DOE/ER/60533--3

Progress Report on Grant DE-FG02-87ER60533 entitled, "Studies of Human Mutation Rates" for period November, 1989-October, 1990

DE91 002373

- To: Mr. Dana R. Dixon, Acquisition and Assistance Unit, Dept. of Energy, Chicago Operations Office, 9800 S. Cass Avenue, Argonne, IL 60439
- From: Prof. James V. Neel, Principal Investigator, Dept. of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-0618

Date: 13 September 1990

November, 1989, marked the beginning of a new three-year cycle of DoE grant support, in connection with which the program underwent a major reorganization. The three objectives of the present program are:

1) To isolate by the technique of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), proteins of special interest because of the relative mutability of the corresponding gene, establish the identity of the protein, and, for selected proteins, move to a characterization of the corresponding gene;

2) To develop a more efficient approach, based on 2-D PAGE, for the detection of variants in DNA, with special reference to the identification of mutations in the parents of the individual whose DNA is being examined; and,

3) To continue an effective interface with the genetic studies on the children of atomic bomb survivors in Japan, with reference to both the planning and implementation of new studies at the molecular level.

We will present the progress under four headings:

<u>Project I.</u> Isolation of Proteins of Special Genetic Interest from Two-Dimensional Polyacrylamide Gel Electrophoresis (Strahler).

This section of the progress report outlines our efforts to isolate polypeptides of interest identified by two-dimensional polyacrylamide gel electrophoresis in sufficient quantities for studies of their amino acid sequences. The basic approach to obtaining purified protein utilizes the high resolution of 2-D PAGE as the final step in the purification. Two fundamental problems have been addressed in the progress presented below. One is the ability to recover protein from 2-D gels in amounts sufficient to yield reliable sequence information for a sufficient number of amino acid residues to unambiguously identify the polypeptide in a sequence database or, if the protein represents a novel sequence, to obtain sufficient material that sequence information enabling the construction of an olignonucleotide probe having low redundance for cloning purposes can be constructed. Since the majority

DISTRIBUTION OF THIS DODUMENT IS UNLIMITED

MASTER

كتيفين وإجراح المتراج فالمتاب والمتابية

 $n \rightarrow 1$

of the proteins of interest, from the point of view of mutation and genetic variability, are known only from their detection on 2-D gels, and represent moderate to low abundance proteins in human lymphoid cells, enrichment protocols which allow unambiguous identification of the target protein(s) in the 2-D gel "assay" are essential. A second obstacle to sequencing is that of N-terminal blockage, whether artifactually produced during purification or naturally occurring in vivo. The majority of soluble proteins in mammalian cells are believed to be N-terminally blocked, most frequently as a result of Nacetylation. Thus, a strategy has been implemented which will generate internal amino acid sequences. Several of the steps in the production of preparative 2-D gels have been investigated in some detail and are presented below.

1) <u>Increased loading of protein onto 2-D gels</u>: As a first approach to obtaining the material for sequencing polypeptides of interest, as determined from our prior experiences with chemical mutagenesis and studies of genetic variation, we examined our ability to purify polypeptides on 2-D gels in sufficient quantities to obtain direct N-terminal sequence information and to determine the amount of material necessary with existing "state of the art" microsequencing capability. Two approaches to the generation of preparative 2-D gels were followed; these differed in the methodology used for the first dimension isoelectric focusing separation.

Conventional carrier ampholyte (CA)-based isoelectric focusing Α. was used (250 μ g total protein per gel), essentially as we have done in prior sequencing efforts. Protein spots visualized with Coomassie Blue at this relatively high "load" retained overall resolution comparable to that obtained for "analytical" gels. About 100 spots are visualized in preparations of lymphocytoid cells, of which <50 are of sufficient intensity to warrant attempts at isolation for sequencing. Increasing the amount of protein per gel (400-650 μ g) results in drastic deterioration of the first dimension separation. Some pI regions of the gel, however, do maintain the required resolution. We have obtained material for sequencing using a protein load of 250 μ g soluble cytosolic protein per gel. Proteins were electroblotted onto Glassybond membranes (siliconized glass fiber sheet, Biometra) using а semi-dry electroblotting apparatus.

