88PC-88935-QTR-8

2 h

INHIBITION OF RETROGRESSIVE REACTIONS IN COAL/PETROLEUM CO-PROCESSING

QUARTERLY TECHNICAL PROGRESS REPORT Reporting period: June 1 - August 31, 1990.

> Harold Schobert Jasna Tomic David Moyer Jessel McConnie

Received in norr

NOV 1 3 1990

MASTER

September 1990 Contract No. DE-FG22-88PC88935

DISTRIBUTION OF THIS DOCUMENT IS UNLIMIT

ւ որը։ Հայուներին անդարաներին անդարներին անդանդաններին ներկուներությունը անդարներին անդարներին անդարներություներին անդ

DOE/PC/88935--T7

2

DE91 002474

TABLE OF CONTENTS

OBJECTIVE	1
SUMMARY	1
TASK 1: SELECTION OF FEEDSTOCK	2
TASK 2: IDENTIFICATION OF SOLVATION AND DISPERSION RELATIONSHIPS	2
LITERATURE CITED	31
APPENDIX 1	i
APPENDIX 2	ii
APPENDIX 3	iii

ער אדורי ועמה אארייטא**ר א**י או**מרי אארי**טעריע איז אינער אין ארי אייר אינער אין אין איי אינערייר אינער איר אינער א

• (min) = 0 • • • • (1) •

a 2010 a 10 200

1 NOT 11 N

OBJECTIVE

The overall objective of this project is to develop a fundamental understanding of the reactions occurring at the onset of coke formation during the co-processing of coals with petroleum residua. The specific objectives include examination of chemical components, or groups of components, in coals and petroleum feedstocks to quantify and rank the effects of these components in retarding or enhancement of coke formation. The work involves bench scale reactions in microautoclaves, supplemented by studies of the carbonaceous residues by such techniques as diffuse reflectance Fourier transform infrared spectroscopy and ¹³ C nuclear magnetic resonance spectrometry.

1

During this reporting period microautoclave testing of mixtures of model compounds and coal was concluded. In addition mixtures of coals and petroleum feedstocks were reacted under the same reaction conditions as used for the model compounds experiments. The petroleum resids were also independently tested in absence of coal. For a set of coal/resid feedstock pairs tests were performed in both horizontal and vertical microautoclaves in order to compare the mixing properties of these two different designs.

SUMMARY

THE REPORT OF THE PARTY OF THE

The focus of the work during this reporting period was the solvation and dispersion relationship involving the reactions of coals with five model compounds: eicosane, 1-phenyldodecane, 1,4-diisopropylbenzene, durene, and pyrene and two petroleum vacuum resids, namely FHC-571 and FHC-470. Reactions were performed under a hydrogen atmosphere and were compared to the results of the reactions when nitrogen was used. Coal conversions for the model compound reactions and the co-processing reactions were compared. The influence of temperature, gas atmosphere , and feedstock on the percent of coal conversion were examined. The influence of mass transfer was examined using vertical and horizontal microautoclaves for a selected number of experiments. The solid residue was analyzed by ¹³C NMR and these spectra were compared to the baseline ¹³C NMR spectra of the coal.

ումի անվարումիները անորդուներին անհանդաներին անհանդանին երկանակում անդանդանությունը հանդանության կանգարությունը անհանդանությունը անհանդանում է հանդանությունը անհանդանում է հանդանում է հանդանում է հանդանում է հանդանում է հանդանում է հանդանում է հանդանությունը անհանդանությունը անհանդանությունը անհանդանում է հանդանում է հանդանում է հանդանում է հանդանում է հանդանում է

TASK 1: SELECTION OF FEEDSTOCK

As reported earlier this Task is essentially finished. Some additional resid samples will be acquired at a later data when the process chemistry now being developed will allow us to specify in advance a "good" and "poor" resid.

TASK 2: IDENTIFICATION OF SOLVATION AND DISPERSION REALTIONSHIPS

Model Compound Reactions

During this reporting period, the five project coals were reacted with the five model compounds under a hydrogen atmosphere (Appendix 1). The results of the reactions under a nitrogen atmosphere were previously reported [1]. The reaction temperatures were 350°, 400°, and 450° C, and the starting pressure was 3.5 MPa. Coal conversion is defined on the basis of yield of THF-insolubles as:

Conv%= [1- THFinsoluble Wt.coal (daf)] x 100

Gas atmosphere effect

There does not seem to be a consistent influence of the gas atmosphere on coal conversion in the model compound reactions. Comparisons of coal conversions under a nitrogen and hydrogen atmosphere at a given temperature are shown in Figures 1-15. Under the given conditions of these tests, namely 3.5 MPa of nitrogen or hydrogen, the differences in degree of coal conversions are not significant. It is generally expected that the conversions would increase in the presence of hydrogen gas, but under the given reaction conditions the effect of the chemical nature of the coal and the model compound seem to override the effects of the gas atmosphere. At the lowest reaction temperature of 350° C the coal conversions are generally higher when hydrogen gas is present for all model compounds except pyrene. In the reactions of pyrene and coal comparably high coal conversions were achieved under a nitrogen atmosphere and in some cases even higher than under a hydrogen atmosphere. Once again, as mentioned in the earlier report [1], pyrene exhibits significantly different behavior than any of the other four model compounds.

