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ABSTRACT

The active control system (ACS) uses both paralleland distributed processing techniques to measureand control the posi-
tions of the 36 segmentsof the Keck ObservatoryTelescope primarymirror. The main functionof the software is to main-
rain the mirror figure; to accomplish this goal the software uses a predictive, "feed-forward"mechanism which effectively
increases the system bandwidth for the most importantsources of perturbation.

The software executes on a set of twelve 68000.family processors under the supervision of a VAX workstation. An array
of nine parallel I/O processors collect and process data from 168 displacement sensors and transmit motion commands to
108 actuators. Three additional processors simultaneously compute actuator commands, monitor system performance,
compute sensor control parameters and communicate with other observatory computers. The software is highly optimized
for speed.

I. INTRODUCT][O_[

The positionsofeachofthe36hexagonalsegmentsoftheW.M. KeckObservatoryTelescopeprimarymirrorarecon-
strained by the passive support system (PSS), the mirror cell mechanical structure, and the active control system, a com-
puterized servo control system. The rigidity of the mirror cell adequately controls three of the six degrees of freedom of
each segment: x and y motion in the plane of the segment and rotation about the normal to the segment. The remaining
three degrees of freedom, tilt about two axes in the segment plane and piston along the normal to the sesment, are con-
trolled dynamically by the ACS.

The ACS is designed to limit mirrorsurface fluctuations to below 40 nm RMS over the 10 meter diameter primary in the
face of perturbations induced by gravitational deflection, thermal instability of the PSS and external low-frequency stimula-
tion, In addition, the ACS must control the overall orientation of the primary in the mirrorcell, respond to mirror seg-
ment motion commands during alignment and calibrationoperations, monitor performance parameterr,of the mirror during
astronomical observations and support the processes of building-up, testing and servicing the primary mirror.

The active mirror control system consists of three main components: 168 displacement sensors that measure relative ,seg-
ment positions, I08 actuatot_ that move each segment in three dimensions and a servo control algorithm implemented as a

" software programwhich executes on a set of 12 processors. Control of the mirroris accomplished by measuring the rela-
tive positions of adjacent mirrorsegments using the 168differential capacitance displacement sensors. A 171-element sen-
sor-space errorvector is constructed from the displacement sensor data and from three attitude variables which define the
overall piston and tilts of the primary mirrorin the mirrorcell. The error vector is multiplied by a 171 x 108 control ma-
trix that transformsthe errorvector from sensor-space to actuator-space. A feed-forwardvector to compensate for the limit-
ed bandwidth of the control system is added '_3the productof the matrix multiplication; the result is a 108-element vector
of changes m _tuator lengths required to restore the optimal mirror figure.



This paper describes the software of the ACS. We emphasize the software that implements the servo control 'algorithm, the
"ACS Control Loop." We also discuss the other prognuns which support the control loop and we describe the hardware
,andsoftware environment in which these application programs run. Reference 1 provides an overview of the Active Con-
trol System. For a detailed analysis of the control loop from the point of view of control theory, see Ref. 2.

2, ENVIRONMENT

Figure 1shows the hardwarearchitectureof the ACS. The.VME crate contains 12 processors, a bus controller, an Ethernet
interface, a shared memory module, an ADC board for monitoring nod_ box power supplies and a programmable master
clock module which triggers downlink packet transmission. Ali prt_essors share equal status on the VME bus; any pro-
cessor can operate in bus master or slave mode.
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Fig. 1: Overview of ACS hardware

VxWorks, the real-time operating system used on the VME processors, provides a mul_tasking runnme environment with
pre-emptive priority scheduling, inter.task synchronization and communi_cationmechanisms and Transmission Control
_otocol/Internet Protocol ('TCP/lP) nztwork support over Ethernet and on the VME backplane. VxWorks includes a sym-
bolic debugger and a command shell which allows interactive execution of most C language expressions including invoca-
tion of any loaded routine and symbolic references to any loaded variables. On the VAX workstation we run the VMS op-
erating system supplemented with TCP/IP supportsoftware. We use the Digital Equipment Corporation (DEC) Configu-
ration Management System (CMS) forconfiguration control and the DEC Module Management Syst.etn (MMS) to build
and maintain ali ACS code.