During the past year, prior to the arrival on campus of Dr. Andrews, the protein sequencing aspects of this project have been contracted with the Max Planck Institute of Biochemistry in Martinsried, West Germany. Employing the above-referenced methodology, we have made two different sets of polypeptides available to them. In a first exercise, 28 major polypeptides were isolated for direct Noterminal sequence analysis, 8 of which represented the products of loci which had mutated in prior ENU mutagenesis studies or which were loci at which spontaneous genetic variation had been observed. Sequence information was obtained for 7 of the 28 polypeptides. Five of them were known proteins while 2 represented novel sequences. Twenty-one, or 75%, of the polypeptides yielded no sequence information, presumably due to Nterminal blockage. In another group of polypeptides isolated from CAbased 2-D gels of soluble nuclear polypeptides, 18 were selected for

Of these, 8 were the products of loci at which protein analysis. variants had been recognized (either ENU induced or spontaneous). Eleven polypeptides yielded sequence information. Eight of the 11 were known proteins, and 3 yielded novel sequences. Three of the 11 were in the special interest category, i.e., 3 had exhibited genetic variation in population surveys, and, of these 3, 2 had exhibited induced variation in ENU studies (sequence information was obtained from the "normal" allele in all cases), and all 3 were subsequently found to be known proteins. Two polypeptides were common to both the cytosolic and Thus, of the 46 nuclear sets and both yielded sequence information. different polypeptides analyzed by direct N-terminal sequence analysis, and which were in the moderate to high abundance class of polypeptides, These results are sequence information was obtained for 16 of them. summarized in Appendix A, which illustrates the form in which the data on these proteins is stored in a computer. (We will be happy co supply the code to anyone interested.)

As an alternative approach, we have used immobilized pH gradient Β. gels for polypeptide separation in the isoelectric focusing axis. About 1-1.2 mg. total protein per gel can be loaded on such gradient gels About 200 proteins are resulting in 4-5-fold more protein per gel. visualized with Coomassie Blue, increasing substantially the number of "sequencable" proteins from the same number of gels as contrasted with carrier ampholyte-based separations. While the vast majority of spots identified on CA-based 2-D gels can be identified also on IPG-based gels, occasionally a spot of interest is not readily identifiable on the IPG-based pattern. We have utilized known structural variants of 5 different proteins (identified on CA-based 2-D gels) to verify the location of these proteins on IPG-based gels. To assess the number of gels required to obtain sequence information, IPG-based 2-D gels were prepared from whole cell extracts of a lymphoid cell line (Jurkat). Polypeptides were isolated by electroblotting onto PVDF membranes (Immobilon P), using a semi-dry blotting apparatus. Fourteen polypeptide spots were excised from 6 to 10 blots and used in a collaborative effort with Dr. Jack Watson, Director of the Mass Spectrophotometry Facility at Michigan State University. Twenty or more blots derived from CA-based 2-D gels would have been needed to harvest the amount of protein resulting in these sequencing results. The increased protein capacity and maintenance of high resolution separations of IPG-based 2-D preparative gels significantly reduces the number of gels needed for a given separation.

Electroblotting onto "Glassybond" and "Immobilon P" membranes: Comparison of "sequencability" of selected polypeptide spots electroblotted onto either Glassybond (a siliconized glass fiber sheet) or Immobilon P (a polyvinylidene difluoride) membranes have given comparable results when equivalent amounts of polypeptide were studied. Four polypeptides yielded sequence information useful in this comparison. For high abundance proteins such as cyclin [also termed proliferating cell nuclear antigen (PCNA)], triose phosphate isomerase, and HuCha60 (human homologue to the chaperonin family), as few as 2 electroblots from either type of membrane provided the protein from which sequence information could be obtained, whereas 6 blots (IPG-based 2-D gels blotted onto PVDF) or 20 blots (CA-based gels blotted onto Glassybond) were required for the moderately abundant protein glutathione S-transferase. Conversely several polypeptides which did not yield any sequence data from FVDF blots also did not result in sequence information from Glassybond.

Rotophor enrichment: The value of a first step partial purification of a very low abundance protein from a complex protein mixture, utilizing liquid phase isoelectric focusing on a large scale, has been explored. The target protein in this study was a lcw abundance 28 kD nuclear protein (np28) which is induced in the Jurkat T cell line following activation with phorbol esters and calcium ionophor or is constitutitively expressed in tat III transfected Jurkat cells. The protein did not yield a sequence by N-terminal sequencing. To obtain sufficient material for generation of internal peptide sequences, a nuclear extract derived from 4.5×10^9 cells was fractionated under denaturing conditions (urea, non-ionic detergent and dithioerithritol) similar to the conditions of the first dimension of 2-D gel separations, using the Rotophor apparatus (BioRad) operated at 12 w constant power for 6 h. The preparation was fractionated according to the manufacturer's instructions into 20 aliquots. Np28 was enriched about five-fold in two acidic Rotophor fractions, which were then used to purify the protein on preparative 2-D gels. Gels were stained with Coomassie Blue, and np28 excised from 40 gels. Following extensive washing and drying of the gel pieces, protein was digested in situ with trypsin (~1:10; enzyme:protein) and the peptides recovered by sequential elution with 75% trichloroacetic acid (TFA) in water followed by 50% TFA in acetonitrile. Tryptic peptides were separated by reverse phase HPLC (Vydac 204 TP column). Reliable sequence information was obtained for 2 of the isolated peptides, allowing identification of homology with a known highly conserved nuclear phosphoprotein B23.