א אן אירונט אור אואן און אין איי אואן איי און איי איי אין און איי איין און איי איין איי איין איי איין איי איי

Temperature effect

The reaction temperature has a different effect on the conversion of the five coals. Figures 16-20 show the coal conversion with different feedstock and reaction temperatures with hydrogen gas overpressure, and Figures 21-25 show the respective coal conversions under a nitrogen atmosphere. For the two lower rank coals used in this project, subbituminous B (PSOC 1488) and hvC bituminous (PSOC 1498) the coal conversion increases with increasing temperature of reaction. The exceptions are reactions with pyrene when the maximum coal conversions are achieved at 400° C. For the three remaining project coals (hvB and hvA bituminous) the highest coal conversions are obtained at 400°C. This pattern is observed when nitrogen or hydrogen overpressure is used. The reason for this behavior probably is that the the higher rank project coals all have their temperature of maximum fluidity above 400° C while the two lower rank coals have FSI's of 0 and 0.5 respectively.

Reactions with Petroleum Resids

Thermal stability tests on the two petroleum resids were completed. The yield of THF-insolubles was observed in reactions under a nitrogen atmosphere and under a hydrogen atmosphere. The results in Appendix 2. show that neither of the vacuum feed resids, FHC-571 and FHC-470 produced a significant amount of insolubles at 350° or 400° reaction temperatures. The yield of insolubles increases at 450° C. In the case of FHC-571 the maximum yield insoluble is 3% of the total weight of resid. For the sample FHC-470 the yield insoluble is greater, around 15% of the total weight of the resid. The gas atmosphere does not seem to influence the production of insolubles from these two petroleum resid feedstock.

The two resids were reacted with the five project coals under the same reaction conditions as the model compound reactions. A nominal charge of 2.5g of coal and approximately 5g of resid were reacted in microautoclaves. Due to the high viscosity of the petroleum resids, the loadings varied anywhere from 4.5 to 6 g. Reactions were conducted using nitrogen and hydrogen overpressure of 3.5MPa at the beginning of the reaction. The results in Appendix 2 show that the amount of insolubles formed is the smallest at reaction temperature 400° C. On the other hand, at temperature 450° C the yield of insolubles dramatically increases.

Comparing these results to the previous thermal stability tests of the coal alone and resid alone, it is obvious that none of the project coals or petroleum resids produced this high yield of insolubles. The interactions between the coal particles and petroleum resids at the highest reaction temperature seem to favour the retrogressive reactions and the formation of insoluble matter. The Figures 16-25 show that coal conversion is steadily negative at reaction temperature 450° C in the presence of petroleum resids. On the other hand, the coal conversions in the reactions with petroleum resids at 400° C are in the range of those conversion achieved in the presence of pyrene. It was previously noted that of all the model compounds tested in this project pyrene acted most favorably in terms of minimizing the production of THF-insolubles. The results indicate that petroleum resids are as good solvents for coal particles as pyrene for reaction temperatures less than 450° C.

For most of the coals used in reactions with petroleum resids, higher conversions were obtained in the presence of hydrogen. The exception is the high volatile A, PSOC 1448 coal when reactions with nitrogen overpressure resulted in higher coal conversion.

Microreactor Design Comparison Reactions

A selected number of coal-model compound pairs were reacted under same reaction conditions (pressure and temperature) in a vertical tubing bomb reactor normally used in this project and a horizontal one of the same volume. The reason for this is to test the mixing properties and mass transfer effects of these two different designs, and to evaluate the effect of the microreactor design on the yield of insoluble matter hence, coal conversion. For this purpose one coal and one reaction temperature were chosen and were reacted with eicosane, diisopropylbenzene and, pyrene in a nitrogen and hydrogen atmosphere. The table with the collected data for these experiments is in Appendix 1. The yield of insolubles when horizontal microreactors are used are lower by 2-4% compared to the experiments with the vertical design. This result seems to be in agreement with the results reported by Rhee et al [2]. that the horizontal oriented microreactors have advantage over the vertical oriented microreactors in terms of mixing properties in the absence of agitator balls. For the scope of this project though, these differences are not that significant and under the reaction conditions used here the design of the microreactor does not seem to have a great effect.