The ACS computer system communicates with each of the 36 node boxes on the mirror cell via 36 individual bidirectional
_erial communication links which transfers data at 250 k bits/s. Node boxes contain control electronics fo- the displace-
ment sensors, temperature sensors and actuators, and also provide the interface to these devices. Bit serialdata transmis-
sion t'c-tween the computers and node boxes ;s used to reduce the number of high-power drivers and rece;vers required in
me node boxes, the_by minimizing power dissipation on the back of the mirror.



Nine I/O Processors (IOP's, Pl-P9) run identical code in parallel. Each IOP is connected to four node boxes via eight ,seri-
al ports operated in half-duplex mode. Received data is moved into dual-port memory by direct memory access (DMA)
controllers while the four ports used to transmit uplink data are operated in polling mode. Based on a 68010 microproces-
sor running at 10MHz, the IOP's also perform front-end processing of downlink packet data including lowpass digital fil-
tering. These boards are optimized for high-spe_ serial data transfer. Processor loading on the IOP's is - 80%.

Three floating-point processors (Pl0, P11 and Pl2) perform the control function calculations, communications, system
monitoring and error logging and mirror emulation functions. These are based on 68020 microprocessors with 68881
floating-point coprocessors. Processor loactingon the floating-po,int processor which performs the control matrix multiply
is - 60%; the remaining two floating pohtt processors are - 50% loaded. Peak V/vIEbus loading is - 50%.

Programs running on ali 13 processors communicate with each other using TCP/IP. The VAX is connected to the VME
crate via Ethernet and the VME processors communicate over a backplane network with packet buffers in shared memory,
In addition to TCPRP, programs running on the VME processors can assert VME bus interrupts to alertother processors of
time-critical events. A facility exists to manipulate semaphores using indivisible VME bus transactions. This allows con-
trolled access by multiple processors to shared resources such as message buffers. Tasks and interrupt service routines run.
ning on the same processor can communicate and synchronize with each other using mailboxes and queues. VME process-
es also share data stored as interprocessor global variables in dual-port or shared memory.

Application software is developed and cross-compiled on the VAX workstation and downloaded to the VME processors as
object modules, The loading and initializing of the application code on the VME processors is controlled by initialization
programs running on the VAX which invoke subroutines on VME processors using a TCP socket-based remote procedure
call (RPC) mechanism. The Internet File Transfer' Protocol (FTP) is used to download data files and object modules from
the workstation to VME memory.

3_. CONCEPTUAL DESIGN OF THB MIRROR CONTRO_I___$YSTEM

Figure 2 is a context diagram of the mirror control system which shows the interactions between the control system and its
environment. Mirror control software is represented, by the circle at the center of the diagram. Rectangles represent exter-
nal entities with which the control system interacts. Solid lines represent data flow; the direction of the arrow indicates
flow direction. Dashed lines represent event flows. An event is an occurrence which takes piace external to the system at a
specific point in time; events elicit responses from the system.
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Fig. 2: ML,'rorcontrol system context diagram
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The main function of the mirror control system is to compute the actuator motion commands needed to maintain the pri-
mary mirror in its optimal figure from the position and temperature sensor data in the downlink packets (DLP's) transmit-
tcaJby the mirror hardware and the elevation data from the telescope drive and control system (DCS). Actuator motion
commands are sent to the mirror hardware in uplink packets (ULP's). As shown in the context diagram, a software mirror
emulator can take the piace of the real mirror hardware for the purpose of testing the mirror control software.

Commands to start and stop mirror control are issued by an operator or DCS. Telescope zenith angle and zenith angle rate-
of-change data provided by DCS are used to compute sensor and actuator corrections and to predict the effects of gravita-
tional deformation dta'ing slewing. Alignment and calibration programs can directly change actuatoi lengths and sensor
range. Sensor and actuator calibration data and hardware configuration data are provided by _latabasc management pro-
grams.