Project II. Preparation of Partial Amino Acid Sequences of the Proteins Isolated from Gels (Andrews).

Andrews did not assume his position at the University of Michigan until May 1, 1990, i.e., six months into this grant year. In the interim, the protein-sequencing needs of the project were met by a contractual arrangement with the Max Planck Institute for Biochemistry in Martinsried, West Germany. Strahler played a key role in expediting this contract, and in his (preceding) section has already summarized those results.

The effort in protein sequencing here at Michigan has since May 1, 1990, proceeded along four lines.

1) The first area of concern has been to establish a microbore HPLC system for the isolation of proteolytic fragments of proteins in 50 to 250 pmol quantities, a facility previously lacking. This effort has involved the modification of an ABI model 130A to allow large volumes of dilute protein solutions to be injected onto 1 mm diameter, reversedphase columns. This configuration was first used to obtain the sequence of several proteolytic fragments from two DNA-binding proteins of previously unknown sequence at approximately 60 pmol quantity. These first samples were in solution so methods had to be developed fc A.

isolation of fragments from proteins adsorbed to PVDF membranes. Previously published methods for this purpose were found to have significant drawbacks. The technique now in use in this facility involves chemical reduction and cleavage of the protein on the PVDF membrane followed by elution and proteolysis. This technique has been applied to the protein anticipated to be chaperonin, transferred to PVDF membrane from a two-dimensional gel of a whole cell extract. The HPLC profile of the tryptic digest contained several well-resolved peaks. These have been submitted for sequence analysis to verify that the protein is human chaperonin. The first tier of "candidate" proteins (i.e., proteins of special interest) is currently undergoing similar treatment.

The second area of progress has been the acquisition and operation of an ABI model 473 pulsed-liquid phase protein sequencer. The sequencer has since been upgraded by addition of a specialized reaction cartridge designed for sequencing proteins directly from PVDF membranes. A modified sequencing protocol in conjunction with this cartridge has significantly enhanced sequencing yields of proteins adsorbed directly to PVDF. This development will be particularly useful for obtaining amino-terminal sequence from proteins resolved using 2-D gels in this stud.

The third area has been the hiring and training of a technical support person for working with picomole quantities of proteins. Progress in this area has been very successful as evidenced by the results cited above.

The fourth area has been the re-evaluation of candidate proteins on the basis of their degrees of probable biological significance and of feasibility. Several particularly interesting proteins have been selected and sufficient quantities collected for proteolytic digestion and sequence analysis.

<u>Project III, Preparation of DNA Probes and Development of an Improved</u> Method to Identify Mutations in the Human Genome (Kurachi).

In the past one year, this laboratory has focused its DoEsponsored efforts on two projects. One is to develop a better method to detect gene mutations efficiently. The other is to identify and clone new genes of particular interest in terms of our past mutation rate studies.

A) Development of an Improved Method to Detect New Mutations.

1

Applications of both the polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) in detecting mutation have been well described (Takahashi *et al*, Mutation Res. 1990; 234:61; Trystman *et al*, Genomics 1990; 6:293). The approach which utilizes PCR and DGGE still appears to be the most practical and useful one. However, it must be modified and optimized to best serve our objective of efficiently detecting single nucleotide mutations.

In our initial approach, we have used a combination of multiplex PCR and 2-D DNA gel electrophoresis to analyze the factor IX gene as a Multiplex PCR has already been successfully used to provide model. analytic quantities of some genes, such as the Duchenne muscular dystrophy gene. In our experiments with the factor IX gene, all eight exons could be amplified in one PCR reaction. However, some exons, including exon 7 and 8, presented some problems. These included readthrough amplification by the 5' most and 3' most primers, generating some of the background amplification bands. This may be avoided if we include a significant segment of intron sequence as well as the flanking At the present, however, we are carrying out two to three sequence. separate multimeric PCRs to avoid this problem and to amplify all the exons and the 5' end flanking sequence containing the regulatory region. The optimal conditions for amplifying all regions at about the same yield were worked out. The PCR products of the normal gene (reference DNA) as well as of the abnormal genes isolated from hemophilia B patients were mixed at equimolar amounts and heat denatured prior to loading onto the non-denaturing polyacrylamide gel (6.5%). All the PCR The gel amplified fragments were separated in the electrophoresis. strips containing the separated DNAs were cut out and subjected to twodimensional DGGE (6.5% polyacrylamide with a gradient of 0% to 80% PCR-amplified DNA fragments were well separated in the formamide). denaturing gradient gel, forming easily identifiable DNA spots. This method efficiently located a mutation to exon 8 in a hemophilia B patient. If the DNA to be analyzed is known to be heterozygous (e.g., in the normal but carrier mother of hemophilia B patients), then no mixing of the normal reference DNA and the patient's DNA is necessary. This approach is significantly more efficient in detecting unknown mutations in a specific gene than a combination of separate PCRs and single lane DGGE analysis. We are also extending this approach so that we can directly analyze restriction fragments of the whole genomic DNA instead of PCR products. If this latter approach is successful, we can substantially speed up the initial screening of mutations in both wellcharacterized and partially-characterized genes.