Characterization of Solids Products

A number of solid residue were analyzed by ¹³C NMR. The instrument used was a Chemagnetics MS-100. Appendix 3. contains the spectra of the insoluble residue of thermal reactions of PSOC1488 under nitrogen and hydrogen at various temperatures and a spectra of a residue of unreacted coal after extraction with THF. Most obvious is the expected decrease in the aliphatic region and the accompanying increase in the aromatic region. This change is more apparent when the reaction temperatures is increased from 400° C to 450° C and less when the increase is from 350° C to 400° C. Similar observations were previously reported [1] from the information gained by comparing the DRIFT spectra.

dha i il i li di di

Conv@350/N2

Conv@350/H2

12

Ø

10.1006081218

Ē

;

300 = -

1. 地址 4

We

են առեն անենեն և և

The contraction of

attiva

Figure 13. Conversion for PSOC1504 under N2 and H2 at 350°C

يليغ فالمكانية المليفين

Figure 15. Conversion for PSOC1504 under N2 and H2 at 450°C

II LUUR II

ź2

Figure 24. Conversions for PSOC1504; N2 at three reaction temperatures

Literature Cited

[1] Schobert, H. H., J. Tomic, D. Moyer and, J. McConnie, "Inhibition of Retrogressive Reactions in Coal/Petroleum Co-Processing" U.S.D.O.E. Report, No 88PC-88935-QTR-7, 1990.

[2] Rhee, Y., J. Guin and, C. W. Curtis, *Fuel Processing Technology*, 22, P97, 1989.

APPENDIX 1

i

This appendix contains actual data collected in the reactions of coals with five model compounds under hydrogen atmosphere and the comparisons of a vertical and horizontal design microreactor.

					-	Т									Γ_		<u> </u>						a	യ	G	ဖ	ဖ		~	6	ŝ	4		- 4	ſ
Yield insol%	92.02659764	92.7844223	93.10611005	93.93505911	RD 06119089	00001100000	Yield insol%	100 0488450		98.43588418	99./8654/0/	96.8944714	87.44294355	Yield insol%	R0 01986083		Sepcoale. Le	94.04386921	91.2392529	82.1880328		Yield insol%	100.353052	94.0577971	95.3029371(94.63515830	86.7894029		Yield inso! %	97.0776025	92 5908677	03 6723367	90.01 LUCU	00.1010010	
Yield sol %	7.895748853	4.679005551	14.40071398	95 32495102	11 06420306	000007+007-11	Vield sol %		3.2092/921	4.641564539	-39.71704755	-30.79092807	13.63405756	Vield sol %	0.28760065	9.001 00.00 	12.74827933	12.750678	-3.096102745	21.16806255		Yield sol %	1.064977182	5.623304847	-21.3080039	-51 04089792	13 99507265	201 2000201	Yield sol %	-22.43553604	1 0R7447032		-24.1611100	-13.58054504	
THF ext	0.30632866	0.30332058	0.30277696 -	0 30756089		0.30394878			0.31734541	0.31982863	0.31773816	0.32588465	0.31903045		A DEDODOTE	0.20200202.0	0.35363275	0.35317014	0.35175426	0.35151594		THF ext	0.39235586	0.39088695	0 39187143	0.30012124	0.33015151	CI 0001 00'0	THF ext	0 53581415	O CEODENEE	0.00020000	0.53654103	0.536199	
1014 daf	2 28314428	2 26072432	2 25667252	0.0000000	2.252.200	2.2654064	1014 206	VVI.Uai	2.26659352	2.28432956	2.26939871	2.32758378	2.27862869	104 401	VVI.GAI	2.35/45145	2.3624149	2.35932445	0 3409658	2.34827375		Wt daf	2 30466332	2 29603506	2 20181783	2.0010100 0.001E979E	2.2313315	10001000.2	Wr daf	2 2031059		2.3/80903	2.3062305	2.3047601	
	2 1011	2 0076	0 1011		2.1033	1.8341		I HF-Insol	2.2881	2.2486	2.2646	2.2553	1.9925		IHF-INSOI	2.0986	2.1715	2 2186	2444	1 23		THE-incol	2 3128	2 1 FOF	2.1330	2.1337	2.1680	2069.1	TUE-incol	17511- 111	C. C. C	2.2019	2.1603	2.0326	
=350 °C H	L ENE	3.000 2 405	0.400	4.333	3.155	5.595		IHF-SOI	5.37	5.233	4 424	A 7	5,664		THF-sol	5.583	5.64	5, 656		5.232 5.861	200.0		TOC- JUL	0.400 0.04	0.492	4.893	4.21	5.733		102-111-	5.023	5.494	4.957	5 238	
	PSOC 1488	/000.2	001C.Z	2.5005	2.5459	2.516		PSOC 1498	2 5048	2 5244	2 507Q	2 E725	2.5181		PSOC 1501	2.5173	2 5226	C. JEEO	2.0130	2.5092 2.5075	C100.7		F300 1304	901C.2	2.5014	2.5077	2.4965	2.5059		PSOC 1448	2.5061	2.5877	2.5095	2 E070	
	Wt.MC	5.1194	4.9959	5.0212	5.0326	5.0404		W1.MC	A 0781	5 0102	0.010E	0/00/c	5.0343 5.0343	0-00-0	W1.MC	5 0088	0.0000 A 0060	4.3032	5.002	5.013	5.U124		WIMC	5.0081	4.972	4.9916	4.9895	5.0195		W1.MC	5.0099	4.9666	4.9906	10110	
		Ecosane	1-Phenyldod	1,4-Diiso	Durene	Pvrene				- Dependent		1,4-UIISO	Durene	Lyielle		Linneana	Elcusaria Phoendard	1-Pnenylood	1,4-Diiso	Durene	Pyrene			Eicosane	1-Phenyldod	1,4-Diiso	Durene	Pyrene			Eicosane	1-Phenvldod	1 A-Diiso		
		90	۲ ر	ĝ	ō	3 U I				5 5	2	ವೆ	م ہ	<u>د</u>		Ī	5	212	H 3	1,12	515			J 5 1 5	J17	J18	J19	J20			121	2	; <u> </u>	2.57	

