- n	Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc.	D.L.	Conc	D.L.	Values	+1/2 0.L.	D.L.	TEF	Values	+1/2 D.L.	D.L.
2378-TCDF	pu	Ø.45	pu	g .88	pu	Ø.33	g .67	0.1	pu	Ø.Ø333	9.0 665
Total TCDF	pu	ł	pu	ł	pu	N/A	I	6	pu	N/A	1
2378-TCDD	pu	0.94	рц	1.30	pu	Ø .56	1.12	1	ри	0.5600	1.1200
Total TCDD	ри	ł	ри	ł	ри	N/A		6	pu	N/A	
12378-PeCDF	pu	g .21	pu	0.21	pu	g .11	G .21	0.05	pu	g . <u></u>	0.0105
23478-PeCDF	pu	0.47	pu	Ø .29	pu	6.19	g .38	0.5	nd	<u>0.0950</u>	0.1900
Total PeCDF	pu		pu		pu	N/A	1	6	pu	N/A	
12378-PeCDD	pu	1.10	pu	0.44	pu	g .39	0.77	ß.5	pu	g .1925	g .385Ø
Total PeCDD	pu	1	pu	ł	ри	N/A	1	63	pu	N/A	1
123478-HxCDF	pu	g .67	pu	0.37	pu	ß.26	0.52	0.1	ри	g . g 26 g	0.0520
123678-HxCDF	pu	Ø.6Ø	pu	Ø.33	pu	Ø.23	0.47	0.1	pu	g . g 233	0.0465
123789-HxCDF	pu	0.77	pu	Ø.43	pu	B.3 B	0.60	0.1	pu	0.0300	0.0600
234678-HxCDF	pu	Ø.6Ø	pu	Ø.69	pu	Ø.32	Ø.65	g .1	pu	0_0323	Ø.Ø645
Total-HxCDF	pu	1	pu		pu	N/A	1	5	ри	N/A	ł
123478-HxCDD	pu	Ø.62	pu	0.71	pu	g .33	g .67	6.1	pu	g . g 333	0 .0665
123678-HxCDD	pu	0.37	pu	Ø .38	pu	Ø.19	g .38	0.1	pu	0.0188	0.0375
123789-HxCDD	pu	Ø.65	pu	Ø.76	pu	G .35	g .71	0.1	pu	B . B 353	0.0705
Total-HxCDD	1.69	-	pu	1	1.90	1.60	1	C)	00000.0	0.0000	ł
1234678-HpCDF	pu	Ø.58	Ø .39	ł	0 .39	6.34	Ø.58	g .ð1	0.0039	0.0034	0.0058
1234789-HpCDF	pu	g .62	pu	0.41	pu	ß.26	Ø .52	0.01	pu	0.0026	0.0052
Total HpCDF	ри	ł	G .39	1	Ø .39	Ø.39		63	8.6666	0.0000	I
1234678-HpCDD	00.00		0.20		0.10	0.10	1	10-0	0.0010	3.6616	ł
Total HpCDD	0.00		00.00	ł	g.gg	8.88		6	0.0000	0.0000	ł
OCDF	'n	1.10	2.90	1	2.90	1.73	-	0.001	0.6029	0.0017	I
OCDD	24.00	7.00	12.00	ł	8.50	8.50		0.001	Ø.ØØ85	g.g 855	١
Total TEF									g.g 163	1.1020	

0.0545 0.0675 0.0710 0.0275 0.0425 Ø.0875 0.0013 0.0970 0.2400 0.2300 0.0700 0.0089 1 Mean 2.0000 0.0510 0.0081 D.L. Average TEF Concentrations J Mean Det. Mean Det. Values +1/2 D.L. 1.8889 N/A 0.6138 Ø.0273 0.0030 0.0490 0.1200 N/A N/A 0.0213 0.6620 **g**.**0**438 0.0338 0.0355 0.0074 0.0057 0.0000 0.0490 1.6289 0.0000 0.0255 0.0000 6.0179 0.1150 0.0000 N/A Values 0.0000 0.0170 0.0490 0.0490 0.0000 0.6070 0.0060 0.0000 0.0054 0.2271 g g g g 0.0107 ק ק ק 말말 ъđ Б 밀면 0.0890 0.001 0.001 6.01 0.05 0.01 10-0 Ø.5 Ø.5 0.1 0.1 0 0.1 0.1 0 0.1 5 0.1 TEF 9 151 53 5 5 ---Average Congener Concentrations 0.79 **g**.89 1.30 Ø.55 Ø.48 Ø.43 **g**.88 Ø.55 Ø.68 0.71 0.L. 2.00 0.46 **Ø**.81 Mean Det. Mean Det. Mean **B**.97 9.51 1 1 1 ł 1 ł 1 ł 1 +1/2 D.L. 1.70 2.20 3.03 49.00 0.27 0.34 0.36 1.80 N/A 0.24 Ø.23 0.26 0.21 9.62 **Ø**.44 Ø.89 N/A 8.74 8.57 3.87 0.49 0.49 Ø.28 pu N/A Values 1.07 9.79 3.87 1.70 2.20 5.40 49.00 0.49 0.49 pu pu p: p p p Ø.89 рл 0.89 pu pu pu pu ри pu 5 D.L. Ø.48 **0**.54 **0**.38 Ø.84 Ø.61 Ø.57 0.64 1.50 Ø.61 Ø.43 1 1 1 ł ł ł ł 1 1 1 1 | | 1 | Rep Conc. Ø.49 Ø.49 1.07 0.70 3.87 3.20 4.40 5.40 93.00 Ø.89 nd nd Б pu pu pu ри Ø.89 p d Ø.49 Ø.48 0.70 Ø.48 Ø.78 Ø.78 0.81 **g**.89 2.50 0.49 0.48 0.47 **0**.91 Rep 4 1C. D.L. Ø.97 1.30 1 1 | | 1 1 1 Conc. nd 5.**ØØ** 0.20 0.00 ם הם הם היה היה nd nd pu pu pu pu pu pu nd nd nd pu 1234789-HpCDF 1234678-HpCDD 1234678-HpCDF Native Isomer 123478-HxCDF 123678-HxCDF 123789-HxCDF 234678-HxCDF i 23478-HxCDD 123678-HxCDD 123789-HxCDD Fotal-HxCDD Fotal HpCDD 12378-PeCDD otal-HxCDF Fotal HpCDF 23478-PeCDF fotal PeCDD 12378-PeCDF Total PeCDF Total TCDD Total TCDF 2378-TCDF 2378-TCDD Total TEF STATION 4 0CDF 0CDD

1

STATION 5					Average Conge	aner Concent	rations		Average TI	EF Concentre	it ions
	Rep	4	Rep	5	Mean Det.	Mean Det.	Mean		Mean Det.	-Mean Det.	Mean
Native Isomer	Conc.	D.Ľ.	Conc.	D.L.	Values	+1/2 D.L.	D.L.	TEF	Va lues	+1/2 D.4.	D.L.
2278_TCNF	т ч	2 26	- L	15 B	-D-	A 68	1.36	6	pu	<u>a</u> .8678	Ø.1355
totol true	ז <u>ב</u>	- - -		4 - 1 - 1		N/A		5	'n	N/A	1
		1	2		2			1	2		
2378-TCDD	рц	4.20	pu	0.60	pu	1.29	2.40		pu	1.2000	2.4009
Total TCDD	pu	1	ри	1	ри	N/A	ł	53	pu	N/A	I
12378-PeCDF	pu	0.74	pu	Ø.22	pu	0 .24	g .48	B . B 5	pu	9.0120	g.g 24 g
23478-PeCDF	pu	0.72	nd	0.20	pu	Ø.23	0.46	B .5	рu	6.1150	B.2399
Total PeCDF	pu	l t	pu	1	pu	N/A	1	9	pu	N/A	1
12378-PeCDD	па	2.40	pu	Ø.18	pu	g .65	1.29	g .5	pu	g .3225	Ø.645Ø
Total PeCDD	'nď	1	pu	ł	pu	N/A	{	5	pu	N/A	ľ
123478-HxCDF	ри	Ø.86	pu	ß.18	pu	B .26	Ø .52	6.1	ри	9.9 268	6.0520
123678-HxCDF	pu	g .93	nd	0.17	pu	Ø .28	0 .55	0.1	pu	0.0275	0.0550
123789-HxCDF	pu	2.00	0 .35	;	0.35	g .68	.	0.1	0.0350	8.8675	1
234678-HxCDF	nd	5.10	pu	0 .28	pu	1.35	2.69	0.1	þu	B.1345	g.2698
Tota 1-HxCDF	pu	1	a .35	1	B .35	B .35	ł	153	0000.0	0,0000	1
123478-HxCDD	рu	2.10	ри	Ø .19	ри	ß.57	1.15	g .1	pu	0.0573	Ø.1145
123678-HxCDD	pu	3.30	pu	0.20	pu	g .88	1.75	0.1	pu	g _ g 875	Ø.175Ø
123789-HxCDD	pu	2.30	pu	B .29	pu	0 .65	1.30	9.1	pu	Ø.9648	g .1295
Total-HxCDD	7.60	ł	ри	ł	7.60	7.69		6	0.0000	6.0009	
1234678-HpCDF	pu	2.10	6 1. 0 9	1	0, 09	<u>0.57</u>	2.10	0.01	0.0009	0.0057	0.0213
1234789-HpCDF	pu	1.19	pu	0 .34	pu	B .36	B .72	0.01	пd	g_ <u>g</u> g36	9.667 2
Total HpCDF	pu	ł	B .67	1	g _67	Ø.67	1	57	8.6866	8.8888	I
1234678-HpCDD	рц	2.98	6.69	}	g.66	B .73	2.90	0.01	0.6066	9.8972	6.6296
Total HpCDD	pu	}	0.00	ł	00.00	9.99		53	0.0330	0.6666	١
OCDF	nd	1.50	0.00	1	9.00	g .38	1.50	0.001	6.9995	9.9994	9.0015
осоо	2.00	1	0.00	ł	1.66	1.00	1	0.001	0.0010	0.0010	1
Total TEF					,				g . g 369	2.2002	