B) Cloning and Characterization of New Genes.

In a separate line of experiments, we are also carrying out a series of protein 2-D gel electrophoresis analyses to detect capillary endothelial cell genes involved in the process of angiogenesis. So far, we have detected several protein spots in the 2-D gel analysis which apparently change their phosphorylation status upon exposure to known angiogenic factors such as angiogenin, FGF, and others. We anticipate that this series of experiments may also provide us with a number of very interesting genes to be employed in mutation rate studies.

IV. The Japanese Interface (Neel).

A major objective the past several years has been an analysis of all the genetic data accumulated in Japan over the past 42 years in the light of the recently available DS86 radiation exposure schedule, and the estimation of the most probable genetic doubling dose of radiation suggested by these data. This analysis and estimate, a major paper, appeared in June, 1990, and has attracted a great deal of attention. We suggest that the doubling dose to gonial cells of acute radiation of the Hiroshima-Nagasaki type is in the neighborhood of 2.0 Sv, and that the doubling dose for chronic radiation should be in the neighborhood of 4.0 Sv. This latter is about four times higher than the usual extrapolation from the mouse experimental data to the human situation, but in an extensive review of the human and mouse data, undertaken in collaboration with S. E. Lewis, completed this fiscal year and now in press in the Annual Review of Genetics, we suggest that when <u>all</u> the murine data are considered in perspective, the doubling dose following the chronic irradiation of mice is also in the neighborhood of 4.0 Sv. These two papers, then, suggest a major revision in thinking concerning the genetic risks of radiation for humans.

During the past year, in collaboration with W. J. Schull of the University of Texas, plans have matured to republish an anthology of the 13 most important papers concerning the genetic effects of the atomic bomb experience, together with a (new) introductory chapter providing historical perspective and a concluding chapter discussing possible future studies. This material has been reviewed for quality through the Board on Radiation Effects Research of the National Research Council, and, as of this writing, a decision has just been reached that the material will be published as a book by the National Academy of Sciences Press.

Unexpected personal developments prevented Neel from making his annual trip to Japan during the course of this fiscal year, but two trips are now projected within the upcoming fiscal year. One of these, in November, 1990, in addition to the usual consulting concerning the ongoing genetics program, will include participation in a workshop concerned with the future research projects of the Radiation Effects Research Foundation. The other, projected for May, 1991, will be for participation in a workshop focussing on the design of future genetic studies at the DNA level with respect to the children of survivors and of controls.

Finally, Neel has participated during this year in two symposia concerning the biological effects of radiation, namely, a Brookhaven National Laboratory Symposium on "DNA Damage and Repair in Human Tissues" and a UCLA Symposium on "Ionizing Radiation Damage to DNA: Molecular Approaches." In both instances, he delivered papers which will be published in the proceedings of these symposia.

The publication of these various papers will essentially mark the end of the morphological-cytogenetic-biochemical era in the study of radiation genetics. Any major new round of studies will almost certainly concentrate on DNA. The issues involved in developing an appropriate DNA system are extremely complex. In this connection, Neel has published this past year a paper acknowledging DoE support, in which the hypothesis is developed that the genes responsible for the proteins visualized on two-dimensional polyacrylamide gel electrophoresis may as a class be less mutable than the genes responsible for the erythrocyte enzymes and serum transport proteins which have been the basis for most of the recent studies on human mutation rates. Furthermore, in collaboration with Ranajit Chakraborty, Neel has within the past year published an analysis suggesting that there may be as much as a 20-fold difference in the mutation rates of the genes responsible for erythrocyte enzymes and serum proteins. These two papers illustrate the great care that must be exercised in selecting the DNA segments to be employed in any study of DNA mutation rates.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Appendix A. Storage format for data on proteins being analyzed in the course of this Project.

.