ու է ուսու այլուս ու ուսուս է ուսանան այլ է որոշուն նախ հարի նրկացի հետ տարենքի ազինչների հետովիների

			j	=400 °C H2	2				
		Wt.MC	PSOC 1488	THF-sol	THF-insol	Wt.daf	THF ext	Yield sol %	Yield insol %
J26	Eicosane	4.9965	2.5087	5.397	2.0802	2.33208752	0.45245012	-2.227622918	89.19905373
J27	1-Phenylood	4.9718	2.5066	5.172	2.0563	2.33013536	0.45207138	-10.80930234	88.24809216
J28	1,4-Diiso	4.9991	2.5005	5.098	2.0661	2.3244648	0.45097123	-15.14633503	88.88497688
J29	Durene	4.9885	2.503	4.949	2.5288	2.3267888	0.45142211	-21.09869651	108.6819741
J30	Pyrene	5.0152	2.5008	5.653	1.678	2.32474368	0.45102533	8.034204789	72.18000051
		Wt.MC	PSOC 1498	THF-sol	THF-insol	Wt.daf	THF ext	Yield sol %	Yield insol %
J 31	Eicosane	5.0094	2.509	5.291	2.0865	2.3040147	0.43500131	-6.65800059	90.55931805
J 32	1-Phenyldod	4.9787	2.5058	5.395	2.0673	2.30107614	0.43444651	-0.788609626	89.84057346
J 33	1,4-Diiso	4.9945	2.0113	4.897	1.7276	1.84697679	0.34871189	-24.15904171	93.53663832
J34	Durene	4.9883	2.5056	4.3843	2.0459	2.30089248	0.43441183	-45.13082822	88.91767076
J35	Pyrene	5.0135	2.5094	5.725	1.8354	2.30438202	0.43507066	11.9958121	79.64825207
		WI WC	PSOC 1501	THF-co!	THF-insol	Wt daf	THF ext	Yield sol %	Yield insol %
136	Ficheane	5 0086	2 508	5614	1 9843	2.348742	0.68487586	-3.383762968	84.48352352
200	1-Dhanvidod	4 0646	2 5071	5 485	1 9608	2.34789915	0 68463009	-6 994767776	83 51295668
ŝ		0400.4			1.000		12000000000000000000000000000000000000	0.0000040	00.0FC407EE
- J38	1,4-Diiso	4.9898	2.5086	5.462	2.08/5	2.3493039	0.685039/1	-9.059692443	cc/010c8.88
J 39	Durene	5.0039	2.5099	5.205	1.905	2.35052135	0.68539471	-20.60371446	81.04584968
J40	Pyrene	5.0113	2.5035	6.012	1.5655	2.34452775	0.68364702	13.5231064	66.77250888
		W1.MC	PSOC1504	THF-sol	THF-insol	Wt.daf	THF ext	Yield sol %	Yield insol %
J41	Eicosane	5.0912	2.5178	5.73	1.9188	2.31108862	0.62413339	0.63461918	83.02580798
J42	1-Phenyldod	4.9677	2.5141	5.703	1.8598	2.30769239	0.6232162	4.856964437	80.59133046
J43	1,4-Diiso	4.99	2.511	5.565	1.8345	2.3048469	0.62244775	-2.058607333	79.59313914
J44	Durene	5.0111	2.5108	5.385	1.7259	2.30466332	0.62239817	-10.78240659	74.88729417
J45	Pyrene	5.0161	2.513	6.002	1.5737	2.3066827	0.62294352	15.73499797	68.22351423
		W1.MC	PSOC1448	THF-sol	THF-insol	Wt.daf	THF ext	Yield sol %	Yield insol %
J46	Eicosane	5.0128	2.5016	6.73	1.8433	2.20190832	0.79000228	42.10882504	83.71374881
J47	1-Phenyldod	4.9764	2.5053	5.816	1.8444	2.20516506	0.79117073	2.196174211	83.63999745
J48	1,4-Diiso	4.983	2.5074	5.777	1.8253	2.20701348	0.79183391	0.098145702	82.70452431
J49	Durene	4.9991	2.5169	5.659	1.7872	2.21537538	0.794834	-6.090796212	80.67255853
J50	Pyrene	5.0215	2.5121	6.069	1.6836	2.21115042	0.79331817	11.49545649	76.14135994