ï

Mean 0.2775 Ø. Ø645 **6.9**872 **0.0235** 0.2260 0.0445 0.0420 0.0735 | | 0.0420 1 1 1 D.L. 6.111.6 1.0050 1 1 Average IEF Concentrations Mean Det. Nean Det. +1/2 D.L. 1.2072 6.9118 **B.1375** 9.6666 <u>g.1385</u> 6_8323 6.0216 0.0500 9-99-6 <u>8-8198</u> N/A **B. B**223 9.9999 9.6666 N/A 9.5825 0.0700 0.0520 0.0000 9.9999 9.9297 0.9210 9.6637 N/A 0.0555 9.8368 Values ри 0000 0.0700 Ø.883B 6.6196 <u>8.4714</u> 0.1650 6.0000 0.0800 0.0000 0.0000 6.6637 g g р b d 5 b B Б 0.0210 **g**_**g**297 말멸 0.0000 6 **9**.5 g.5 <u>6.1</u> Ø.1 9.95 5 63 1-0 5 <u>6.61</u> 0.01 5 0.01 155 9-991 9-991 臣 6.1 0.1 5 1.0 9.1 <u>B.1</u> 651 5 ----Average Congener Concentrations **g**.56 Ø. 65 9.47 9.44 0.42 9.74 **B**.42 9.49 <u>9</u>.72 Mean Det. Mean Det. Mean 0.45 D.L. 1.91 1 ł ł | | 1 1 1.11 1 1 1 1 +1/2 D.L. **g**.28 3.65 19.68 N/A 0.22 0.70 **g**.52 2.19 3.69 0.50 N/A g.24 g.28 0.33 Ø.32 2.95 6.37 9.21 9.58 2.70 2.97 0.36 7.87 Ø.56 N/A Va lues 3.65 19.86 **6**.33 **6**.33 nd D nd Ø.79 **g**.83 pu 2.95 **8**.89 2.79 2.97 bn 7.87 2.1Ø 3.69 nd D n d Ъ 밀명 9-49 B.52 **8**.64 0.79 0.55 D.L. **Ø**.61 0.35 9.67 Ø.62 ł ł ł ł ł ł ł ł 1 1 1 1 1 1 1 Rep 5 Conc. nd Ø.80 Ø.83 2.40 4.10 3.60 26.00 Ø.33 Ø.33 4.16 0.80 2.70 Ъ p p 02 nd. 2.17 Ч Ч 7.47 pq uq P P 0.46 **0**.62 0.37 0.42 Ø.65 Ø.68 Ø.29 <u>0.76</u> 1.40 B.59 B.44 1.50 Conc. D.L. ł ł 1 1 1 ł ł | | ł ł Rep 4 nd nd 1.80 . อ. อยิ 3.77 nd 1.60 3.10 5.70 12.00 hd hd р <u>р</u> р р 8.27 nd. nd nd D na. D 1234678-HpCDD Native Isomer 1234678-HpCDF 1234789-HpCDF 123478-HxCDF 123676-HxCDF 123789-HxCDF 123478-HxCDD 123678-HxCDD 123769-HxCDD 234676-HxCDF Total PeCDF 12378-PeCDD Total PeCDD rotal-HxCDD Total HpCDD otal-HxCDF Total HpCDF 12378-PeCDF 23478-PeCDF Total TCDD STATION 6 fotal TCDF Total TEF 2378-TCDD 2378-TCDF 0000 OCDF

E.6

er.

						J			T TOTAL	EE Concerter	time
STALLON 7					Average Long	ener Loncen	<u>Lrations</u>		AVELAGE 1		
Native Isomer	Rej Conc.	p 4 D.L.	Re <u>r</u> Canc.) 5 D.L.	Mean Det. Values	Mean Det. +1/2 D.L.	Mean D.L.	E	Mean Det. Values	Hean Det. +1/2 D.L.	nean D.L.
2378-TCDF	Du	1 0.0	85 8	ł	6.38	0.46	1.98	6.1	8.8659	8.8575	9-1986
Total TCDF	nd Di		9.39 9.39	ł	6.30	<u>9</u> .50		53	8.8339	9-9699	<u>6669</u>
	2										
2378-TCDD	'nđ	1.40	рц	91-18	рц	B .63	1.25	-	'nġ	B.625E	1.2500
Total TCDD	р	1	pu	1	ná	N/A	ł	(2)	pu	A/A	
	-		-	0 1	•	6 2		20	Ţ	0 0100	a a776
123/6-PecUF	ם מ	10-19 1	<u>Б</u> .	ม. เม	р.	77-5	ដ្ឋារ នាំ ដ		3 1		8 2858
23478-PeCDF	Ъ	5	Ъ	57 E	nd	9 -24	5t-17	וצ יי	DL .	C171-8	GC£7-0
Total PeCDF	pu	ł	'nġ	ł	рı	N/A	1	53	ġ	N/A	
12378-PeCDD	ים	B.78	pu	6.47	pu	B .29	g .59	B.5	pq	9.1463	B.295E
Total PeCDD	pu	1	pu	1	nđ	N/A		(51)	pq	ñ/A	1
	1		7	¥ ¥ 8	Ţ	G 22	77 B	5	ŗ	G 3779	8 8249
1074/01407]]	r 0 			י נו	8 JL			1 2	6 9756	6 95,943
		00. 1	1.						0 0720	G GARS	2 2402
123789-HxCDF	2 <i>1</i> -8	1	된 .	ר אי אי אי		97-19 1	547 B		171 171 171	101-11-11 101-11-11	
234678-HxCDF	pu	10.1	'n	9 9-99	סט	N. 30	0/~R	- 51			2072-2
Total-HxCDF	£.72	1	ק	1	9 .72	B .36	1	5	99999 B	9.000	
123478-H×CDD	pu	g.79	pu	g .38	pu	g .29	g.53	6.1	'nġ	8-8292	8-859.8
123678-HxCDD	ри	9.41	'n	B .35	nd	8.15	g .38	6.1	P	8018-8	6.6386
123789-HxCDD	pu	<u>8</u> .58	'nd	5 .71	pq	B .32	9 .65	1-6	9	6.6323	B. B65£
Total-HxCDD	пd	ł	nđ	1	pu	N/A		5	p	N/A	I
1234678-HnCDF	'nď	24.0	pq	1.49	'n	Ø.46	9 .91	6.91	'n	8.664 6	1600-0
1234789-HpCDF	ЪС Г	9 ' 4 9	Ъ.	9.37	nd	6.19	g .39	<u>19</u> .8	pu	5199-9	8.9835
Total HpCDF	'nď		рц	1	pu	N/A	١	6	Ъ	N/A	
1234678-HoCOO	55	1	6 6	1	8 .85	B. B3	1	19-9	<u>8-9065</u>	8-8883	1
						88.6	ł	5	a agga	0 03340	١
IOLEI HPUUU	5 5 5	!	57 - 57 57	ł	50 - D	6 7 - 0	}	8	67.00 · G	1	
OCDF	'nd	1-88	pq	1.49	ц	8-68	1.28	168-8	pu	9.9996	9.9912
0000	15.60	1	13.89	1	14.00	7-86	1	6 - 6 01	g-014g	N/A	
Total TEF									8.1515	1.1817	

E.7

1

,

• •

										-	
STATION 8					Average Conge	mer Concent	rations		Average II		
	R	₹7 0	Ref	ŝ	Mean Det.	Mean Det.	Mean		Mean Det.	Nean Det.	Nean
Native isomer	Conc.	D.L.	Conc.	D.L.	Va lues	+1/2 D.L.	D-L.	ΠĒ	¥a lues	+1/2 D.L.	D.L.
						80			a 6805	2 0805	
2378-TCDF	40. S		- 40 -	ł	50 - 51 51					2	
Total ICDF	8 _34	!	3.45	ł	g.96	96°9	1	51	6.6966	9-99-99 9-99-99	I
2378-7000	nd	1.49	'n	57°	P	8.79	1.48	•1	ġ	6.7 <u>006</u>	1.4636
Total TCDD	1.66		ц	I	1-88	1.68	1	65)	0 <i>000</i>	N/A	1
12378-PeCDF	'nġ	ø.36	ġ	<u>8</u> .51	'nd	g .22	G _44	g.g5	р	9.618-8	g_g 13
23478-PeCDF	DC	ß_39	nd	8.55 8	nd	9.24	G.40	ភ្ន ន	nd	<u>a. 1188</u>	8.2375
Total PeCDF	nd		nġ	ł	рц	N/A		53	'nġ	N/A	I
12378-PeCDD	'n.	B .27	pu	6,49	'n	g.19	g .38	9°2	P	8-99-8	<u> 3, 1985</u>
Total PeCDD	pu	ł	'nđ	ł	Ē	N/A	I	53	pu	R/A	1
123478-HxCDF	ġ	6.47	nd	g.83	'nd	6.34	9 .68	B .1	Ъ.	g. g338	8.9 675
123678-HxCDF	. 121	g.59	pu	<u>6.47</u>	'nġ	B -29	9 .58	1.8	nd	8628-8	9.6589
123789-HxCDF	pu	<u>ଜ</u> . 53	nd	6.51	'n	9 -29	15-8	6.1	щ	<u>6.8285</u>	9-9579
234678-HxCDF	Dri	1.29	Ъ.	5°-9	pu	9.54	1.67	<u>6</u> .1	nd	g.g535	8-1679
Tota l-HxCDF	. <mark>Б</mark>	١	ц.	ł	'nd	N/A	١	53	ġ	R/A	1
123478-HxCDD	nd	ß.36	pu	6 _98	'nđ	B_34	g _67	9 .1	nci	8 . 8 335	<u>8-8578</u>
123678-HxCDD	ġ	g.56	'n	1.40	pu	B.49	g .98	B .1	рц	<u>8-8498</u>	<u>6.9989</u>
123789-HxCDD	pu	g .66	p	9-61	'nđ	B .32	g.64	6.1	þ	6-6318	B .6635
Total-HxCDD	pu		pu	ł	'n	N/A	I	69	B	N/A	ł
1234678-HpCDF	P	B .73	'nd	2.89	nd	5 .88	1.77	9-91	P	9.9988	6.6177
1234789-HpCDF	, D	9.27	'n	g.6g	'nđ	B.22	8.44	9-61	pa	8.6922	8.6844
Total HpCDF	nd	1	1.87	1	1.87	1.87	ł	51	89999-8	8.6688	I
1234678-HoCDD	10 17	ł	57	ł	0+-I	1.40	ł	18-8	9,0146	<u>6-6149</u>	١
Total HpCDD	2.5 BC	-	ac. A		3.48	3.48	1	53	8.6060	9.0000	I
OCDF	.р Ц	5.79	0.5G	!	g.56	1.66	5.79	9-991	8.2365	<u>9.8817</u>	1200-8
0000	26.89	1	36.66		28-86	28.66	1	199-8	9.9 288	6.6289	ł
Total TEF									g .132 <u>g</u>	1.3278	