2D Sequencing DoE

		<u>د</u>	2	u	•			
	8	> 	•					
STRUCTURAL STUDIES OF 2D POLYPEPTIDES - DOE	YPEPTIDES - DoE							
			UC C	28	34	35	58	59
	2	22	97		2000	3894	389v	3894
Spute.	3894	389y	389y	3895		1000	101	
Master gel image:	loon	3100	800	np5 allele of spot29	np10	np11	r25	L24
Trivial name(s):	6du	cidi			human	human	human	human
Species:	human			TKG	TKS	TK6	TK6	TKG
Source (tissue/cell line):	9Xi	IK6	2					
Features:				variable	monomorphic	monomorphic	monomorphic	monomorphic
Genetic variation:	monomorphic	шопотогринс		mutation (datation)		mutation	ou	mutation
Induced mutations:	ê	6	P	15	(E4-10D45)	(E4-10D45) A21, E4-10E88)		0889,E5-50E91)
Variant gel# and/or clone:			1 6			69	56	55
Normal WW	06	67	70	25.	V	487	864	167
Di=f(x);[x, pixels]	172	341	130	CC7				
post-trans mod				58	68	69		55
Variant MW	ł	-	1	26.90	4	504		7635812
pi=f(x);[x, pixeis]		1						
post-trans nind								
Sequencing Results				hirkat	Jurkat	Jurkat	Jurkat	Jurka
	Jurkat	Jurkat	JULKER				cyto	cyto
endchment:	ec	9u				đu	du	dш
	du	đu					sgf	3gf
	sgf	sgf	sgf	- B s			N-terminal	N-terminal
semple type.	N-terminal	N-terminal	N-terminal	N-terminal	N-termina	III. IAI-N		
2 3 N-term/internal	19/161	17/17	9/9r	15/15	0	5	2	
residues sequenced:		S/ 101	EPAWFIKED	ADAPEEEDHMLMLRK				
2.5 sequence	(V)r(G)EVKH(P)XGV(S)LINA(F)F	and a sector of the sector of		genbank				
26 db search	genbank/mipsx	+CODC **		A29787/A26632				
27 identity/homology (ref)	Meu	306374		yes	10			
080	2		of yes	anv lencth				
		any lengu	4.10		0		-	
_								

Page 1

'n

2D Sequencing - DoE

-				389y 389y	L16 L15	human				ŭou	mutation mutation	(E5-50820) 12hh (E5-5088)	37 37	669 559		37 37	591 544				Jurkat Jurkat	cyto cyto	dm dm	sgf sgf	N-terminal N-terminal										
R			159	389y	111			QV-		monomorphic monomorphic	nu		38	818							Jurkat	cyto	đE	saf			9/91		DIE(D)(I))EEG	IDLE(I))(L)EEG enbank/mipsx	IDLE(I))(L)EEG genbank/mipsx NEW	IDLE(1))(L)EEG enbank/mipsx NEW no	DLE/D/L/EEG enbank/mipsx NEW no	DLE/D/L/EEG anbank/mipsx NEW no	DLE/D/L/EEG anbank/mipsx NEW no
a			155	389y	18			IKE		monomorphic	1		39					-			Jurkat					N-term	too low			à	ō		ă	ŏ	
٩			136	389v			numan.	TK6		monomorphic	1		42				-				- Inrkat					I N-terminal	0								
0			96	2804	leon	۲ <u>.</u> ۲	human	TK6		monomorphic	mutation		10,000-01-01-01-01-01-01-01-01-01-01-01-01-		80°		50/48	332/289			1.1401	2			sgt	N-terminal	0								
z			10		3839	hqn	human	TK6				2			238		I								sgf	N-terminal									
2	E		10	60	789Y	HuCha60	human	TKG			Variabie	mutation		60			58	454					wc/IPG	Ë	pvdf(10)	internal		Runned							
				8	389y	HuCha 60	umant	TKA	OV.		variable	mutation		58	421		58	454				Jurkat	cyto	nsm	pvd	lacimor N		20/201	NKINNKEGADARALMLOGVDL		genbank/mipsx	genbank/mipsx /E33060:E34671:J35030	genbank/n /E33060;E34671;J3	genbank/m /E33060.E34671.J3: any le	
	×			85	389v	HICHA 60		numan	TKG		variable	mutation		58	421		03		404			Jurkat	cyto			in d	N-terminal	15/15r	AKDV WKDVKFGADARALML WKDVKFGADARALMLOGVDL		nenbank/mipsx	genbank/mipsx	genbank/mipsx 060;E34671;J35030 ves	genbank/mipsx 060;E34671;J35030 yes anv lanoth	genbank/mlpsx 060;E34671;J35030 yes any length 0
	7			85	3804	loon	HUCHB 60	human	TK6		variable	mutation	CC01 (E5-50044)	5.8	167			58	454			lurkat			E	202	N-terminal	4/41	ADV		verbeet (miner	genbank/mipsx	genbank/mipsx genbank/mipsx 33060;E34671,J35030 060;E34671,J35030 vss	genbank/mlpsx 33060;E34671,J35030 yes	genbank/mlpsx 33060:E34671:J35030 985 any length
	Η	-	2	•	+	- -	2	9	~	. 60	0			_	v (2	*	15	16	17		•			~	22	23	4				_	_		