...-.----- ,,_/

Fig. 3: Mirror Control System Top-Level Transformadon Diagram

A top-level transformation diagram of the mirror control system is shown in Fig. 3. In this diagram horizontal parallel
lines represent data stores, solid c_cles represent data transformations and the dashed circle represents a control transforma-
tion. A data transformation u_s input data to derive output data and may be triggered by one or more event flows. A
control transformation takes only event flows as input and produces only event flows as output. This diagram is a simpli-

fied explosion of the mirror control system shown in the context diagram.

From the broad perspective of Fig. 3, the mirror control system is divided into two data transformation processes which
communicate with each other via data stores. The I/O process receives DLIYs, extracts sensor and actuator data, compums
and filters sensor error dam and transmits, actuator commands to the mirror hardware. The control function calculation

(CFC) process takes sensor and actuator data provided by the I?O process and computes the next set of actuator commands
which will ultimately be transmitted m the mirror hardware by the IlO process. The scheduler is a control transformauon

which determines the relative timing of ali critical control loop events.

The I/O process is triggered by the DLP ready signal issued by the DMA controllers after a complete set of DLP's have
been received and stored in memory buffers. DLFs arrive every I0 ms. (The rate of DIP construction and transmission is
programmable but is nominally 1(30 Hz.) The DLP arrival rate is the fundamental clock frequency of the mirror control

system; ali control loop events are timed relative to the arrival of DLP's. When the DIP set arrives, the I/O process tr,g-
gets the scheduler which causes a transition from one control loop state to the next. Each cycle of the control Io<>p,s tli-
vided into a number of discrete states by the scheduler; there are nominally 50 control loop states; thus the control I(x)p
cycle period is 500 ms.
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At a particular control loop state the scheduler triggers computation of desired sensor readings and actuator motion com-
mands by the CFC process. Desired sensor readings are the displacement sensor values which would be expected in the
absence of segment position errors. The segment position error at each sensor is the difference between the desired sen,.a:)r
reading and actual sensor reading for that sensor. At another control loop state the scheduler triggers the CFC process to
update the desired sensor readings actually used by the I/O process. At yet another control loop state the scheduler triggers
the I/O process to transmit the actuator motion commands previously computed by the CFC process.

CFC process functions are performed only once during each 500 ms control loop cycle whereas I/O process functions repeat
at every control loop state or 50 times per control loop cycle. After triggering the control loop state transition and concur-
rent with CFC processing, the I/O process extracts displacement sensor, temperature sensor and actuator length data from
the DLP buffers. The I/O process computes segment position errors from the raw displacement sensor data and desired

" sensor readings provided by the CFC process; these position errors are then passed through a lowpass digital filter. Fil-
tered sensor errors, temperature data and actuator length data are Ul:)Clatedand made available to the CFC process at each
control loop state although the CFC process samples this data only once per control loop cycle.

Control loop timing is illustrated in Fig. 4. Five plots are shown with a common abscissa which represents time in units
of control loop states. Three complete control loop cycles are shown. The top plot illustrates displacement error at a par-
ticular sensor; the difference between minimum and maximum displacement error depends primarily on the rate of change
of telescope elevation but is no greater than about 28 nra. The second plot shows CFC process activity which starts at
control loop state 0 where filtered sensor error data is sampled and completes at about control loop state 35 after which ac-
tuator motion commands and new desired sensor readings are available but have not yet been acted on.
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Fig. 4: Control loop timing

Actuator move profiles are shown in the third plot. Actuator motion commands gene:ally take about 200 ms to complete,
depending on the move size, and are profiled to minimize mechanical energy injection to the mirror cell. Actuator move

• commands are issued shortly after completion of CFC, as shown in the fourth plot. Desired sensor readings are updated
about halfway through actuator moves. Since displacement errors are computed by taking the difference between desired
sensor readings and actual sensor readings, there is a discontinuity in sensor error value at the time desired sensor readings
are updatecL The exact time at which desired sensor readings are updated is chosen to minimize the integrated error stored
in the lowpass filters.

The CFC process samples filtered sensor errors. Without feed-forward corrections to the actuator motion commands there
would be an uncorrected position error of magnitude proportional to the rate of change of telescope elevation and the rat_ of
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change of mirror temperature and approximately inversely proportional to control loop gain. Computer models have
shown that, without feed-forward, this lag would result in a settling time (time for system to reach sensor error less than
system noise level) of about 30 s after completion of a fast move. This settling time could be decreased by increasing sys-
tem gain, but higher gain results in longer transient settling times. Feed-forward based on the derivative of cell deforma-
tion due to gravity and temperature reduces maximum settling time to about 10 s and tracking lag to less than 3 nra,
which is considered acceptable.