٠

-

,

STATTON Q					Averade Conde	ner Concent	rations		Average T	F Concentre	tions
	Rei	4	Re	r S	Mean Det.	Mean Det.	Hean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc.	D.L.	Conc.	D.L.	Va lues	+1/2 D.L.	D.L.	TEF	Values	+1/2 D.L.	D.L.
9278_TCAE		5 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		18 19 19	87 F	95 17 17		а авса	a 1366	ã 35aa
	חוו	30.0	10-14		20-4		17-5	:			
Total ICDF	ц	1	9 .85	ł	ß.85	Ø.85	1	121	9999.9	99999 - 8	1
2378-TCDD	'n	<u>6</u> .66	'nġ	£.83	pu	g .38	g .75	1	P	B.3866	g.7456
Total TCDD	pu	ł	pu	1	pu	N/A	ł	69	pu	N/A	1
12378-PeCDF	pu	g .79	pu	B .29	pu	B .27	B .54	8 - 8 5	pu	9-9135	8.8279
23478-PeCDF	50	3.90	pu	<u>9</u> .29	pu	g .83	1.65	B.5	nđ	<u>6-4159</u>	g .8225
Total PeCDF	1.19	1	nd	1	1.10	1-16	1	53	8.9899	6.6666	1
12378-PeCDD	'n	2.80	pq	g.6g	nd	g .85	1.78	B.5	pq	8.4258	9-8586
Total PeCDD	ри	1	ри	1	pu	N/A	1	5	ġ	N/A	1
123478-HxCDF	'nġ	g.96	pq	g.39	ц	B .34	g .68	B .1	Ъ	8-8348	g.g 675
123678-HxCDF	pu	1.20	nđ	g .3g	pu	9 .38	g .75	B.1	nd	9.8388	8.8758
123789-HxCDF	'n	1.96	nc	B .59	ри	<u>6</u> .83	1.24	6.1	B	9.658	g .1245
234678-HxCDF	pu	2.98	Ъđ	g .43	pu	9 .84	1.67	9.1	Ъ	6-9849	B .1665
Total-HxCDF	pu	I	pu	1	pu	R/A		53	pu	R/A	I
123478-HxCDD	ц	1-98	ри	g .36	ри	ß.57	1.13	1-8	pu	0.0579	8:1138
123678-HxCDD	pu	3.66	'n	g .61	pu	B .91	1.81	9.1	g	6 .0516	<u>8-1885</u>
123789-HxCDD	pu	1.56	pu	<u>g</u> .76	pu	B.57	1.13	B.1	ġ	8-69-8	Ø-1136
Total-HxCDD	'nđ	1	1.00	I	1.60	1.68		5	8-9598	9.0000	1
1234678-HpCDF	Ъ	1.63	рu	6 .73	pu	g .59	1.17	10-0	P	8,6859	6.6117
1234789-HpCDF	'nġ	2.80	pu	ß.64	pu	<u> </u>	1.72	9.61	Ę	A.BB 6	9.0172
Total HpCDF	'n	I	pu	1	'nd	N/A	I	5	P	N/A	I
1234678-HpCDD	pu	5.30	1.10	ł	1.19	1.88	5.30	19-8	9.6118	<u>8-9188</u>	g_8538
Total HpCDD	pu	ł	1.70	1	1.70	1.70	I	59	6.6966	6.6666	1
OCDF	'nd	6.5 0	0.00	1	8.88	1.8	6.50	199 -8	8.9996	9.6816	9.6065
0000	35. Ø Ø	ł	15.00	ł	25.00	25.00	I	8.881	B - B 25 B	8 .8258	I
Total TEF									6 _121 9	1.8474	

2

8.8928 g. 6683 **8.68**93 6.1369 | | 1.2000 0.8560 9.8619 0.1200 1 1 11 Mean g.1688 9.1456 9.1200 D.L. 0.0220 Average IEF Concentrations Mean Det. Mean Det. +1/2 D.L. 0.0340 8986-8 8.8768 8.9468 6.6460 0.0320 6.9863 9.0035 0.0032 1.6454 9.6009 8.8756 6_8847 0.0800 N/A 0.4250 6.6669 0.0300 0.0650 9.9999 9.9699 0.0000 0.6869 6.6116 6.0969 9.9699 8.6639 0.6760 **6.1167** 6.6663 0.0035 0.0000 0.9998 0.0340 9.9999 0.0032 9.9999 0.0000 0.0000 0.0000 0.0000 Б B p Va lues 0.9000 0.0000 0.0000 9.9996 0-0000 22 9.6869 0.05 Ø.5 **8**.5 10-0 1 0.01 0.001 0.001 ΕF 9.1 6.1 6.1 **B.1** 5 8.1 0.1 9.1 s 53 S 9.1 0 5 5 -1 15 Average Congener Concentrations **g**.61 **g**.92 1.36 **G**.68 **g**.93 **g**.29 1.28 0.44 1.70 **6**.81 1.20 Mean Det. Mean Det. Mean D.L. 1.60 1.20 1 | | 1 | | -+1/2 D.L. 3.40 2.80 3.29 0.15 N/A 0.30 Ø.46 8.48 3.65 0.60 **g**.32 N/A <u>0</u>.35 0.47 **g**.22 **g**.85 N/A N/A <u>0.6</u> 4.07 0.60 0.80 N/A N/A Va lues 3.20 3.40 2.80 6.35 nd 4.67 pu pu pu p p p nd D 말면면 면면 nd. Rep 5 nc. D.L. NO DATA Conc. 1.38 **g**.29 **B**.61 **B**.92 1.20 Ø.68 Ø.93 1.20 1.70 **0**.81 1.60 Ø.44 D.L. 1 ł 1 ł ł 1 1 Rep 4 Conc. 3.40 2.80 3.20 76.00 g.35 pg Pd 말 말 말 말 말 nd nd nd p 4 . B7 pu pu pg. nd br 1234678-HpCDD 1234678-HpCDF 1234769-HpCDF Native Isomer 123478-HxCDF 123789-HxCDF 123678-HxCDD 123789-HxCDD 123678-HxCDF 123478-HxCDD 234678-HxCDF lotal-HxCDD fctal HpCDF Total HpCDD 12378-PeCDD [ota] PeCDD fota 1-HxCDF Total PeCDF 12378-PeCDF 23478-PeCDF STATION 10 fotal TCDD Tota; TCDF Total TEF 2378-TCDD 2378-TCDF CCDD OCDF

STATION 11 Native Isomer	Rep Conc.	o 4 D.L.	Rep Conc.	0 5 . D.L.	<u>Average Conge</u> Mean Det. Values	mer Concent Mean Det. +1/2 D.L.	<u>rrations</u> Mean D.L.	TEF	<u>Average TE</u> Mean Det. Values	F Concentra Mean Det. +1/2 D.L.	tions Mean D.L.
2378-TCDF Total TCDF	pu	1.20 	pu	Ø.79 	ри	Ø.50 N/A	1.00	6.1 6	p p	Ø. 6498 N/A	g. 6995
2378-TCDD Total TCDD	pu	1.10	ри Ри	1.30	ри ри	0.60 N/A	1.20	1 8	pu	9.6000 N/A	1.2000
12378-PeCDF 23478-PeCDF Total PeCDF	nd bn Ø.93	Ø.31 Ø.32	pu pu	0.42 0.38 	nd nd Ø.93	6.18 6.18 6.93	8 .37 8 .35 	0.05 0.5 0	րո քանցան հեր	6.6691 6.6966 6.6966	Ø.Ø183 Ø.1750
12378-PeCDD Total PeCDD	pu	Ø.26 	pu	0.40 	pu	0.17 N/A	Ø.33 	6 .5	pu	Ø.Ø850 N/A	0.1650
123478-H×CDF 123678-H×CDF	ри	0.46 0.53	pu	0.48 0.49	ри	0.24 0.25	0.47 0.51	0.1 0.1	ри	6.9240 0.6250	0.0470 0.0510
123789-HxCDF 234678-HxCDF Total-HxCDF	nd nd 3.50	0.47 0.42 	pu pu	0 .82 0.4 <u>1</u> 	nd nd 3.50	Ø.33 Ø.21 3.50	0.65 0.42 	0.1 0.1	nd bn 8888.8	0.0330 0.0210 0.0000	0.0645 0.0415
123478-H×CDD 123678-H×CDD 123789-H×CDD 123789-H×CDD Total-H×CDD	pu pu pu	B.73 B.56 B.63 	pu pu pu	g.52 g.64 g.64 	p p n d n f n	в.32 в.38 в.32 N/A	0.60 0.60 0.64	6.1 6.1 6.1	ק ק ק ק	0.0320 0.0300 0.0320 N/A	Ø.Ø625 Ø.Ø6ØØ Ø.Ø635
1234678-НрСDF 1234789-НрСDF Total HpCDF	2.97 nd 8.37	6.48 	nd bn 7.97	9.10 0.54	2.97 nd 8.17	3.76 Ø.26 8.17	9.16 6.51 	0.01 0.01 0	6.6297 nd 6.6666	0.0376 0.0026 0.0000	6.8916 6.6651
1234678-HpCDD Total HpCDD	2.60 4.80		4.00 6.60		3.30 5.70	3.30 5.70	1 1	g. 01 g	0.0330 0.0000	g. 8338 6.8888	
OCDF OCDD	4.50 18.00		4.00 83.00		4.25 50.50	4.25 50.50	1	6.001 6.001	e. 0043 0. 0505	0.0043 0.0505	{
Total TEF				,					Ø.1175	1.1588	,

0.0700 0.6445 0.0510 0.0052 0.0970 1.2856 0.0273 0.1300 0.2700 0.0325 11 1 1 0.0620 0.0505 Mean ٥.٢. 0.0330 1 -1 Average IEF Concentrations Mean Det. Mean Det. +1/2 D.L. 0.0026 0.0265 9.0016 0.0560 1.1719 0.6425 0.0136 0.0650 0.1350 0.0165 0.9000 0.0493 N/A N/A 0.0163 0.0030 0.0000 0.0000 N/A 0.0223 0.0255 0.0253 9.9999 0.0395 0.0310 0.0036 0.0016 0.0560 0.0265 0.0000 Ø.1812 Values 0.0000 밀밀 0.0440 0.0000 0.0000 0.0000 0.0500 p p ם ם ם P P р pu pu Ы 0.0031 pu -6.901 0.001 0.01 0.05 0.01 0.01 0.5 0.5 0.1 **g**.1 9.1 0.1 0.1 0.1 TEF 9.1 Ø.1 0 6 5 30 53 5 Average Congener Concentrations 0.55 0.26 0.33 0.33 0.70 0.45 Ø.52 1.29 Ø.54 --0.62 0.51 **0**.51 0.81 | | 1 1 Ø.97 Mean Det. Mean 0.L. ł 1 1 ł 1 +1/2 D.L. 1.60 56.00 Ø.26 Ø.25 Ø.95 **g**.36 **g**.26 1.67 2.65 5.3**0** Ø.49 N/A **6**.27 **6**.13 N/A Ø.27 N/A Ø.16 0.40 0.31 1.66 **g**.22 0.50 0.64 0.17 Mean Det. Ø.31 nd 2.65 5.30 Ø.44 nd 1.69 nd nd Ø.95 1.60 56.00 0.50 6.50 1.67 Va lues pu pu pu pu pg D 2 pu pu 0.20 **Ø**.33 Ø.28 Ø.43 g.33 **Ø**.23 0.31 0.77 0.36 Ø.23 0.17 1 1 | | $\{\cdot\}$ ł ł ł ł ł ł D.L. ł ഹ Rep Conc. nd 1.60 pu 1.20 0.80 9.00 0.44 0.95 **G**.31 1.67 pd Dd ри pu ри 0.50 0.50 ЪЪ pu pu pu Ø.29 0.85 0.46 0.48 9.70 **0**.93 0.56 0.74 0.58 0.71 1.80 Ø.73 0.81 1 1 1 1 0.97 1 ł D.L. 1 1 ! 4 Rep 2.40 103.00 Conc. 4.10 7.70 pu pu pu nd nd p p nd Dd pu ЪБ pu pu pu pu ם ם 1234678-HpCDD .234678-HpCDF 1234789-HpCDF Native Isomer L23478-HxCDD 123678-H×CDD 23476-HxCDF 123678-HxCDF 123789-HxCDD 123789-HxCDF 234678-HxCDF otal-HxCDD rotal HpCDF Fotal HpCDD Total PeCDD Fotal-HxCDF 12378-PeCDF 23478-PeCDF Fotal PeCDF 12378-PeCDD STATION 12 fotal TCDD fotal TCDF 2378-TCDD Total TEF 2378-TCDF 0CDF 0CDD