Page 2

2D Sequencing - DoE

	176 176 389y np3 human TK6 monomorphic no	177 177 177 177 389y 389y 389y 389y Aman human human human fill fill nonomorphic no 33 33	178 389y 130	178	
166 174 156 174 121 cyclin L21 cyclin human TK6 TK6 TK6 monomorphic monomorphic monomorphic monomorphic monomorphic monomorphic monomorphic monomorphic no no 35 36k0 35 36k0 36k0 212 Jurkat Jurkat Jurkat Jurkat MEAN Mcentinal Mcentinal N-terminal Mcentinal Mcentinal Mcentinal Mcentinal Mcentinal Mcentinal				178	
166 174 389y 389y 389y 389y 121 cyclin human TK6 monomorphic monomorphic monomorphic monomorphic monomorphic mo no no 35 36kD 35 36kD 35 36kD 10 no no no no no 35 36kD 35 36kD 36kD 10 no no no no 35 36kD 35 36kD 10 Ntat 10 Ntat 10 Ntat 10 Ntat 110 Nterminat 110 Nterminat 110 Nterminat 110 Nterminat 110 Nterminat 1110 Nterminat <t< td=""><td></td><td></td><td>C</td><td>178</td><td></td></t<>			C	178	
166 174 389y 389y L21 cyclin L21 cyclin human TK6 monomorphic monomorphic monomorphic monomorphic monomorphic monomorphic no no 35 36kD 35 36kD 35 36kD 10 no no no no 35 35 36kD 36kD 212 36kD 212 10 no 11 10 12 212 35 36kD 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 16 10 17 10 16 10 <t< td=""><td></td><td></td><td>e</td><td></td><td>178</td></t<>			e		178
389y 389y 389y L21 cyclin L21 cyclin human TK6 TK6 monomorphic monomorphic monomorphic monomorphic monomorphic monomorphic no no 35 36kD 35 36kD 36kD 212 466 212 Lurkat Jurkat Jurkat Jurkat Nitat Nitat Nitat Jurkat Nitat Jurkat Nitat Jurkat Nitat Jurkat Nitat Jurkat Ni				389y	389y
L21 cyclin human human TK6 TK6 monomorphic nonomorphic no no no no no 35 35 36KD 36KD 212 466 212 212 466 212 212 466 0 10 MEAD				L30	L30
human human TK6 TK6 TK6 TK6 monomorphic monomorphic monomorphic monomorphic a 35 36kD 35 36kD 212 466 212 - - Jurkat Jurkat Jurkat Jurkat N-terminal N-terminal M-terminal M-terminal M-terminal M-terminal MeterMap MeterMap			human	human	human
TKG TKG TKG monomorphic monomorphic monomorphic monomorphic monomorphic no contract set and the set an			TK6	TKG	TK6
monomorphic monomorphic no no no 35 36KD 35 36KD 212 466 212 212 					
monomorphic monomorphic no 35 36KD 35 36KD 212 466 212 212 - - - - - - - - - - - - -			monomorphic	monomorphic	monomorphic
no no no 35 36KD 466 212 212 212 212 212 212 212 212 212 212	01		1	mutation	mutation
35 36kD 35 36kD 1 466 212 1 212 212 1 Jurkat Jurkat 1 Jurkat Ne 1 Nato ME 1 N-terminal Nerothilpsz 1 N-terminal ME 1 N-terminal ME 1 N-terminal ME	-		(E5		
35 36kD 1 466 212 1 - - 1 - - 1 Jurkat Jurkat 1 Urkat N 1 N-terminal MFARINIS 1 N-terminal 0 1 N-terminal MFARIN	1 00			33	33
466 212 	00		2	232	232
	161				
			33	33	33
Jurkat Jurkat Jurkat Jurkat Cyto NE mp mp mp mp Nereminal N-terminal N-terminal O 6/6r MFEAR	1		239	239	239
Jurkat Jurkat Cyto NE mp mp mp sgf N-terminal N-terminal N-terminal genbank/mipsx					
Jurkat Jurkat Cyto NE mp mp mp Sgf N-terminal N-terminal N-terminal genbank/mipsx					
Jurkat Jurkat Cyto NE mp mp mp mp Sgf N-terminal N-terminal N-terminal O 6/6r MFEAR	. lurkat	Hester TKG	Jurkat	Hester	TKG
cyto NG mp mp mp sgf SGF N-terminal N-terminal 0 6/6r MFEAR	Pa	WC WC	cyto	NC WC	WC
mp mp 335 sgf 835 N-terminal N-terminal 6.6f MFEAR	E	En	dE	En	mn
sgf SGF N-terminat N-terminal 0 6/6r MFEARL genbank/mipsx		pvdf(11) pvdf(15)) syf	pvdf(13)	pvdf(15)
N-terminal 0 6/6r genbank/mipsx	N. forminal		I N-terminal	internal	internal
0 6/6r MEEARL genbank/mipsx	105/80		0	pending	pending
MFEAR genbank/mipsx					
genba	MFEARLVOGSILK(K)V LHTDGDKAFVDFLSDEIKE(E)HV(U)NAUFT(K) LAL				
	genbank/mipsx				
	Wer				
	yes				
Yes	14/17				
Bue Aus	32/48			-	
0					