4, CONTROL LOOP IMPLEMENTATION

The ACS Control Loop is implemented as 15 tasks runningon 12 processors; nine of these tasks are identical and run in
p_el. Figure 5 shows the control loop tasks and the mirror emulator (Test Emulator Task) and the control and data flow
between them. The notation used here is the same as that of Fig. 3. This diagram, however, represents the actual imple-

mentation rather than the conceptual design. The processor on which each task runs is also indicated on the figure. A de-
scription of each task follows.
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Fig. 5: Control Loop Tasks

4,1 I./O Proce._;or Task

Each lOP runs exactly the same code. When a process must know which processor it's running on it can interrogate a

memory location which contains a unique value determined by jumpers on the CPU board. Dual-port memory base ad-
dresses are also configured to complete the identification of the board.

The lOP task is posted by the DMA interrupt service routine (ISR) which services a local interrupt generated by one of the
on-board DMA controllers when it has completed the transfer of an entire 40 byte DLP. The DMA ISR reprograms ali

four DMA controller channels in preparation for the next set of DLP's; only one channel is programmed to generate the
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local interrupt which signals receipt of DLP's. The ISR then posts the lOP task and returns. Since DLP construction and
transmission from ali node boxes is triggeredsimultaneously and since ali node box serial communication controllers are
clocked by the same signal, DLF'*sfrom ali node boxes arrive simultaneously; the interrupt from any one DMA controller
channel signals the arrival of ali four DLP's on the processor. Integrity of the serial finks is verified by monitoring serial
communication hardware status registers and by echoing some ULP data in DLP's.

One of the IOP tasks issues a VME bus interrupt which causes the scheduler task to increment the control loop state. Sen-
sor, actuator and hardware status data are extracted from the DLP buffers and error counters are incremented as necessary.
Displacement errors are computed by taking the difference between sensor displacement values received in the DLP's and
desired sensor readings previously stored in IOP dual-port memory by the parameter corrections task. The sensor error val-

q. ues are then passed through a two-stage, lowpass, first-order, real-pole, recursive digital f'flter. Filter output along with ac-
tuator length and temperature sensor data are placed in dual-port memory where they are available to other processorson the
VME bus. Ali numerical computations are performed on 32-bit integers and ali data arrays are in hardware device space
(see 6.2- Map Generation).

Uplink packets are transmitted to ali node boxes during each execution of the IOP Task (every 10 ms). Each displacement
sensor has one offset digital-to-analog converter (DAC) and one drive DAC. Since each node box can control up to six
sensors, four sets of ULFs transmitted over four control loop states are required to update ali sensor DAC's. Sensor DAC
commands are sent even when DAC values have not changed so that the integrity of each serial link between IOP ,andnode
box can be verified upon receipt of each set of downlink packets. Most uplink packets contain commands to set sensor
DAC's but once every control loop cycle (500 ms) the scheduler task sets a flag which causes the lOP tasks to transmit ac-
tuator motion commands which have been stored in.IOP dual-port memory by the control function calculation task. Each
ULP.can hold three commands so motio,ncommands can be transmitted to ali actuators in one set of ULP's.

4.2 Conl;rolFunctionCalculation T.j_Li_

At one particular control loop state the scheduler task initiates computation of desired sensor readings and actuator com-
mands by posting the control function calculation task. This task samples filtered sensor error data from the IOP's and
moves this data as well as actuator length data to PI0 local memory. After this transfer of data is complete the control
function calculation task posts the parameter corrections task and both tasks proceed to operate on the same data set.

The actuator motion command vector, P, is a 108-element actuator space vector given by

P=gB$ +ff

S is the 171-element sensor space position error vector:. 168 elements correspond to displacement sensors and three ele-
ments correspond to virtual attitude sensors which are computed from a linear combination of actuator lengths. B is a 171
x 108 linear transformation matrix which transforms the position error vector from sensor space to actuator space, g is the
global control loop gain (a ,scaler)andff is the feed-forward correction vector ce,reputed by the parameter corrections task.