		·	=450 °C H2					
3	't.MC	PSOC1488	THF-sol	THF-insol	Wt.daf	THF ext	Yield sol %	Yield insol %
ကြ	0043	2.5104	4.224	1.8781	2.27768592	0.27089464	-46.15186974	82.45649602
4	9829	2.5318	3.12	1.9113	2.29710214	0.27320389	-92.9912455	83.20483302
10	0084	2.5146	5.309	1.9228	2.28149658	0.27134786	1.282147157	84.27801369
) LC	0192	2.5144	5.109	1.8995	2.28131512	0.27132627	-7.957089009	83.26337661
) IQ	0041	2.5202	5.562	1.6225	2.28657746	0.27195215	12.50549603	70.95757867
' ·			TUE ool	THE inert	Wt daf	THF ext	Yield sol %	Yield insol %
	NI.MC	r>UU1430		0000	2 DENEARS	0 30303684	-62 04603144	86.49959023
	5.0074	2.5035	3.914	00 th.	C0400C7.7			07 20221888
•	4.9735	2.5115	3.121	1.9732	2.2578385	0.3040052	00002110.02-	00010050.10
	5.013	2.5212	4.889	1.8781	2.2665588	0.30517934	-18.93528358	82.86129616
	5016	2.5086	4.823	1.8853	2.2552314	0.30365417	-22.02231514	83.59674311
	5.0756	2.5036	5.771	1.5511	2.2507364	0.30304894	17.43211957	68.91522259
			דונר ביסן	THE_incol	Wt daf	THF ext	Yield sol %	Yield insol %
	WI.MC	1901200		0.044	2 2270208	0 30127847	-2 228523022	87.69161008
	5.0846	2.501	D.424	2.0414	2.000 130.2		40/5 2E0/204	R7 0844087
	4.9984	2.5083	2.945	2.0425	2.32143165	0.39242020	+02000.001-	
	5.0203	2.4187	5.306	1.8517	2.25132596	0.37840274	-4.11/695011	82.24330550
	5.0061	2.509	4.765	1.9098	2.3353772	0.39253006	-27.13180827	81.7769395
	5.0237	2.5043	5.997	1.5239	2.33100244	0.39179475	24.94657385	65.37530694
	VAH AAC	DC:0C1504	THE-sol	THF-insol	Wt.daf	THF ext	Yield sol %	Yield insol %
	E 0126	2 5113	4 486	1.8769	2.29306803	0.45694982	-42.88358682	81.85103867
	1000 V	2 5064	3 329	1.9568	2.28859384	0.45605823	-92.71449528	85.5022838
	5 0061	25123	4.53	1.9727	2.29398113	0.45713178	-41.55360149	85.9946045
	5 0103	2.5183	5.081	1.98	2.29945973	0.45822352	-16.8528075	86.1071831
	5 0225	2 5171	5.61	1.588	2.29836401	0.45800517	5.634217492	69.09262384
					9-F 414		Viold col %	Vield incol %
	Wt.MC	PSOC 1448	THF-SO	IHF-Insol	WI.Gai	I TIL EXI		00 E704 E208
	5.0155	2.5264	4.276	1.9911	2.222/26/2	0.613/62/1	0202030001	03.3/910000
	4.9999	2.538	3.333	2.0259	2.2329324	0.61658081	-102.203/6/9	CU022021.US
	5.0156	2.5085	5.169	1.9875	2.2069783	0.60941409	-20.66237293	16/5266/ 06
	5.019	2.5227	4.991	1.97	2.21947146	0.61286383	-28.8/461458	88./598/0/8 50.00077010
	5.0168	2.5157	5.962	1.5473	2.21331286	0.61116320	12.09219	03.3001 11 21 3