Page 3

л¹ и

2D Sequencing · DoE

235 235 235 235 2389y L13.GTST human human no no no no no no s06 506 506 506 506 506 506 506 8 7 8 7 8 8 7 8 7 8 8 1 8 7 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 8 8 1 8										AW	AN
AE AT AC AT				U.V.	AH	AI	۲٩	AK	AL	EX	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	┣	AE	AF	P A							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	┝										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+							000	100	235	235
	-			195	208	209	210	622	103		VOAC
		1/1	60-			789v	389v	389y	389y	3899	1000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	┝	389y	389y	188F	1000	1222	IS TOI	117	L14	L13, GTST	111. GISI
	+	100 17 Jon	L16	L27	L12, TPI	2			nem:4	human	human
TK6 1 1 2 3	+		human	human	human	human	human	URUINU	UDITIENT	TKG	TK6
water water water (water <b< td=""><td>-+</td><td>TKG</td><td>TK6</td><td>TK6</td><td>TK6</td><td>TK6</td><td>TKG</td><td>IKG</td><td>DY I</td><td></td><td></td></b<>	-+	TKG	TK6	TK6	TK6	TK6	TKG	IKG	DY I		
variablemonomorphicvariablemonomorphicmanomorphicmonomorphic <td></td> <td>olderomore -</td>											olderomore -
Valuation Valuation Intermediation Intermediation </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>monomorphic</td> <td>monomorphic</td> <td>monomorphic</td> <td>monomorphic</td> <td>monomorphic</td> <td>monomorphic</td>	-					monomorphic	monomorphic	monomorphic	monomorphic	monomorphic	monomorphic
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	+-		monomorphic		monomorphis			0L	ou	02	00
	t	ou	mutation		ou		2				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\pm	ref 1	(E4-10E9)	1			1 00	30		26	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		115	31	31			67			506	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	st	122	577	699			923	000			
31 <td></td>											
31 31								1	1		
1&2 597 598 $ -$ <td>1.0</td> <td>31</td> <td>19</td> <td>16</td> <td></td> <td>+</td> <td></td> <td></td> <td>1</td> <td></td> <td></td>	1.0	31	19	16		+			1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	100	201	597	598	1						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
JurkatJurka								10 yuu		Jurkat	Jurka
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	٦Ť		Jurkat	Jurk			JULKEI	5		cvto	MO
nevyrompmpmpmpmpmpmpmpmpmpsgfN-terminalN-terminalN-terminalN-terminalN-terminalN-terminalN-terminalN-terminal $15/17$ 00011/11108/8t009/9t9/9t $7(G)FGD(XS(P)AGLQVXW(L)D(R))N-terminalN-terminalN-terminalN-terminalN-terminalN-terminalP/(G)FGD(XS(P)AGLQVXW(L)D(R))NAPSRKFFVGGNAPSRKFFV0009/9t9/9tP/(G)FGD(XS(P)AGLQVXW(L)D(R))NAPSRKFFVGSNAPSRKFFVGSN0009/9t9/9tP/(G)FGD(XS(P)AGLQVXW(L)D(R))NAPSRKFFVGSNAPSRKFFVGSN0009/9t9/9tP/(G)FGD(XS(P)AGLQVXW(L)D(R))NAPSRKFFVGSNAPSRKFFVGSN0009/9t9/9tP/(G)FGD(XS(P)AGLQVXW(L)D(R))NAPSRKFFVGSNAPSRKFFVGSNN0009/9tP/(G)FGD(XS(P)AGLQVXW(L)D(R))NAPSRKFFVGSNAPSRKFFVGSN0000P/(G)FGD(XS(P)AGLQVXW(L)D(R))NAPSRKFFVGSNAPSRKFFVGSN000P/(G)FGD(XS(P)AGLQVXN(L)D(R))NAPSRKFFVGSN0000$	0							U U			nse
mpmpmpmpmpmpsgf <td>0</td> <td>80</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0	80									
sgf n-terminal N <tttr> 15/17 0 0 11/111 0 APSRVFFV XXXV XYVV XYV</tttr>	-	đE	Ē							sgf	DAd .
N-terminal N-termi		sof	S				R -	animar. N	N-term	N-terminal	N-termina
15/17r 0 0 11/11r 0 0 11/11r 0 PYTVVFP XXTV P/(G)FGU/KS(P)AGLOVXW(L)D(R) APSRVFVGGN APSRVFFVGGN APSRVFFV genbank/mipsx genbank/mipsx <td< td=""><td>10</td><td>N-terminal</td><td>N-terminal</td><td>N-ter</td><td></td><td>N-termina</td><td>N-181</td><td></td><td></td><td>9/9r</td><td>9/12R</td></td<>	10	N-terminal	N-terminal	N-ter		N-termina	N-181			9/9r	9/12R
P/(g)FGU/XS(P)AGLOVXW(L)D(R) APSRVCFVGGN APSRVCFVGGN APSRVCFVG genbank/mipsx g		15/17			11/11					PPYTWYFP	XXYTWYFXVHG
P/(G)FGUCK/F/MULCK/MULCK/MULCK/F/MULCKF/F/F/MILCKF/F/MU K/MULCKF/F/MULCKF/F/MULCKF/F/MULCKF/F/MULCKF/F/MULCKF/F/MULCKF/F/MULCKF/F/MULCKF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/MULCF/F/	-				APSRKFFVGGN		APSHINFLY			cenhank/minsx	genbank/mips)
geneant	5	P/(G)FGULS(P)AUCUS			aenbank/mips		genbank/mipsx			Second	/859286
#Y00322 ¥es yes yes yes no viet viet<	9				1A52728		A52728				
no any length any length any length 14 any length any length 0 64 0 0 0	~						yes			AAS	
14 any wingin 0 0 64 0 0 0	8				1		anv length			any length	
64	0				1 Alla					0	
	0										