The actuator motion command vector is converted from units of nanometcrs to units of actuator steps using actuator gain
data provided by the calibration database; elements which are greater in magnitude than the maximum distance an actuator
can move within one control loop cycle are clipped. The elements of this vector are then mapped-out to the IOP's where
they will be converted to actual actuator motion commands by the lOP tasks when the actuator move command is issued
by the scheduler task.

qP

4,3 Scheduler Task

At specific control loop states, the scheduler posts the control function calculation task, initiates transmission of actuator
motion commands and loads a new set of desired sensor readings to the IOP*s. The states at which these events occur are
programmable. The scheduler task is posted by one of the IOP tasks after each set of downlink packets is received.
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4,4ParameterCorrectionsTask

This task computes desired sensor readings andthe feed-forward vector for actuator commands. There are three components
to the desired sensor readings vector: the zenith angle and temperature components account for zenith angle and tempera-
ture-dependent sensor behavior, and an er,:_Jernalcomponent accounts for direct segrnent motion commands issued by exter-
nal programs. The external component is required to prevent the system from attempting to nullify segment motions re-
quested by calibration or alignment programs; it is computed by multiplying the accumulated segment motion request
vector in actuator space by the A.man-ix,the geometric matrix that contains the relationships between actuator motions and
sensor displacements. Temperature and elevafior_corrections are computed from look-up table data provided by the calibra-
tion database manager. The three components of the desired sensor readings vector are summed and stored in an interpro-
cessor global geometric sensor space array. At a particular control loop state the scheduler task takes this data, maps it into
hardware sensor :pace and writes it to IOP dual-port memory where it is used to compute displacement sensor errors.

Feed-forward, based on the temperature rate of change of the primary mirror and the rate of change of the telescope in zenith
angle, is especially important during slewing to limit settling time. Feed-forward corrections are essentially a prediction of
position errors which will accrue during the forthcoming control loop cycle based on the current rate of change of mirror
temperature and the velocity of the telescope in zenith angle. Calibration data for each actuator is taken at many mirror
temperatures and telescope elevations. This data is fitted to an equation of the form:

g(z, T) = k l + k2 sin (z) + k3 cos (z) + k4z + k5 z2 + k6T + k7 T2

which represents the length of a particular actuator as a function of temperature (T) and the zenith angle of the telescope (z).
Coefficients for each actuator are downloaded ft'ore a database on the VAX to data su'uctures in VME memory when the
control loop is initialized. Actuator-motion-request feed-forward corrections are computed by evaluating these equations in
the differential form, so the feed-forward component of the actuator motion request is given by:

ff= [_Sg(z,T)flSZ]TAz + [Sg(z,T)flST]zAT

where Az is the change in zenith angle and AT is the change in mirror temperature expected during the next control loop
cycle.

4.5 Monitor Task

This task performs two main functions: system performance parameters are computed and error counters are monitored.

Error counters record error events which may occur during normal operation of the control loop but which do not require
program or operator notification or intervention on a per event basis. An error event is declared when, for example, a task
does not complete within an allotted time interval, filter calculations do not complete in time or serial communication con-
troller errors are detected. These events are recorded in error counters which are data structures consisting of a counter, fat_!
and non-fatal count limits and increments. The error counter mechanism is used to limit the processor time needed to trac_,
the event in order to preserve system timing relationships. When an error counter exceeds its non-fatal warning level an er-
ror message is logged and the non-fatal warning limit for that counter is incremented. When a counter reaches its fatal
level, which is infinity for some counters, then, in addition to logging an error message, the control system is placed in
idle mode.