8 BA 0 14 9

101.01

CONTRACTOR N

ายระเทษตร (1986) เป็นติดตราง (1980) เป็นติดตราง (1980) เป็นเปลี่ยงเป็นติดตราง (1980) เป็นติดตราง (1980) เป็นติดต

-

VERTICAL VS. HORIZONTAL TUBING BOMB T=400°C N2

Yield insol % 81.91962709 83.89887088 71.66757652 71.57052794 84.72405127 83.7872179 -20.96032475 -7.149547529 -11.00195084 -183.5467397 -3.045470571 4.437454357 Yield sol % 0.66483426 0.66251409 2.24980875 0.63475115 0.66470244 0.67954625 0.6638851 THF ext 2.3482116 2.35596795 2.4085803 2.3564352 2.353071 Wt.daf **THF-insol** 1.9895 1.9742 1.6883 1.6102 1.9731 1.974 THF-sol 5.198 1.362 5.605 5.495 5.427 5.79 PSOC 1501 2.5216 2.4075 2.5211 2.5774 2.5128 2.518 5.0215 5.0206 W1.MC 5.0233 5.0171 5.014 5.0211 1,4-Diiso 1,4-Diiso Eicosane Elcosane Pyrene Pyrene S 꿈 \$ ‡ 6V HЭ

T=400°C H2

		W1.MC	PSOC 1501	THF-sol	THF-insol	Wt.daf	THF ext	Yield sol %	Yield insol %
1	Eicosane	5.0068	2.517	5.669	1.9322	2.3521365	0.68733355	-1.068541324	82.14659311
Ĕ	Eicosane	5.0057	2.5285	5.83	1.8633	2.36288325	0.69047393	5.663676771	78.8570489
Se	1,4-Diiso	5.0203	2.5182	5.5272	1.9756	2.3532579	0.68766124	-7.661318835	83.95169947
ЭН	1,4-Diiso	5.0119	2.5355	5.572	1.9516	2.36942475	0.69238547	-5.583020341	82.36598356
۶۷	Pyrene	4.993	2.5577	5.881	1.5445	2.39017065	0.69844776	7.930489647	64.61881707
SH	Pyrene	5.0154	2.5199	5.788	1.4819	2.35484655	0.68812547	3.587262518	62.92973048

APPENDIX 2

лывыя

This Appendix contains the actual data collected in thermal reactions of the resids the reactions of the coals with the two petroleum resids.

COAL + RESID

	T = 350	0°C p=500p	SI NZ						•
Exp#	PSOC	Wt. coal	Wt. FHC-571	THF-sol	THF-insol	daf	THFext	Yield sol%	Yield insol%
D59	1488	2.5053	4.974	6.261	2.0206	2.32116045	0.275420404	43.58076997	87.05128506
D60	1498	2.5102	5.251	6.426	2.1792	2.2817718	0.334350509	36.84196163	95.50473014
D61	1501	2.5216	5.119	5.327	2.185	2.3564352	0.367220561	-6.756840207	92.72480737
D62	1504	2.5063	5.052	6.192	2.1442	2.29476828	0.381249314	33.06437049	93.43862815
D63	1448	2.5026	4.954	6.165	2.0852	2.20178748	0.450749933	34.52876692	94.70487133
	T=400	0°C p=500p;	si N2				ì		
Exp #	PSOC	Wt. coal	Wt. FHC-571	THF-sol	THF-insol	daf	THFext	Yield sol%	Yield insol%
D64	1488	2.5141	5.029	5.853	1.7658	2.32931365	0.318582464	21.69813138	75.80773847
D65	1498	2.512	5.125	6.458	1.8532	2.283408	0.422678481	39.86679205	81.15938982
D66	1501	2.5052	5.002	6.069	1.7491	2.3411094	0.617246884	19.21111058	74.71244189
D67	1504	2.513	4.985	5.784	1.6991	2.3009028	0.617877535	7.871799921	73.8449273
D68	1448	2.5134	5.024	6.34	1.657	2.21128932	0.66178014	29.58544839	74.93365907
	T=45()°C p=500p;	si N2						
Exp #	PSOC	Wt. coal	Wt. FHC-571	THF-sol	THF-insol	daf	THFext	Yield sol%	Yield insol%
D69	1488	2.5096	4.841	2.935	2.5626	2.3251444	0.197883786	-90.48400546	116.2125098
D70	1498	2.5085	4.923	2.678	2.6481	2.2802265	0.261888186	-109.9403145	116.1331999
D71	1501	2.5066	5.135	2.906	2.6868	2.3424177	0.357577113	-110.4233934	114.7020021
D72	1504	2.5103	5.06	3.742	2.6268	2.29843068	0.521231881	-80.02120303	114.2866749
D73	1448	2.5086	5.053	3.51	2.7158	2.20706628	0.715987971	-102.3525207	123.0502239
	T=354	0°C p=500p;	si N2	•					
Exp #	PSOC	Wt. coal	WL FHC-470	THF-sol	THF-insol	daf	THFext	Yield sol%	Yield insol%
D77	1488	2.5115	4.926	5.687	2.0922	2.320626	0.275356988	20.92724172	90.15670772
D78	1498	2.4988	4.898	6.01	2.2184	2.28415308	0.334699441	34.030143	97.12133654
D79	1501	2.4989	4.997	3.309	2.0964	2.33597172	0.392593522	-89.06758178	89.74423714
D80	1504	2.5072	4.73	5.841	2.1546	2.29559232	0.381386219	31.78324718	93.85812896
D81	1448	2.4992	5.009	5.593	2.0517	2.19879616	0.450203514	6.084988171	93.31015022