CTATION 13				A	verade Conde	aner Concent	rations		Average If	F Concentr	ations	
	Rep	4	Rep	2 L	Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean	
Native Isomer	Conc.	D.L.	Conc.	D.L.	Va lues	+1/2 D.L.	D.L.	TEF	Values	+1/2 D.L.	D.L.	
	-	i t	-			c r	5	-	Ţ	a a202	a afre	
23/8-1CDF	Du	N-/1	DU	0 .40	DU	9. C3	6 .33	н с а	<u> </u>	7678.8		
Total TCDF	pu	ł	pu	1	pu	N/A		SI	Du	N/N		
2378-TCDD	pu	1.40	Ъ	0.64	pu	0.51	1.02	1	nd	0.5103	1.0200	
Total TCDD	pu	1	pu	1	pu	N/A	l	6	pu	N/A	1	
12378-PeCNF	pu	6 18	pu	0.25	pu	0.11	0.22	0.05	pu	0.0054	0.0108	1
23478-PaCDF	pu	0.14	pu	0.17	pu	9.08	g .16	0.5	pu	0.0388	0.0775	
Total PeCDF	ри		pu	1	pu	N/A	l	53	pu	N/A	}	
12378-PeCDD	pu	0.45	pu	Ø.16	pu	0.15	9.31	Ø.5	p	g . g 763	g .1525	
Total PeCDD	pu	ł	pu	ł	pu	N/A	1	6	pu	N/N	1	
123478-HxCDF	0.36	ł	nd	0.21	ß.3	0.20	0.21	9.1	0.0300	0.0203	9.0210	
123678-HxCDF	Ø.39	!	pu	0.21	B .39	0.25	Ø.21	0.1	0.0 390	0.0248	9.0210	
123789-HxCDF	0.34	ł	Ø.25	ł	Ø.3Ø	Ø.3Ø	ł	0.1	Ø.Ø295	0.0295	1	
234678-HxCDF	pu	0.37	pu	0.37	pu	Ø.19	G .37	9.1	pu	0.0185	G .0370	
Total-HxCDF	1.00	1	1.30	ł	1.15	1.15		6	0.0000	0.6699	Ι.	
123478-HxCDD	pu	Ø.23	pu	Ø .28	pu	Ø.13	Ø.26	0.1	pu	0 .0128	0 .0255	
123678-HxC0D	pu	Ø .22	pu	0.17	pu	0.19	0.20	0.1	pu	0.0098	g . ø 195	
123789-HxCDD	pu	0.22	pu	Ø.25	pu	0.12	Ø.24	G. 1	nd	9.0118	Ø.Ø235	
Total-HxCDD	pu		1.50	-	1.50	1.50	1	8	0.0000	0.0000	. ¦	
1234678-HpCDF	0.47	1	Ø.36	1	0.42	0.42		0.01	0 .0042	g . g <u></u> g 42	1	
1234789-HpCDF	pu	Ø.32	pu	g .29	рц	9.15	0.31	0.01	pu	0.0015	8.0031	
Total HpCDF	2.17	!	1.57	;	1.87	1.87		8	0.0000	0.0000		
1234678-HpCDD	0.60	1	Ø.50	1	Ø.55	0.55	1	0.01	0.0055	0.0055	ł	
Total HpCDD	1.50	1	0.60		Ø.75	Ø.75	}	6	0.0000	0.0006	I.	
OCDF	1.70	ł	0 .20	ł	ß .95	Ø.95	1	6.001	9.0010	0.0010	ł	
OCDD	8.00	ł	1.00		4.50	4.50	ł	0.001	0.0045	0.0045	1	
Total TEF									Ø.1136	Ø.8Ø35		

E.13

C

0.0315 0.1175 **6.0195** 0.0024 0.7400 0.0110 | | Mean 0.0535 9.0925 0.0210 0.0245 0.0246 l 1 1 0.0300 1 D.L. Average IEF Concentrations 1 Mean Det. Mean Det. +1/2 D.L. **b.**0588 0.0120 0.0033 0.0012 0.0009 0.0000 0.0003 0.0000 N/A 0.3700 0.0055 0.0463 N/A 0.0098 0.0450 0.0105 0.0000 0.0158 0.0000 0.6323 N/A N/A 0.0000 **g.g**268 0.0150 0.0123 Va lues 0.0033 6.0000 0.0000 0.0000 0.0486 0.0450 0.0000 0.0000 0.0000 0.0002 밀면 222 n d 밀밀 рц 말말 Б p d 0.05 Ø.5 0.001 0.001 **0**.5 0.1 6 5 9 5 5 0 0.1 6.1 0.1 0.1 0.1 0.01 0.61 0.01 S 0.1 5 0.1 Ш ----Average Congener Concentrations D.L. 0.74 Ø.19 0.20 Ø.25 **B**.32 **B**.24 9.24 0.54 0.22 0.24 **B**.21 1 1 Mean Det. Mean Det. Mean 0.30 ł ł ł ł 1 1 +1/2 D.L. Ø.33 00.00 00.00 0.25 0.00 N/A 0.10 0.45 0.16 0.12 0.45 0.12 g. g N/A Ø.12 0.45 0.11 1.37 0.37 N/A 0.11 0.15 0.12 0.27 N/A Values 0.25 0.00 00.00 00.00 Ø.45 0.45 Ø.33 1.37 pd D pu pu pu pu nd D pu Pu pu 0.45 р pu ри nđ 0.25 Ø.13 0.22 0.30 Ø.15 Ø.23 **Ø**.62 Ø.53 0.20 Ø.17 Ø.25 0.17 D.L. ļ 1 1 1 ł 1 1 1 1 1 ł ł Rep 5 Conc. 0.45 Ø.29 0.00 00.00 0.20 0.00 **0**.38 ри **0**.38 pu 1.37 pg pg nd D nd pu pu р ри Б pu ри Ø.25 0.20 Ø.33 Ø.33 0.45 0.95 0.24 0.22 0.35 Ø.26 Ø.25 Ø.27 Conc. D.L. ł ł ł ł 1 ł ł | | 1 1 1 Rep 4 Ø.52 pu Ø.52 Ø.37 1.37 0.00 0.00 0.30 0.00 pg pg pd D pu pu pu pu pu pu pu pu p: 1234789-HpCDF 1234678-HpCDD 1234678-HpCDF Native Isomer 123478-HxCDD 123678-HxCDD 123789-HxCDD 123678-HxCDF 123789-HxCDF 234678-HxCDF 123478-HxCDF Total HpCDF Total HpCDD Fotal-HxCDD 12378-PeCDD Fota I-HxCDF 23478-PeCDF **Fotal PeCDD** 2378-PeCDF **fotal PeCDF** STATION 14 Fotal TCDF Fotal TCDD 2378-TCDF 2378-TCDD Total TEF OCDD OCDF

CTATION 17				Δ	verade Conde	ner Concent	rations		Average TF	F Concentra	tions
	Rer	4	Ren	:I 	Mean Det	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Mative Isomer	Conc.	D.L.	Conc.	D.L.	Values	+1/2 D.L.	D.L.	TEF	Values	+1/2 D.L.	D.L.
2378-TCDF	Ø. 26		pu	8.98	Ø.26	B .36	0.90	Ø.1	Ø. Ø269	g . <u></u>	0.0900
Total TCDF	Ø .26	ł	pu	1	Ø.26	B .26	ł	6	0.0000	0.000	
2378-TCDD	pu	B .54	pu	1.10	pu	B.41	Ø .82	7	pu	0.4100	0.8200
Total TCDD	pu	ł	pu	I	pu	N/A	ł	53	ри	N/A	ł
12378-PeCDF	pu	0.15	pu	Ø.45	pu	0.15	0.30	0.05	pu	0.0075	0.0150
23478-PeCDF	pu -	Ø.13	pu	Ø.49	pu	0.16	Ø .31	0.5	pu	0.0775	Ø.155Ø
Total PeCDF	0.24	1	pu	1	<u>0.24</u>	0.24	1	63	0.0000	0.0000	
12378-PeCDD	pu	Ø.18	pu	g .36	pu	9.14	0.27	Ø.5	pu	g.g675	g. 1350
Total PeCDD	ри	-	ри	{	pu	N/A		53	pu	N/A	
123478-HxCDF	pu	0.22	pu	0.71	ри	Ø .23	g .46	0.1	ри	6.6233	g. g 465
123678-HxCDF	pu	0.16	pu	0.61	pu	0.19	Ø.39	6.1	pu	0.0193	Ø. Ø 385
123789-HxCDF	pu	Ø.28	pu	0.77	pu	Ø.26	g .53	0.1	pu	· Ø. Ø263	0.0 525
234678-HxCDF	pu	0.24	pu	1.30	pu	Ø.39	0.77	0.1	pu .	g . g 385	6.0770
Total-HxCDF	1.20	1	pu		1.20	1.20	1	Ø	0.0000	9.0000	{
123478-HxCDD	pu	0.24	pu	0 .52	pu	Ø .19	Ø.38	Ø.1	pu	g . g 19 g	g.g 38g
123678-HxCDD	pu	0.30	pu	0 .76	pu	G .27	Ø .53	0.1	pu	0.0265	0.0530
123789-HxCDD	pu	B .24	pu	Ø.76	pu	Ø.25	0.50	0.1	pu	0.0250	0.0500
Total-HxCDD	Ø.63	1	pu	1	g .63	g .63	•	63	0.0000	8.8869	ł
1234678-HpCDF	0.57	ł	pu	4.00	Ø.57	1.29	4.00	0.01	0.6057	g . g 129	0.0400
1234789-HpCDF	pu	0.18	pu	Ø .69	pu	0.22	0.44	0.01	pu	B. 8822	0.0044
Total HpCDF	2.37	1	pu	1	2.37	2.37	-	6	0.0000	0.0000	1
1234678-HpCDD	0.10	1	1.00		Ø.55	0 .55	1	0.01	0.0055	0.0055	1
Total HpCDD	0.20	-	1.90	1	1.05	1.05		6	0.0000	0.0000	
OCDF	0.50	1	Ø.9Ø	ł	0.70	0.70	ł	0.001	g . <u></u> <u>8</u> <u>8</u> 07	0.0007	. 1
OCDD	0.00		21.00		10.50	10.50	ł	0.001	0.0105	g. Ø105	ł
Total TEF									g.g484	g .8 <i>g</i> 75	