Page 4

2D Sequencing DoE

Ξ

.

			0		č			
AO	AP	AQ	HA					
				255	256	257	800	800
241	242	243	248	2000	3894	389y	36749	367yy
3894	389y	389y	Acar.	1 con	013	np12	np28	np28
61	up6	2du	Zdu		human	human	human	human
	Ē	human	human	upunu	TVP	TKG	PBMC	PBMC
TURING			TKG	146	DVI			
04:						monomorphic	monamorphic	monomorphic
monomorphic	monomorphic	monomorphic	monomorphic	шалотогринс		mutation		
00		mutation	OL	2		(E5-50E114)		
		(E4-10E49) 6hh(E5-50A14)			191	F	- 28	28
27		30	26		835	374	130	130
356	67	384	279	leee				
						17		
	29	30				430		
	384	365			1		,	
				li.rk at	Jurkari	Jurkat	Jurkat-tatill	Jurkat-tatill
Jurka	t Jurkat	t Jurkat			er	92	9 L	ne/rotophor
cyto	•	92			đE	đË	đ E	đE
d E	du	d E		ent.	SQI	sgf	sgf	cb Cel
102	1 801	1 \$01		Ro	animret-N	N-terminal	N-terminal	Internal
N-terminal	N-term	I N-terminal	N-terminal	IRUIUIAI-N	4171	0	0	5/10r
no low		0			A/STE/D//(P)(R)X(D)			XXEF (G)I/(S)XFXE
			(M)IIYRDLIS(S)(H)DEMF(G)/(S)DIYKI(R)(E)I	AIFPMUAISIAJEAN	- have have miner			genbank/mipsx
				genbank/mipsx	redition in the state			homology;E33978
			#\$00775(mouse)/B60756	#H30463/E35863	M9U			UO
			Yes	YUS	00			
			15	any length				
			16	0				
			-					

DoE	
) Sequencing	
20	

•

•

...

Ī	AX	AV	AZ	BA		88
- 0						
10	800	314	L19	L22		٢23
-	36744	367 44	p389y	p389y		p389y
S	np28	L10	۲۱9	٢22		٢23
9	human	human	human	human		human
-	PBMC	PBMC	1K6	TK6		TKG
8						
5	menomorphic			variable		
0	1			mutation		
	1					
12	28	49		38		43
13	130					_
41						
12		1	1	38		-
8		(-	513		ľ
17						
8						
19	Jurkat-tatili	Jurkat	Jurkat	Jurkat	~	Jurkat
0	ne/rotophor	cyto	cyto	cyto		cyto
÷	đ	đu	đ	d E		Ē
3	9	5 0 1	sgf	sgř		sgf
E	5	N-terminal	N-terminal	N-terminal	N-ter	N-terminal
2	8/8r	0	6/6r	0		-
32	SAPOOGSK		XIGIEYY			
8	genbank/mipsx		genbank/mipsx			
5	homology;E33978		¥9L			
8 ~			0 L			1
6 <u>~</u>						1
0 E						

.

réfrients seinebud.

DATE FILMED 12/27/90

· · ·

-

.