1488	C p=500ps	I N2		TI L	a T	TI 17.00		
	2.5036	4.988	6.043	1.7392	0.81 2.3133264	0.316395873	31.928228	75.18178152
	2.5041	5.186	5.954	1.883	2.28899781	0.423713203	15.04094043	82.26307565
	2.5067	4.897	5.756	1.7458	2.34326316	0.617814736	10.29270927	74.5029423
**	2.507	4.924	6.007	1.6477	2.2954092	0.6164023	20.32743006	71.78240812
	2.5147	5.25	2.8961	1.6906	2.21243306	0.662122431	-136.3215224	76.41361136
T=450°C	C p=500ps	i N2						
C C	Wt. coal	W1. FHC-470	THF-sol	THF-insol	daf	THFext	Yield sol%	Yield insol%
ŝ	2.5116	5.105	2.682	2.8961	2.3207184	0.197507107	-112.9179269	124.7932537
8	2.4954	5.025	2.886	2.871	2.28104514	0.261962209	-108.3705958	125.8633575
11	2.5111	4.992	2.8479	2.71	2.34737628	0.358334055	-106.6055782	115.448044
)4	2.5072	4.967	2.97	2.7266	2.29559232	0.520588205	-109.6705274	118.7754453
1 8	2.5066	5.118	3.291	2.8253	2.20530668	0.715417145	-115.2863304	128.1137007
T=350°C) p=500ps	i H2						
00	Wt. coal	WI. FH:C-571	THF-sol	THF-insol	daf	THFext	Yield sol%	Yield insol%
88	2.5072	5.943	7.1	1.9873	2.269016	0.274111541	38.9106317	87.58422153
8	2.5129	5.398	6.43	2.1482	2.25030195	0.285101803	33.19102119	95.46274446
1	2.503	5.209	5.962	2.1129	2.3398044	0.328007398	18.16359528	90.30242015
7	2.508	5.171	6.794	2.0773	2.2933152	0.358370106	55.14418142	90.58065808
18	2.5093	4.225	5.108	2.1356	2.19664122	0.469650635	18.81733625	97.22115658
J∘UU∘L	n-500ne	H I						
	Wt. coal	W1. FHC-571	THF-sol	THF-insol	daf	THFext	Yield sol%	Yield insol%
88	2.5148	3.572	4.356	1.6561	2.275894	0.410462991	12.01888179	72.76700936
ŝ	2.509	5.409	6.167	1.7498	2.2468095	0.389543675	16.39909057	77.87932177
01	2.51	3.325	4.084	1.6961	2.346348	0.6407325	5.040492731	72.28680486
04	2.5072	5.417	8.402	1.6448	2.29258368	0.568294584	105.4140548	71.7443823
81	2.5039	5.62	7.925	1.6708	2.19191406	0.69220383	73.57935238	76.22561625

=

16

-

י האלולולוס אי היו אלא היה אלל אי היא איז אלול איז איז אלול אלוס איז אלול אלולוס איז אל אלוס או אלול איז איז אי

ki i

alt a n a

2

-

. .