-

0.0055 0.1310 Ø.1725 0.2300 0.1390 | | Mean 0.6750 0.0183 0.1740 9.1119 6.1116 | | 0.1135 1 D.L. 0.1110 0.1469 <u>Average TEF Concentrations</u> Mean Det. Mean Det. Mean 1 1 +1/2 D.L. 0.0028 0.0025 0.0000 0.0000 0.0025 0.3375 0.0655 0.0555 9.9864 0.0000 0.0555 0.0870 0.0568 0.0000 **g**.**g**863 0.0695 0.0555 0.1150 1600.0 0.0730 N/A N/A N/A N/A N/A 0.0000 0.0025 1.0803 0.0000 0.0025 0.0000 0.0064 Va lues nd 0.0000 Б p p p 밀밀 말말말 pg pg 말말말 말면 0.0114 0.961 100.0 0.01 0.01 0.05 0.01 Ø.5 Ø.5 0.1 0.1 <u>0</u>.1 0.1 0.1 1.0 TEF 0.1 0.1 53 5 5 6 5 5 5 9 Average Congener Concentrations 1.14 1.11 1.31 Ø.55 **0**.37 **0**.35 **0**.46 1.46 1.39 1.74 1.11 Ø.68 Mean Det. Mean Det. Mean D.L. 1.11 1 .1 1 ļ 1 1 1 ł 1 --+1/2 D.L. 0.25 0.00 0.00 2.50 **g**.28 g.64 Ø.23 0.56 Ø.66 0.56 N/A Ø.55 N/A 0.34 N/A 0.18 Ø.17 N/A N/A 0.73 0.70 Ø.87 0.57 Ø.73 0.64 Values 0.25 0.00 **0**.00 2.50 nd nd Ø.73 0.64 nd 54 pg pg b d pu pu p p P P pg Dg pu Ġ 5 D.L. **g**.39 0.18 Ø.32 Ø.28 **g**.28 **g**.52 **g**.52 Ø.33 Ø.27 0.67 0.42 Ø.82 Ø.52 ł 1 1 -1 1 | | ļ ļ Rep Conc. 0.10 0.00 9.99 9.99 nd 0.73 00.00 0.00 ри nd. pu pu 'n pg pg pu pu р рд p p pu pu 2.80 1.80 2.10 1.70 0.40 0.42 <u>0</u>.74 2.50 3.20 1.60 <u>0</u>.71 1.40 Ø.83 4 D.L. ł ł 1 1 1 ł 1 1 1 -Rep Conc. 1.27 nd 1.27 0.40 0.00 nd 5.00 g g nd nd P P pu pu pu g g p p nd nd 1234678-HpCDD 1234678-HpCDF 1234789-HpCDF Native Isomer 123678-HxCDD 123478-HxCDD 123789-HxCDD 123678-HxCDF 234678-HxCDF 123478-HxCDF 123789-HxCDF Total HpCDD rotal-HxCDD Fotal HpCDF rotal-HxCDF 12378-PeCDF 23478-PeCDF **[otal PeCDF** [2378-PeCDD Total PeCDD Fotal TCDD **Fotal TCDF** 2378-TCDD Total TEF 2378-TCDF SQUIM BAY 0000 OCDF

. . . .

							tunt iono		Average Ti	E Concentra	tione
WEST DEALR	Rep	4	Rep		Mean Det.	Mean Det.	Mean		Mean Det.	Mean Det.	Mean
Native Isomer	Conc.	D.L.	Conc.	D.L.	Values	+1/2 D.L.	D.L.	TEF	Values	+1/2 D.L.	D.L.
	-		-		-		-	-	-		0 1 4 0 0
2378-1CDF	p	1.3Ø	Du	9C.1	pu	8. / R	1-40	1-0	DLI	aa/a.a	0.14DD
Total TCDF	pu	1	pu	1	pu	N/A	1	8	pu	N/A	1
2378-TCDD	pu	2.50	pu	B .47	'nd	0.74	1.49	1	рq	g_7425	1.4850
Total TCDD	pu	1	pu	ł	pu	N/A	1	0	pu	N/A	1.
12378-PeCDF	pu	0.51	pu	0.41	pu	Ø.23	Ø.46	0.05	nđ	0.0115	0.0230
23478-PeCDF	pu	Ø .82	pu	1.30	pu	Ø.53	1.06	Ø.5	рц	Ø.255Ø	0.5300
Total PeCDF	pu	ł	pu	1	pu	N/A	!	ୟ	рц	N/A	I
12378-PeCDD	pu	1.00	pu	Ø.26	pu	0.32	g .63	0.5	pu	0.1575	0.3150
Total PeCDD	pu	ł	16.00	ł	16.00	16.00	1	8	0.0000	0.0000	I
123478-HxCDF	pu	0.51	pu	0.61	pu	Ø.28	Ø.56	0.1	pu	6.0280	0.0560
123678-HxCDF	рц	0.54	pu	g .61	pu	g .29	B .58	9.1	pu	g . <u></u>	0.0575
123789-HxCDF	pu	g.96	pu	1.70	pu	g .67	1.33	0.1	рц	g.g665	g .133 g
234678-HxCDF	pu	2.40	pu	g .72	рц	Ø.78	1.56	9.1	pu	g.g786	Ø.156Ø
Total-HxCDF	nď	1	pu	ł	ри	N/A	١	0	pu	N/A	I
123478-H×CDD	'nd	6 .97	pu	Ø.57	pu	G .39	Ø.77	0.1	pu	g . g 385	6.6779
123678-HxCDD	pu	1.40	pu	Ø .53	pu	g.48	g .97	0.1	pu	Ø.0483	B . B 965
123789-HxCDD	pu	1.10	pu	g .86	pu	Ø.49	g .98	9.1	pu	6.8496	g . <u></u> g98 <u>g</u>
Total-HxCDD	pu	ł	pu		pu	N/A		6	pu	N/A	1
1234678-HpCDF	pu	1.10	pu	Ø.87	pu	ß.49	B .99	9.01	pu	0.9649	6 .0099
1234789-HpCDF	pu	1.40	pu	Ø.58	pu	Ø.5Ø	g .99	9.01	pu	0.0050	g . BB 99
Total HpCDF	pu	ł	pu	1	pu	N/A	1	6	pu	N/A	ł
1234678-HnCDD	þu	1.50	0,00		0,00	Ø.75	1.50	6.01	0.0000	0.0075	0.9150
Total HpCDD	pu	}	00.00	ł	00.00	0.60	I	0	0.0030	0.000	1
OCDF	pu	3.70	pu	g .92	ри	1.15	2.31	0.001	pu	9.0012	0.0023
0000	0.00	ł	10.00		5.00	5.00		0.001	Ø.Ø950	0.0050	I
Total TEF									Ø.0050	1.6870	

TABLE E.2. 60-Day Tissue Lipid Results

Station	Rep	% Lipid	Dup.	% RPD
Sta. 1 Sta. 1	4 5	Ø.35 Ø.2Ø		
Sta. 2 Sta. 2	4 5	Ø.20 Ø.23	,	
Sta. 3 Sta. 3	4 5	Ø.21 Ø.21		
Sta. 4 Sta. 4	4 5	Ø.21 Ø.3Ø		
Sta. 5 Sta. 5	4 5	Ø.28 Ø.37		
Sta. 6 Sta. 6	4 5	Ø.50 Ø.75	Ø.5Ø	0.00
Sta. 7 Sta. 7	4 5	Ø.42 Ø.36		
Sta. 8 Sta. 8	4 5	Ø.15 Ø.8Ø	Ø.15	0.00
Sta. 9 Sta. 9	4 5	Ø.89 Ø.73		
Sta. 1Ø Sta. 1Ø	4 5	Ø.2Ø Ø.56		
Sta. 11 Sta. 11	4 5	Ø.27 Ø.45	Ø.27	Ø.ØØ
Sta. 12 Sta. 12	4 5	Ø.43 Ø.56		
Sta. 13 Sta. 13	4 5	Ø.27 Ø.63		
Sta. 14 Sta. 14	4 5	Ø.55 Ø.15		
Sta. 17 Sta. 17	4 5	Ø.29 Ø.79		
Sequim Bay Sequim Bay	4 5	Ø.26 Ø.23		
West Beach West Beach	4 5	Ø.35 Ø.16		

<u>TABLE E.3</u>. Quality Assurance for Dioxins and Lipids Method Blank and Matrix Spike Data

1-+ 5.00	ian	11_1	Iaw	28	L ISM	1-17	Ű	îka 11-0		Ū	nike 11-	56
Somer	Conc.	D.L.	Conc.	D.L.	Conc.		ds ds	E,	% Rec	()s	통	% Rec
2378-TCDF	pu	23.00	, pd	g - 6g	pu	1.50	Ø.8Ø	g_97	121	Ø.89	6.95	119
fotal TCDF	ри	ł	pu	ł	nd	ł	B .8 B	g .97	121	Ø.8Ø	g .95	119
2378-TCDD	pu	26.00	pu	1.70	рц	2.40	Ø.8Ø	g .93	116	Ø.89	g .87	169
fotal TCDD	pu	1	pu		ри	1	Ø-8Ø	6 .93	116	g .88	Ø.87	109
12378-PeCDF	ри	1.30	pu	g .33	ри	B .58	4.69	4.10	103	4.00	4.16	103
23478-PeCDF	pu	Ø.48	pu	Ø.35	pu	g .68	4.00	4.10	103	4.60	4.20	105
fotal PeCDF	ŋđ	1	р	ł	р	ł	8.99	8.20	103	8.89	8.30	164
12378-PeCDD	nd	g .60	pu	0.61	pu	Ø.65	4.60	5.20	130	4.60	4.10	183
<pre>fotal PeCDD</pre>	nđ	1	nd	ł	pu		4.00	5.20	130	4.00	4.10	103
123478-HxCDF	pu	0.44	pu	0.46	pu	g .36	4.00	5.10	128	4.00	4.40	110
I 23678-HxCDF	nd	Ø.39	pu	g .33	pu	B .43	4.00	4.10	103	4.60	4.56	113
123789-HxCDF	pu	G .48	g .52	1	Ø.52	0.70	4.00	4.40	110	4.60	4.30	1.0 8
234678-HxCDF	pu	Ø .36	nd	Ø.52	рц	0.71	4.00	4.30	168	4.60	4.40	110
Total-HxCDF	pu	ł	g .52	ł	pu	ł	16.00	18.00	113	16.00	18.69	113
123478-HxCDD	pu	g .35	ри	0 .24	pu	1.10	4.00	5.20	130	4.90	4.00	166
123678-HxCDD	pu	0 .31	pu	Ø.19	pu	Ø.34	4.00	3.86	95	4.69	4.60	115
123789-HxCDD	pu	0.31	рц	Ø.19	pu	g .52	4.00	2.50	8	4.00	4.16	183
[ota]-HxCDD	pu		pu	ł	pu	I	12.00	12.00	199	12.99	13.00	198
1234678-HpCDF	ри	0.47	ри	0.41	pu	B .68	4.00	5.00	125	4.00	4.79	118
1234789-HpCDF	ри	Ø.42	рц	0.54	pu	0.77	4.60	4.70	118	4.00	4.50	113
fotal HpCDF	ри	ł	ри	1	1.40	I	8.00	9.76	121	8.60	9.20	115
1234678-HpCDD	pu	g.96	1.40	1	1.40	١	4.00	4.20	105	4.00	4.30	168
rotal HpCDD	pu	ł	1.40	ł	1.40	I	4.00	4.20	105	4.00	4.30	168
DCDF	pu	g.69	pu	G .87	4.80	ł	8.00	9.80	123	8.60	10.00	125
DCDD	7.70	I	24.30	1	15.00		8.99	9.10	114	8.60	9.28	115

ļ

E.19

• •

99° 90

_ipids (Cont'd)	
and I	
for Dioxins	/ Data (%)
Quality Assurance	Surrogate Recovery
TABLE E.3.	