In addition to monitoring error counters, this task monitors :vstemperformanceparametersincluding sensor residuals
which measure the performance of the control function calculations, length of the error vector which indicates overall sys-
tem performanceandmirrortemperaturegradients.Theoperator,.:anviewtheseparametersatanytimeusingtheACS in-
terface(ASCI,seeSect.6.4-ACS Interface).When anyparam,_terexceedsa predeterminedlimitanerrorreportisauto-
maticallyloggedand,iftheparameterhasexceededa fatallimit,thecontrolloopisputinidlemode.
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4.6 SensorControlTask

Thesensorcontroltaskperformstwofunctions:

1) Sensor drive and offset DAC input values are computed based on the selected sen_or range and sensor calibra-
tion data;

2) Sensor equation coefficients are computed and stored for later use by the parameter corrections task. The sensor
equation, which relates sensor output reading to sensor displacement, is discussed in detail in Refs. 3 and 4.

This task is posted each control loop cycle, but only performs its functions ff the sensor data change flag is _L This flag
is set via the ACSI to indicate that the global sensor range value has been changed or that new sensor calibration data has

o been downloaded.

5. DATA CAPTURE

Facilities are provided by the control loop for capturing data from the real-time system for remote or delayed analysis.
There are two classes of data which can be captured: fast data and slow data. Fast data changes at each control loop state.
Raw displacement sensor data, filtered sensor errors and actuator length data are collected by fast data capture. Slow data is
computed once every 500 ms control loop cycle. Slow data capture saves the product of the error vector anti the control
matrix, actuator motion command_ which include feed-forward corrections and desired sensor readings.

Data capture is controlled via the ACSI. Fast data capture can be captured at the fast data rate or an integer multiple
thereof. There are two modes in which data capture can be run. In "continuous" mode data is captured continuously and
the data capture buffers are treated as arrays of circular buffers; an index, accessible to VMS programs via the ACSI, is
maintained to mark the position of the most recent data. This mode is useful for examining the recent behavior of the sys-
tem after an event of interest has been detected. In "future"data capture mode the data capture buffers are treated as arrays
of lists. Upon receiFt of a control signal data capture begins and continues until the specified number of data samples have
been collected or until the buffers are filled. This mode is useful for examining the respense of the system to an applied
perturbation.

Data capture provides the means to examine details of the runningcontrol loop; it is the most direct mechanismwe have to
measure and analyze the response of the system to real perturbations induced by rapid changes in elevation, temperature or
external commands or emulated perturbations induced by the mirror emule,tor. With data capture and the software mirror
emulator we can analyze and study in detail the behavior of the control loop before attempting to control the real mirror.

6. ANCILLARY PROGRAMS

Figure 6 shows ali the cooperatingprograms which comprise the ACS. The ancillary programsare discussed in following
sections.

6,1 Initialization

Initialization of the real-time system is accomplished in five stages:

1) Ali devices on the VME bus are reset via the bus controller. A bootstrap loader program running out of ROM
on each VME processor automatically loads an executable image of the VxWorks operating system and system

' symbol table over the network from mass storageon the VAX.
2) External global variables are downloaded to their home processors and then distributed to ali processors.
3) Application code is downloaded. Since external g_obalvariable addresses are not known until variable distribu-

tion completes, object code is not linked until loadtime.
4) Data structures are initialized from data files on the VAX,
5) Application tasks are spawned.
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Fig. 6: ACS Software Overview

Uponsuccessful completion of initialization, the control loop is runningin idle mode and is prepared to receive commands
via the ACS interface.

A set of low-level r_utines, automatically downloaded to the VME processors with the VxWorks operating system, are in-

voked by the initialization programs running on the VAX by the RPC mechanism. The remote procedures perform func-
tions such as downloading data files and object modules from mass storage on the VAX to the remote processors using
FTP, managing the VxWorks symbol tables and spawning tasks. At the program level, RPC's are virtually identical to

local subroutine calls. We have designed our RPC package so that each remote procedure is invoked by a call to a single
,, function to which arguments (including a target machine identifier) are passed in the normal manner;, these are blocking

functions which do not return until the remote procedure and the RPC network transaction have completed. Figure 7 is the
structure chart for INIT load_objs, the initialization program which downloads object modules specified in a data file
called an Object Module List to the VME processors; it is only in the calls to the RPC's that the distributed nature of this
program is revealed thereby vastly simplifying the progrmn design.