dikara nati t

Yield insol%	126.0755188	117.2080658	90.1009898	122.4081228	112.5743593	 	Yield insol%		90.12417516	83.80349994	92.44661649	95.92120288		Yield insol%	71.10041004	79.15361705	73.25072785	73.98413549	72.24831421		Yield insol%	121.1748796	126.3323571	108.9486015	118.8671861	119.9194745	
Yield sol%	-121.1320003	-91.91707459	-55.55274265	-69.82574549	-124.4929351		Yield sol%		41.21443925	18.75397574	29.43099538	32.64497226		Yield sol%	9.53202986	12.41838062	-7.053211455	-3.969663286	-2438651.922		Yield sol%	-110.6411353	-111.0764246	-95.41922775	-121.662433	-106.7763372	
THFext	0.271535712	0.303089766	0.365367336	0.41621498	0.536315371		THFext		0.285865695	0.327231561	0.359301099	0.469752124		THFext	0.420667691	0.398539343	0.644454136	0.570332565	0.695254383		THFext	0.278944659	0.310775061	0.368890782	0.418724887	0.535170496	
daf	2.28307607	2.25103962	2.33537945	2.2874299	2.2076075		daf		2.25633133	2.33427005	2.2992729	2.1971159		daf	2.332476	2.2986947	2.35997655	2.30076352	2.20157386		daf	2.3453706	2.3081181	2.35790085	2.30122382	2.20289491	ι,
THF-insol	2.8784	2.6384	2.1042	2.8	2.4852		THF-insol		2.0335	1.9562	2.1256	2.1075		THF-insol	1.6584	1.8195	1.7287	1.7022	1.5906		THF-insol	2.842	2.9159	2.5689	2.7354	2.6417	
THF-sol	2.523	3.514	4.62	3.521	3.31		THF-sol		7.242	6.361	6.444	7.05		THF-sol	5.599	6.042	5.532	6.256	6.972		THF-sol	3.057	2.785	3.058	4.078	3.801	
ii H2 W1.FHC-571	5.017	5.28	5.552	4.702	5.522	i H2	WI.FHC-470		6.0262	5.596	5.408	5.863	i H2	W1.FHC-470	4.956	5.358	5.054	5.777	53695	i H2	W1.FHC-470	5.373	5.038	4.939	6.459	5.618	
°C p=500ps Wt. coal	2.5219	2.5098	2.5261	2.5109	2.525	°C p=500ps	Wt. coal		2.5157	2.5249	2.5239	2.513	0°C n=500ns	Wt. coal	2.504	2.5013	2.5013	2.4992	2.4998	0°C n=500ns	Wi chal	2.5044	2.5061	2.4991	2.4997	2.5013	
T=450 PSOC	1488	1498	1501	1504	1448	T=35(PSOC	1488	1498	1501	1504	1448	T=400	PSOC	1488	1498	1501	1504	1448	T-45	DOSE	1488	1498	1501	1504	1448	
Exp #	J 80	62C	J78	J77	J76		Exp #		J84	J83	J82	J81		Exn #	.185	186	J87	J88	680		Exn #	195 195	96F	66	192	165	

ու ներեն աներութներությունը աներությունը աներությունը աներությունը աներությունը աներությունը ուներությունը ուներությունը ուներությունը ուներությունը ուներությունը ուներությունը աներությունը ուներությունը աներությունը ուներությունը ուներությունը ուներությունը ուներությունը ուներությունը ուներությունը ուներությունը ուներությունը աներությունը ուներությունը աներությունը ուներությունը ուներությունը ուներությունը ա

<u>u U aj U</u>

	R	ESIDS BLANK	S	
	FHC	C-571 p=500psi	N2	
Exp #	T, °C	Wt. resid	THF-sol	THF-insol
D41	350	5.387	5.85	0.003
D42	400	4.066	3.026	0.004
D43	450	5.223	4.142	0.1947
	FH	C-470 p=500psi	N2	
Exp #	T, ℃	Wt. resid	THF-sol	THF-insol
D74	350	4.999	5.352	0.0033
D75	400	5.015	5.037	0.0006
D76	450	60271	3.435	1.0667
	FH	C-571 p=500psi	H2	
Exp #	T, °C	Wt. resid	THF-sol	THF-insol
D92	350	4.78	5.338	0.0047
D93	400	4.906	5.526	0.0057
D94	450	5.276	4.634	0.139
	EH	C-470 n=500nsi	H2	
Exp #	т. °С	Wt. resid	THF-sol	THF-insol
<u></u>	400	6.291	6.335	0.0095
.194	450	4.782	2.853	0.6613

a confine co

2016-112 0.091 i ann i i

111.990

all tests in the

All officers and a state of the state of the

9 6 **7 8 6** 6 9 1 911.11 1191 18031090 1918

ABP

APPENDIX 3.

This appendix contains ¹³C NMR spectra of a number of solid residues.