Native	no's	#35	#31	# 68	#76	£43	# 69	# 3	# 51	#57	# 73	1 //	≸ 54	# 4	£1 3	£12	# 22
Isomer	Added	S1 R4	S1 R5	S2 R4	S2 R5	S3 R4	S3 R5	S4 R4	S4 R5	S5 R4	S5 R5	S6 R4	S6 R5	S7 R4	S7 R5	58 R4	S8 R5
2378-TCDF-C13	2.00	68	55	85	54	75	69	68	76	44	41	36	3 6	75	61	ш	106
2378-TCDD-C13	2.00	69	55	81	23	79	71	66	71	43	46	41	86	53	79	£	160
12378-PeCDF-C13	2.60	84	64	116	74	81	87	86	69	59	ន	54	<u> 1</u> 6	93	182	81	117
23478-PeCDF-C13	2.00	81	58	102	67	73	88	86	23	53	55	50	85	16	95	78	114
12378-PeCDD-C13	2.00	85	41	108	69	45	92	83	10	17	61	53	28	97	103	85	113
123478-HxCDF-C13	2.00	59	67	74	50	55	61	64	56	95	21	23	6/	64	11	8	51
123678-HxCDF-C13	2.00	71	71	66	62	71	11	78	76	81	67	69	103	84	88	72	
123789-HxCDF-C13	2.00	69	61	79	56	69	10	68	67	68	51	56	67	74	81	72	48
234678-HxCDF-C13	2.00	44	47	58	38	50	52	50	55	34	47	49	53	8	68	88	48
123478-HxCDD-C13	2.00	60	67	83	50	76	73	68	73	76	58	49	84	72	85	11	69
123678-HxCuD-C13	2.00	68	78	75	61	72	81	78	79	56	67	5	129	58	96	76	19
1234678-HnCDF-C13	2.00	64	65	75	59	68	75	72	52	71	54	52	45	51	45	24	32
1234789-HnCDF-C13	2.60	73	60	85	61	72	36	72	73	68	60	60	83	82	94	76	78
1234678-HpCDD-C13	2.00	82	75	92	74	87	92	83	75	94	64	66	92	86	99	11	Ľ
0CDD-C13	4.00	86	58	196	65	85	87	84	78	89	65	69	96	81	92	76	67
1234-TCDD-C13	2.00	na	na	มล	na	บอ	пa	na	па	na	ทล	na	X	ш	na	БП	шa
123789-HxCDD-C13	2.00	na	па	กล	na	ทล	ทล	na	пa	na	ทล	na	X	ทล	ทล	na	na
2378-TCDD-C137	9.8g	74	53	87	57	78	71	69	75	41	47	38	97	76	78	79	182

E.20

_

<u>TABLE E.3</u>. Quality Assurance for Dioxins and Lipids (Cont'd) Surrogate Recovery Data (%)

Native	nn's	#62	£1 #	# 70	#28	# 72	# 53	£49	f 84	# 29	# 5	# 67	#1
Isomer	Added	S9 R4	59 R5	S10 R4	SIB R5	S11 R4	S11 R5	S12 R4	S12 R5	S13 R4	S13 R5	S14 R4	S14 R5
2378-TCDF-C13	2.00	36	88	35	73	37	55	52	52	42	44	13	41
2378-TCDD-C13	2.00	33	88	34	75	42	54	58	0. 1	42	48	62	44
12378-PeCDF-C13	2.00	52	101	52	86	52	72	64	54	99	65	<u>66</u>	61
23478-PeCDF-C13	2.00	56	94	55	81	53	11	65	<u>66</u>	<u>66</u>	23	5	28
12378-PeCDD-C13	2.00	55	97	51	81	56	78	<u>66</u>	74	99	68	8	ន
123478-HxCDF-C13	2.60	48	86	45	11	57	76	65	8	ស	68	<u>8</u> 6	56
123678-HxCDF-C13	2.60	59	98	46	97	55	82	65	76	65	67	11	23
123789-HxCDF-C13	2.90	55	98	44	89	33	78	55	11	61	28	11	5
734678-HxCDF-C13	2.90	52	74	44	65	56	84	ሪ	£	56	21	61	48
123478-HxCDD-C13	2.00	51	106	<u>9</u> 9	9 6	8	85	72	11	71	5	ස	21
123678-HxCDD-C13	2.00	62	109	52	168	ß	89	65	88	23	8	88	ស
1234678-HpCDF-C13	2.00	50	64	38	36	50	87	61	74	ន	50	<u>0</u> 0	ß
1234789-HpCDF-C13	2.00	59	108	47	100	<u>66</u>	104	75	85	76	78	81	5
1234678-HpCDD-C13	2.00	59	112	46	114	61	96	75	87	11	11	76	88
0CDD-C13	4.00	47	102	35	117	49	84	11	ш	75	75	ន	54
												ļ	ł
1234-TCDD-C13	2.00	na	na	IJa	กล	па	ทล	na	Пa	멉	면	델	멖
123789-HxCDD-C13	2.56	na	na	นล	па	па	na	na	na	na	П2	na	na
2378-TCDD-C137	<u></u> 6.89	34	16	37	73	44	53	56	55	46	49	23	44

Quality Assurance for Dioxins and Lipids (Cont'd) Surrogate Recovery Data (%) TABLE E.3.

Native	ng`s	₽ 8 0	≇ 8	≸ 32	# 21	ŧIJ	₹ 37
Isomer	Added	S17 R4	S17 R5	SB R4	SB R5	WB R4	VB R5
2378-TCDF-C13	2.00	42	89	55	86	38	52
2378-TCDD-C13	2.00	44	87	62	95	38	8°
12378-PeCDF-C13	2.99	62	85	52	91	47	69
23478-PeCDF-C13	2.00	53	16	2	88	47	62
12378~PeCDD-C13	2.00	61	95	67	87	45	67
123478-HxCDF-C13	2.80	64	85	22	114	126	67
123678-HxCDF-C13	2.00	59	83	68	127	<u>1</u> 37	88
123789-HxCDF-C13	2.99	69	76	ឌ	108	164	75
234678-HxCDF-C13	2.00	ß	64	53	76	49	5
123478-HxCDD-C13	2.99	71	84	53	104	117	67
123678-HxCDD-C13	2.90	58	89	11	86	114	78
1234678-HpCDF-C13	2.00	44	42	56	116	105	74
1234789-HpCDF-C13	2.00	71	98	73	139	78	81
1234678-HpCDD-C13	2.60	71	TØT	61	126	74	11
0CDD-C13	4.00	64	165	48	118	31	79
1234-TCDD-C13	2.99	na	20	na	ຍມ	Пa	na
123789-HxCDD-C13	2.60	па	па	กล	na	па	na
			5	Ĺ	5	5	53
2378-iCDD-C13/	No. N	4 4	57 7 7	٥	5	ノセ	80

IABLE E.3. Quality Assurance for Dioxins and Lipids (Cont'd)
Surrogate Recovery Data (%)
Method Blank and Matrix Spike

I

Native	s, bu			Ē	H.S.	M.S.
lsomer	Added	MB11-1	MBL28	11-17	5456R5	155198
2378-TCDF-C13	2.00	1	62	24	86	69
2378-TCDD-C13	2.00	(7)	65	32	86	8
12378-PeCDF-C13	2.90	18	74	45	16	72
23478-PeCDF-C13	2.00	26	75	51	85	72
12378-PeCDD-C13	2.99	20	79	59	28	8
123478-HxCDF-C13	2.99	43	11	51	79	74
123678-HxCDF-C13	2.88	45	81	99	103	75
123789-HxCDF-C13	2.69	48	89	ន	67	33
234678-HxCDF-C13	2.00	45	11	ស	53	72
123478-HxCDD-C13	2.99	4 1	88	70	8	85
123678-HxCDD-C13	2.00	អ	88	53	129	<u>75</u>
1234678-HpCDF-C13	2.00	52	88	53	45	74
1234769-HpCDF-C13	2.99	49	81	88	8	85
1234678-HpCDD-C13	2.00	52	88	5	32	8
0CDD-C13	4.00	44	63	43	96	67
1234-TCDD-C13	2.60	na	50 La	БЛ	X	X
123789-HxCDD-C1 ²	2.50	na	na	na	X	X
2378-TCND-2137	8.88	m	ង	53	<u> 67</u>	76
	1)				

APPENDIX F

CRAB TISSUE CHEMISTRY DATA

TABLE F.1. Tissue Dioxin Results (ng/Kg wet)