A master configuration file, itself under configuration control, is used to specify the hardware configuration data files, cali-
bration data files and application object modules, ali of which are maintained under configuration control, from which the

running system is to be constructed. Our configuration control system is used not only to control software development;
it also provides a formal mechanism for organizing and controlling hardware configuration and calibration data files. Any
new or previously defined combination of application code release, hardware configuration data set and calibration data set
can be easily specified in the master configuration file and used to establish a running system.

6.2 Map Generation

The ACS map generation program addresses the problems of how to associate physical device locations with hardware

connection paths and de,_ice addresses and how to inform the software of which devices are present and which are absent

(physically or logically). In normal operation the ACS controls 108 actuators, 168 displacement sensors and as many as
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Fig. 7: INIT_lo_ objs structure chart

252 temperature sensors. Mounted on each of 36 mirror subcells is a node bo× which is connected to three actuators, as
many as six temperature sensors and, depending on the segment type (inner ring, middle ring or outer ring), four, tSveor

' six displacement sensors. A given displacement sensor, for example, can be connected to any one of six ports on the node
box and the node box can be connected to any one of four channels on any one of nine [OP's.

The mapping problem is compounded by the fact that the system may be required to operate (at diminished performancc
levels) with less than the full complement of segments during mirror build-up, for example, or a device may be declared
non-operational under circumstances where it is undesirable to immediately replace that device and suffer the down-time rc-
quired for installation and recalibration.
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Central to the ACS mapping scheme are the def'mitions of geometric device number (geometric sensor number, geometric
actuator number, geometric temperature sensor number) and hardware device number (hardware sensor number, hardware,ac-
tuator number, hardware temperature sensor number). Geometric device numbers identify the location of a device in the

global coordinate system of the primary. Mast3 has defined the primary mirror global coordinate system and has identified
sensor and actuator positions and numbers; we use these numbers for geometric device numbers.

Hardware device numbers are deft_ed to contains ,ali information necessary to address a device. Neither geometric device
numbers nor hardware device numbe,; are associated with a specific device, instead; geometric sensor numbers, for exam-
ple, identify one of the 168 displacement sensor positions on the primary and hardware sensor numbers identify one of the
716 lx._ssibleconnection paths between computer and sensor (ot which 168 or fewer will be in use at any time).

The map generation program takes as input seven primary maps. Some of the primary maps, such as the actuator posi.uon "
map which contains the global coordinates of each actuator, are static. Other primary maps must be changed when r_e mir.
tor is being bt;ilt-up, a device is declared non-operational or when connection paths change. The actuator connect.ion map,
for example, which specifies the connection paths between actuators and node boxes and identifies those actuators which
are to be considered inactive, must be updated when an actuator is connected to a different node box channel or is taken out
of service.

The map generation program cre_tes _ set of ten derived maps from the primary maps. For example, the sensor map,
which maps geometric sensor number to hardware sensor number, is derived from the active IOP list, the sensor connection
map and the mirror map, ali of whtch are primary real.s. The derived maps provide the ACS programs with sufficient in-
formation roassociate device locations with connection paths, to ,lefine the coordinates of the devices and to identify inac-
tive devices.

6.3 Matrix Generation

This program is used to generate data files containing the A and B matrixes. An actuator sl'ace vector multiplied by the
1'11x 108 A.matrix is transformed into sensor space, The A-matrix is derived entirely from daegeometry of the primary
mirror and the positions of the sensors and actuators. The displacement reading of a given sensor depends only on the ori-
entations of the two segments which it bridges so each sensor depends on six actuator lengths. Thus, only six elements of
each row of the A.matrix are non-zero.

The B.matrix, which transforms sensor space vectors to actuator space, is the psuedo inverse (neither matrix is square) of
the A-matrix and is derived from the A-matrix using eigenvectors. Unlike the A-matrix, the B-matrix is not sparse_

When generating the matrix data files, account is taken of those segme' ts which are not inst_led or are not operational and
a facility is provided to define a stan_,-d error for each sensor. Quality factors of the control matrix are computed to pro-
vide the operator with an indication of the capability of a particular combination of segments, sensors and actuators to
maintain goou mirror figure.