Ocean off Grayl	and	Concent	ration			01/10/	Dotoctod or	1/2 0 1		TEF (Detected Val	Concent	tration etected c	r 1/2 0 1
Native Isomer	Conc.	ato D.L.	Conc.	e D.L.	Hepato	Muscle	Hepato	Muscle	TEF	Hepato Musi	e le le	Hepato	Muscle
										0 0 0 0 0 1 0			800 E
2378-1CDF	9.60	1	1.30	;	9.00 0	1.36 222	9.0K	9C.1	 	CT-0 0000-0		10000 B	
Total ICDF	9.60	1	1.30	;	9.60	1.30	9.00	1.30	R	00,00 0000.0	8	0,000	, 10000
2378-TCDD	pu	3.40	pu	Ø .86	pu	pu	1.70	0.43	1	pu	p	1.7300	0.4300
12 al TCOD	pu	t t	pu	1	pu	pu	1	1	8	pu	pu	1	1
	Ţ	02 0	Ţ	a 21	Ţ	Ţ	9 19	0 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ţu	þu	0 0198	a aa78
123/8-PELUF 22470 Dorne		19.19 2 EG		10-0			36	6 12	5			g.6500	0.0500
Total PeCDF		- 0 - 1 - 7	p pu		pu Pu	pu Pu	2 2 4	1. 1	5			1	1
										-	-		
12378-PeCDD	pu	2.30	pu	Ø .62	pu	pu	1.15	1 5.9	ю.5	Du		ac/c.a	acc1.a
Total PeCDD	pu	ł	pu	!	pu	pu	ł	}	8	pu	Pu	1	1
123478-HxCDF	pu	1.70	pu	0 .27	pu	pu	Ø.85	0.14	0.1	ри	ņ	0.0850	0.0135
123678-HxCDF	pu	5.50	pu	0.47	pu	pu	2.75	0.24	61	pu	pu	0.2750	Ø.Ø235
123789-HxCDF	pu	1.60	pu	0 .42	pu	pu	Ø.89	0.21	0.1	pu	pu	0.0800	0.0210
234678-HxCDF	pu	1.96	pu	1.60	pu	pu	Ø.95	Ø.5Ø	0.1	pu	p	0.0950	0.0509
Total-HxCDF	pu	1	pu	1	pu	pu .	1	ł	8	pu	pu		1
123478-H×CDD	pu	2.00	pu	0.47	pu	pu	1.00	0 .24	0.1	ри	pu	0.1000	g . g 235
123678-H×CDD	pu	3.30	pu	Ø .53	pu	pu	1.65	0.27	0.1	pu	pu	0.1650	g.g 265
123789-HxCDD	pu	2.70	pu [.]	0.71	pu	pu	1.35	Ø.36	0.1	р	pu	0.1350	0 .6355
Total-HxCDD	pu	ł	pu	1	pu	pu	1	1	8	p	p	1	1
1234678-HpCDF	pu	5.00	pu	1.70	pu	pu	2.50	Ø.85	0.01	ри	pu	0.6 250	g.gg 85
1234789-HpCDF	ņ	1.40	pu	0.77	pu	pu	0.70	0 .39	0.01	pu	pu	0.9070	g.gg 39
Total HpCDF	ויק	ł	pu	1	pu	pu	1		8	pu	p	1	I
1234678-HnCDD	4.10	ł	1.70		4.10	1.70	4.10	1.70	0.01	0.6410 0.01	70	0.6410	6.0170
Total HpCDD	7.00	1	1.70	ł	7.00	1.70	7.60	1.70	6	0.0000 6.00	99	0.0000	0.0000
OCDF	pu	4.50	pu	0 .98	pu	pu	2.25	g .49	0.901	pu	pu	0.00 23	0.0005
0CDD	17.00	ł	13.00		17.00	13.06	17.00	13.60	0.001	0.0170 0.01	30	0.0170	9.0136
Total TEF										1.0180 0.16	88	4.9320	1.0191

F.1

;

IABLE F.1. Tissue Dioxin Results (ng/Kg wet) (Cont'd)

등 기 Detected or 1/2 P.L. **Muscle g**.6822 0.0000 0.1025 0.0165 0.0250 0.0160 0.0263 0.0210 0.0088 0.0000 0.0005 0.0130 Ø.9471 9.1200 0.4400 0.0090 0.0650 0.0185 0.0550 0.0140 1 TEF Concentration **8.1250** 0.1400 **g.155** 0.0085 6.6600 9.6800 **6.0008** 0.0290 4.0093 0.2500 0.4500 0.3400 0.1350 Hepato 0.9000 0.0000 1.2000 0.0190 0.0000 0.1200 0.0170 Detected Value Musc le 0.1200 0.6000 0.0000 nd Ø.0130 a a a a a 0.9890 0.1418 밀밀 g g 말말말 ם ק ъ Б 6.0088 ם ק Hepato 0.9000 0.0000 0.0296 0.0000 ם פ 2 2 2 2 פפפ 0.0600 p ЪЪ pu pu 225 Ър Ø.5 **g**.5 5 0.05 0 0.01 5 6 9.1 0.1 0.1 s 0.1 0.1 0.61 0.01 0.001 0.901 0.1 5 9 9.1 9.1 TEF Detected or 1/2 D.L. Muscle 0.60 13.00 1.20 0.44 0.18 **6.13 g**.21 0.19 8.14 0.17 **g**.55 0.25 Ø.16 0.20 2.10 0.22 Ø.88 **Ø**.88 -ł . | 1 Hepato 1.20 0.38 0.50 0.90 1.35 1.25 1.20 1.55 1.70 9.85 6.00 12.00 0.80 29.00 9.00 9.00 0.60 3.40 -1 ł ł -Muscle Ø.88 Ø.88 nd 13.00 pu pu Detected Value 1.20 nd nd b b p p p Ъ pu 59.**8**0 6.00 12.00 Hepato 9.00 9.00 pu pu 밀밀 pu pu pu nd nd nd pu pu p p **B**.36 **B**.26 0.37 0.28 0.33 1.10 **6.50 9.32** 0.40 4.20 0.43 1.20 Ø.88 0.41 -1 1 1 | ł ł ł D.L. Muscle nd 13.00 Conc. **6.88** 6.38 1.20 1.20 pa pa pa pu pu р nd nd ри pu pu Concentration 1.60 2.50 2.40 2.80 3.10 3.40 1.70 1.8Ø 6.80 2.70 ł 2.40 0.76 1.00 1.20 ł ł l ł 1 1 Conc. D.L Hepato กด่ 29.**ย**ย์ ם פ ש 6.00 12.00 pu pu pu pu pu 90.00 90.00 nd. p p p pg pg 1234789-HpCDF Total HpCDF 1234578-HpCDD 234678-HpCDF Vative Isomer (23478-HxCDD 123678-HxCDD 123678-HxCDF [23789-HxCDD 23478-HxCDF 23789-HxCDF 234678--HxCDF fotal-HxCDD fotal HpCDD otal-HxCDF 23478-PeCDF fotal PeCDF 12378-PeCDD fotal PeCDD [2378-PeCDF rotal TCDD otal TCDF 2378-TCDD Total TEF 2378-TCDF Bouy #3 0000 OCDF

F.2
TABLE F.1. Tissue Dioxin Results (ng/Kg wet) (Cont'd)

Half Moon Bay Native Isomer	Hep Conc.	Concent ato D.L.	tration Musc Conc.	le D.L.	Detected Hepato	Value Muscle	Detected or Hepato	1/2 D.L. Muscle	TEF	Detectec Hepato	<u>TEF Conc</u> 1 Value Muscle	<u>entration</u> Detected Hepato	or 1/2 D.L. Muscle
2378-TCDF	38.00 52.60	ł	2.50 2.50		38.00 53.00	2.50 2.50	38.00 53.00	2.50 2.50	6.1 8	3.8000 6 6666	<i>в</i> .2500 9 рада	3.8000 9.8000	0.2500 0.0500
1018 1 100F 2378_TFDD	99.5C		ас. 7 ра	а г. В 82	ana cc	ac.,	ag.cc	14 U	a	pu pu		1.3666	0.4166
Total TCDD	рц		p	2 I I I	pu	10	}	!	153	pu	р	1	I
12378-PeCDF	pu	1.40	pu	Ø.37	pu	pu	B.7B	Ø.19	0.05	pu	р	0.0 350	g. gg 3
23478-PeCDF	2.50	ļ	pu	0.44	2.50	pu	2.50	0.22	Ø.5	1.2500	рц	1.2500	0.1100
Total PeCDF	21.00	ł	pu		21.00	pu	21.00	1	0	0.0000	р	9.0000	1
12378-PeCDD	pu	5.40	pu	0.46	pu	pu	5.40	g .23	g .5	ри	pu	2.7666	0.1150
Total PeCDD	pu	ł	ри	1	pu	pu	1	-	6	pu	pu	.	1
123478-HxCDF	pu	1.40	pu	Ø .35	pu	pu	0.70	g .18	6.1	ри	pu	0.0700	g.g 175
123678-HxCDF	pu	7.40	pu	0.51	pu	pu	3.70	Ø.26	0.1	'n	pu	0.3706	0.0255
123789-HxCDF	pu	1.20	pu	0.47	pu	ри	Ø.6Ø	0.24	0.1	Ъ	pu	0.0600	g.g 235
234678-HxCDF	pu	1.10	pu	Ø .38	pu	pu	Ø.55	0.19	0.1	ри	pu	0.0550	0.0190
Total-HxCDF	13.90	1	pu	ł	13.00	pu	13.00	 	8	0.0000	pu	0.0000	1
123478-H×CDD	pu	2.10	pu	0.47	pu	pu	1.05	0.24	0.1	pu	pu	0.1050	g . g 235
123678-H×CDD	9.40	;	pu	Ø.65	9.40	pu	9.40	B .33	0.1	0 .9400	pu	0.9400	8.8338
123789-HxCDD	3.70		pu	g .59	3.70	pu	3.70	0.30	9.1	0.3700	pu	0.3700	g . g 295
Total-HxCDD	36.00	1	pu	1	36.00	pu	36.00	1	9	0.0900	ри	0.0000	1
1234678-HpCDF	pu	1.50	pu	1.10	pu	pu	Ø.75	Ø.55	g . g 1	pu	ри	0.0075	g . gg 55
1234789-HpCDF	pu	Ø.65	pu	Ø.55	pu	pu	Ø.33	Ø.28	0.01	pu	pu	0.0033	6.6628
Total HpCDF	pu	1	pu	ł	pu	pu	1	}	Ø	pu	pu	1	1
1234678-HpCDD	6.90	1	1.00	ł	6.90	1.00	6.90	1.00	0.01	8 -9698	0.0100	Ø. Ø69Ø	9.0100
Total HpCDD	6.90	1	1.00	}	6.90	1.00	6.90	1.00	63	0.0000	0.0000	0.0000	0.0000
OCDF	pu	2.40	pu	Ø.59	pu	pu	1.20	Ø.3Ø	0.001	pu	pu	0.0012	0.0003
JCDD	9.90	ł	18.00	1	9.90	18.00	9.90	18.00	0.001	g.ggg	g.018g	8.88 99	g.g 18 g
Total TEF										6.4389	g .2788	11.1459	1.1023
										1			

F.3

TABLE F.1. Tissue Dioxin Results (ng/Kg wet) (Cont'd)

.