6.4 ACS Interface

The ACS interface (ACSI) provides a program and user interface to the VME p_)rtionof the ACS. Read and write access
to ali interprocessor global data structures and variables is supported. Commands to start and stop the control loop, turn
the test emulator on and off, control fast and slow data capture, move segments and load and retrieve data are issued via the
ACSI. The ACSI is a distributed program; the VME portion of the program Lsimplemented as a set of RPC's which are
invoked by the portion of the program which runs on the VAX.

6.5 Calibrauon

There are seven complimentary calibration and alignment operations: star stacking, segment phasing, sensor calibration,
actuator calibration, adjustment of secondary despace, adjustment of secondary ult and adjustment of segment/mirror fig-
i.tl'e.

-12-
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The calibration database manager (CalDB) provides facilities for archiving, retrieving and manipulating calibration and
alignment data provided by several different types of calibration operations. CalDB is an interactive system with tools
provided to select, fit and format data for use by the ACS.

For more information in this area see Ref. 6.

6.6 Maintenan¢¢

There are two maintenance programs: on-line maintenance and off-line maintenance. On-line maintenance is a hardware-
fault-location program which runs on the ACS computer system independent of the control loop. lt is intended to be run
prior to an observing run to verify the operational status of ACS hardware or to isolate the source of errors detected by the

Q control loop performance monitor task. Off-line maintenance is designed to be used in a test-bench environment, off-line
of the main ACS computer and mirror hardware, to exercise, parameterize and certify node boxes, sensors and actuators. A
single control program and menu-driven user interface supports both maintenance programs.

On-line maintenance divides the ACS into three subsystems: these are mirror hardware subsystem, VME subsystem and
VAX subsystem. Each subsystem is divided into a number of field-replaceable units. A field-replaceable unit is a mod-
ule, such as a processor board or a node box, which can be readily replaced with a spare. In some cases where sufficient
data are available, on-line maintenance may isolate a failure to a more detailed level such as dual-port memory on a proces-
sor board. The off-line maintenance test algorithms are based on the assumption that, at any given time, there is no more
than one failed unit in the system.

The VME subsystem consists of lOP's, floating point proce_sors, Ethernet interface, shared memory, bus controller, master
clock module and node box power supplies. The mirror hardware subsystem consists of node boxes, displacement sensors,
temperature sensors and actuators. The VAX subsystem consists of Q-bus interface modules. The operator can choose to
test the entire ACS, in which case ali units of ali subsystems will be tested, or she can test a single subsystem or a single
unit or range of units within a subsystem.

Associated with each unit is a binary tree which represents the sequence of tests to be performed for that unit. A test tree
consists of terminal nodes and non-terminal igxles. Non-terminal nodes represent tests; the result of a test, pass or fail, de-
termines the next node to be visited in the traversal of the tree. Terminal nodes represent conclusions; a final test report is
issued when a terminal node is reached.

Off-line maintenance includes tests to exercise and quantify the operational parameters of sensors and acumtors. These tests
are used for diagnosing problems with sensors and actuators and for certifying them prior to installation on the mirror cell.
A summary of results is presented to the operator upon completion of a test, The operator can also choose to have summa-
ry and detailed test results saved in an archive file for later analysis or for maintaining a history of the device under test.

0.TTest Emul_

The mirror emulator replaces primary mirror hardware with _ftw are for the purpose of testing the ACS software and for fu-
ture concept development. The emulator intercepts ULP's containing actuator motion commands and sensor control com-
mands and transmits DLaWscontainh_gposition sensor, temperature sensor and actuator data back to the control loop. Ac-
tuator move prof'des arc simulated, actuator, sensor and wiffletree response characteristics can be programmed and various
noise patterns and spectra can be introduced. The paper "Emulator for the W.M. Keck 10 m Telescope" describes the mir-
ror emulator in detail.

Q
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7. CONCLUSIONS

Design, implementation and parameter and assembly testing of the ACS software are complete. Integration testing has
been completexl to the extent possible without the real telescope. Hardware and software have been exercised under condi-
tions very similar to those expected during normal operation. We are now in the process of characterizing the dynamic be-
havior of the control loop using the mirror emulator. Prior to integration and testing with the telescope we will measure
and understand control loop step and frequency response and phase lag. During the next year we expect to demonstrate that
the ACS is indeed capable of controlling the figure of the Keck Observatory Telescope primary mirror.
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