Detected or 1/2 D.L 0.0004 0.0220 1.4815 0.0470 0.0345 0.0415 0.0165 0.0000 .0315 0.0250 0.0220 Musc le 0.1900 0.0000 0.7000 0.0080 0.0800 9.9325 0.0031 Ø.1775 0.0500 TEF Concentration 0.0135 0.0140 0.0990 0.0000 0.0009 0.0200 9.8486 1.1000 1.1000 0.0000 0.1650 0.0950 0.0163 0.9990 0.0000 1.9000 0.0000 2350 0.0000 2.8000 0.0000 1.1500 0.1700 0.0700 Hepato Detected Value Musc le 0.0000 0.0220 모모모 ם ם ם Б 0.2340 0.1980 0.0000 p p 2 2 2 0.0220 믿면 말말말 ם פ 8.0890 0.0200 0.0990 0.0000 Hepato 2.8000 0.0000 0.0000 0.0000 1.1666 1.1000 0.0000 말말말 Б 0.9000 1.9000 0.0000 Pu Pu Б 0.1700 Б ри pq P Ø.5 Ø.5 0.01 0.01 0.01 5 0.001 0.001 0.05 5 5 0.1 0.1 0.1 \$ 0.1 0.1 1.6 0.1 0.1 TEF Detected or 1/2 D.L. Musc le 2.20 3.50 <u>6</u>.45 22.00 Ø.35 Ø.5Ø 1.65 Ø.31 **B**.32 **B**.33 **B**.25 **g**.42 0.70 Ø.16 Ø.16 Ø.36 0.47 1.90 1 -1 1 - 1 0.85 20.09 11.00 Ø.95 11.00 55.00 1.35 1.40 9.98 20.66 1.70 2.35 0.70 1.65 1.15 Ø.33 1.8Ø 20.00 3.80 17.00 Hepato 28.00 55.00 Muscle nd 22.00 2.20 3.50 nd nd nd na. Dd 1.90 1.90 pu pu pu Detected Value p p p pg pg pg pg 11.00 9.90 20.00 nd 20.00 Hepato 1.7*°* nd nd nd 17.66 11.00 55.00 nd 1.80 20.00 3.80 nd nd 28.00 55.00 'n pu pu **g**.99 3.30 0.62 1.40 **0**.32 **0**.32 0.71 Ø.63 Ø.65 0.50 0.94 g.69 1.66 8.83 1 1 1 ł 1 ł D.L. 1 1 Musc le 2.20 3.50 nd 22.00 nd D nd nd pu pu 1.9Ø 1.9Ø p p nd nd nd Conc. p p pd pd Concentration D.L. 1.40 3.30 --1.90 2.7**0** 2.80 1.70 4.70 ł Ø.65 2.3Ø ł 1 1 ł ł ł ł ł -1 Hepato nd 17.00 11.00 nd 11.00 55.00 9.90 20.00 pu ØØ 1.80 20.00 1.70 nd nd 28.00 55.00 3.80 pu рц pu pu Б Conc. 20. 1234789-HpCDF Total HpCDF 1234678-HpCDD 1234678-HpCDF Native Isomer 123678-H×CDD 123789-HxCDD 123478-HxCDD 123789-HxCDF 234678-HxCDF 23478-HxCDF 123678-HxCDF fotal-HxCDD Total HpCDD otal-HxCDF 12378-PeCDD Total PeCDD 23478-PeCDF 2378-PeCDF fotal PeCDF Fotal TCDF Fotal TCDD Total TEF 2378-TCDD 2378-TCDF North Bay OCDD OCDF

F.4

TABLE F.1. Tissue Dioxin Results (ng/Kg wet) (Cont'd)

 $e^{i\phi'}$

South Bav		Concent	tration								TEF Conc	entration	
JOULT DAY	Hep	ato	Musc	le	Detected	l Value	Detected or	1/2 D.L.		Detected	Value	Detected o	r 1/2 D.L.
Native Isomer	Conc.	D.L.	Conc.	D.L.	Hepato	Musc le	Hepato	Musc le	TEF	Hepato	Muscle	Hepato	Musc le
2378-TCNF	38 6 0		1 50	1	38 86	1.50	38,00	1.50	8.1	3.8000	0.1590	3.8000	0.1500
Total TCDF	59.60	1	1.50	I	59.00	1.50	59.00	1.50	6	9,9999	0.0000	0.0000	0.000
2378-TCDD	2.10	1	ŋđ	1.30	2.10	pu	2.10	Ø.65	. 1	2.1696	pu	2.1000	0 .6500
Total TCDD	2.10	ł	pu	1	2.10	pu	2.10	1	63	8.8998	Ъ	0.0000	ł
12378-PeCDF	Ø.58		pu	g .84	Ø .58	pu	Ø.58	0 .42	0,05	g . g 29 g	р	0.0 290	9.9219
23478-PeCDF	2.10	ł	pu	0.30	2.10	pu	2.10	0.15	0.5	1.0500	pu	1.0500	0.0750
Total PeCDF	17.00		pu	ł	17.00	pu	17.00	ł	53	0.0000	pu	9006.9	I
12378-PeCDD	3.70	1	pu	Ø .94	3.70	pu	3.70	0.47	Ø.5	1.8500	ри	1.8500	g .235 g
Total PeCDD	8.50	-	nc	ł	8.50	pu	8.50	1	6	0.0000	pu	0.0000	1
123478-HxCDF	1.10	}	pu	g .78	1.10	pu	1.10	G .39	G .1	0.1100	pu	0.1100	6 . 6 39
123678-HxCDF	pu	4.90	pu	1.30	pu	pu	2.45	Ø.65	B .1	pu	pu	0 .2450	0.0 650
123789-HxCDF	pu	1.50	pu	Ø.8Ø	pu	pu	g .75	0.40	0.1	pu	pu	0.0750	0.0460
234678-HxCDF	pu	2.10	pu	1.50	pu	pu	1.05	B .75	0.1	pu	pu	0.1050	0.0750
Total-HxCDF	18.00	;	pu		18.00	pu	18.90	1	8	6.000	pu	6.6666	1
123478-HxCDD	pu	1.70	pu	1.90	pu	pu	B .85	B .95	0.1	pu	Ы	0.0850	g.g95g
123678-HxCDD	7.30	ł	pu	Ø.99	7.30	pu	7.30	0 .45	0.1	6.7300	ם נ	g .73 6 6	0.0445
123789-HxCDD	pu	1.30	pu	Ø.66	pu	pu	Ø.65	Ø .33	0.1	pu	pu	0.0650	0.0330
Total-HxCDD	43.00	ł	pu	1	43.00	pu	43.00	ł	9	0.0000	pu	0.0000	{
1234678-HpCDF	pu	3.60	pu	8.90	pu	pu	1.80	4.95	9.01	pu	ри	g .ġ18g	g . g 495
1234789-HpCDF	pu	1.30	pu	1.00	pu	pu	Ø.65	0.50	0.01	P	pu	g.gg65	0.0050
Total HpCDF	ри		pu		pu	pu	l ·	1	63	pu	р	1	1.
1234678-HpCDD	6.40	ł	1.90		6.40	1.90	6.40	1.90	0.01	0.0640	g. <u>Ø</u> 190	0.0640	0.0190
Total HpCDD	12.00	1	3.70	1	12.00	3.70	12.00	3.70	63	8988.8	0.0000	9.9999	0.0000
OCDF	nd	1.10	pu	2.10	pu	pu	B .55	1.05	0.001	pu	ри	8.8886	0.6011
0CDD	15.00		24.00	1	15.00	24.00	15.00	24.00	9,001	0.0150	6.0 240	0.0150	g.g24g
Total TEF										9.7480	Ø.193Ø	16.3481	1.6211

F.5

Station	Muscle	Hepatopancreas
Grays Harbor Buoy #3	0.12	3.03
Ocean Off Grayland	0.07	2.50
Half Moon Bay	0.09, 0.07 ^(a)	3.30
South Bay	0.05	5.07
North Bay	0.13	5.41
(a) Duplicate analysis		

TABLE F.2. Tissue Lipid Results

2.04

	MBL 11	-27-89	Sp	ike 15	9205	М	.S. Spi	ke
Native Isomer	Cono.	D.L.	Qs	Qm	% Rec	Qs	Qm	% Rec
2378-TCDF	nd	1.60	Ø.8Ø Ø.8Ø	1.00	125 125	Ø.8Ø Ø.80	1.00	125 125
2378-TCDD Total TCDD	nd nd	2.40	Ø.80 Ø.80	1.10 1.10	138 138	0.80 0.80	Ø.92 Ø.92	115 115
12378-PeCDF	nd	Ø,95	4.00	5,00	125	4.00	4.00	100
23478-PeCDF Total PeCDF	nd nd	Ø.93	4.00 8.00	5.00 10.00	125 125	4.00 8.00	4.20 8.20	105 103
12378-PeCDD Total PeCDD	nd nd	1.10	4.00 4.00	4.7Ø 4.7Ø	118 118	4.00 4.00	4.3Ø 4.3Ø	108 108
123478-HxCDF	nd	Ø,73	4.00	5.10	128	4,00	4.90	123
123678-HxCDF	nd	Ø.85	4.00	4.80	120	4.00	4.00	100
123789-HxCDF	nd	0.76	4.00	5.10	128	4.00	4.40	110
Total-HxCDF	nd		16.00	20.00	125	16,00	4.30 18.00	113
123478-HxCDD	nd	Ø.78	4.00	5.80	145	4.00	5.30	133
123678-HxCDD	nd	1.00	4.00	4.30	108	4.00	3.70	93
Total-HxCDD	nd		12.00	14.00	117	12.00	12.00	100
1234678-HpCDF	nd	1.30	4.30	4.40	110	4.00	4.70	118
1234789-HpCDF	nd	1.00	4.00	4.70	118	4.00	4.50	113
Total HpCDF	nd		8.00	9.90	124	8.00	9.20	115
1234678-HpCDD	nd	1.30	4.00	4.70	118	4.00	3.80	95
Total HpCDD	nd		4.00	4.70	118	4.00	3,8Ø	95
OCDF	nd	2.80	8.00	11.00	138	8,00	11.00	138
OCDD	12.00		8.00	10.00	125	8.00	9.40	118

<u>TABLE F.3</u>. Quality Assurance for Dioxins and Lipids Method Blank and Matrix Spike Data

C

TABLE F.3. Quality Assurance for Dioxins and Lipids Surrogate Recovery (%) Data

MS Spike 22 ž ž Spike 159205 65 69 69 66 66 66 65 63 71 71 71 71 85 85 85 85 85 XX 75 67 Method **B** lank na na 55 <u>South Bay</u> Hep Mus 55 na na na na 67 Mus 73 76 76 76 76 76 71 88 88 88 88 11 1Ø8 103 103 na na 77 North Bay Hep 43 na na Half Moon Bay Mus na na I Hep na na 23 Mus 69 65 65 65 66 66 66 66 83 68 83 78 83 78 83 78 na na 80 Bouy #3 77 88 88 88 88 79 87 87 87 87 88 88 87 88 87 88 87 87 1118 72 пa Пa Hep Ocean off <u>Grayland</u> Hep Mus 662 661 661 663 667 667 77 77 77 77 77 na na 67 58 558 655 665 664 881 71 77 75 775 893 915 85 85 na na 2.00 2.00 0.80 2.00 2.00 2.00 2.00 4.60 ng's Added 2.00 internal Standard 1234678-HpCDF-C13 1234789-HpCDF-C13 [234678-HpCDD-C13 234678-HxCDF-C13 123678-HxCDD-C13 123789-HxCDD-C13 123789-HxCDD-C13 123478-HxCDF-C13 I23678-HxCDF-C13 123789-HxCDF-C13 123478-HxCDD-C13 12378-PeCDF-C13 23478-PeCDF-C13 12378-PeCDD-C13 2378-TCDD-C137 1234-TCDD-C13 2378-TCDD-C13 2378-TCDF-C13

F.8

