
ql

..," c: ;- S--I
Progress Report:

Automated Computer Software Development Standards Enforcement

Herbert P. Yule and John W. Formento CONF-9105125--1

Advanced Computer Applications Center

Argonne National Laboratory DE91 007328
9700 S. Cass Avenue ""_''

Argonne, IL 60439
$

o allow communication and cooperation between
Abstract: The Uniform Development Environment (UDE) developers, managers, users, and other persons
is being investigated as a means of enforcing software involved in project support
engineering standards. For the programmer, it provides o provide an integrated fl'amework for
an environment containing the tools and utilities accommodating development and analysis tools
necessary for orderly and controlled developnventand *' o provide effective configuration management
maintenance of code according to requirements (DOD- o help the software developer revolved in
STDr2167A). In addition, it provides DoD management extensive development efforts by providing a
and developer management the tools needed for all common interface to tools and utilities,
phases of software life cycle management and control, communications with team members, etc.
from project planning and management, to code o facilitate utilization of CASE tools
development, configuration management, version control, o provide flexibility for incorporation of new and
and change control. This paper reports the status of UDE different software technologies, methodologies, and
development and field testing, procedures

UDE Back__.qEnd

Ii Goals In the early stages of this study, thesponsor's
To improve management of its softw,'u'e primary concern was the possible imposition of software

ii. acquisitions and its production software_a sponsor within development standards on contractors developing
il the Department of Defense (DOD)requested a study on software; hence the project name, Uniform Developm_.en..ntt
II the feasibility of automated implementation of software Environment. The software development environment
I engineering standards. As a result, the Uniform chosen for this study was the Atherton Software
-R

Development Environment (UDE) was developed as a Backd_lanetogether v,q,th Atherton's Project SoftBoardI
means of establishing unilateral software engineering (PSB). At the time that selection was made, no other,i

standards for DoD and its software contractors. Software software provided so many of the required capabilities.

development activities under control of the UDE may be The BackPlane is a software development environment
required to conform to DoD-STD-2167A. The extent and specifically designed for large programs, programming in
natttre of activities necessary to comply with this standard the large, and programming in the many. Atherton

_- vary from .job to job, and thus a major requirement of the designed the BackPlane to provide a seamless, flexible
UDE is flexibility. Other imponani aspects of software environment furnishing the user with insulation from the
development managed by the environment include hardware plattbrm. Clearly, no software environment can
configuration management, version control, change provide complete insulation from the hardware, but the
request management, and m forth, software environment will improve many aspects of code

development and can improve software transportability
Some of the benefits the UDE is designed to across platforms.

achieve are to:

A complete description of the features provided by
o improve the productivity and efficiency of the BackPlane and Project SoftBoard is beyond the scope
software development and maintenance of this paper;,a partial list of features follows:
o support orderly and controlled software
development and maintenance throughout the o Flexibility via a programmable interface

DISTRIBUTION O NT I• L MITE[)

,, ,,, ,, ,,, ,, ,, _,

o Configuration management environment. The environment can have integrated
o Seamless integration enforceable workflow methodology to compel adherence
o Software tool interoperability to standards. In this way, developers would be required
o Data interchangeability and sharing by the environment to adhere to a desired .set of software
o Partial software po_lbility engineering stan 'dards. Thus, program baselines could be
o Tool integration and utilization created in accordance with acceptable standards, and once
o Large-scale data management established, such baselines are immutable. Change
o Support for the full software requests leading to new versions and releases would be
development life cycle completely documented as to (I) the rationale for the
o Workflow methodology enforcement change, (2) how the programmer implemented the

change(s), (3) how the changes were verified and
For further information on the Atherton BackPlane and validated, and (4) when a new version is created and
Project SoftBoard, see references [1 and 2]. released. Parallel development efforts would be similarly

treated, including merging of parallel development
The BackPlane maintains and manages ali files as branches. Ali documentation would be maintained in the

objects in an object-oriented database. Access to objects is UDE and would be extended as further documentation
, only available through the environment. In addition, it becomes required.

ensures file and version immutability, and can be
implemented to require users to provide documentation of The UDE is more than just a development
their activities such as code development or modification, environment; it will support ali phases of the software life
The amount of documentation required can range from cycle. The field test of the prototype., described below,
extensive to none. When documentation is not mandatory, was an exercise in very large code maintenance for an
the user has the option of inserting documentation as already developed code.
deemed appropriate.

Standards

Project SoftBoard manages and automates
Component Change Request (CCR) procedures. Change A discussion of a programmer's development
requests pertaining to the managed software system are environment and which components it should comprise
entered directly into the UDE, and appropriate staff would be incomplete without mention of the role of
members are automatically notified of the CCR and of its stand,'u'ds. A wide variety of standards exist for software
disposition. Change deadlines are provided on an alert development and related purposes. These include
basis, and notifications of implemented changes that could collections from government, industry, and academia
possibly affect other programmers and managers are sent [3,4].
to ali those concerned.

I Probably the most well known set of software
Required software tools (compilers, source code development standards has been produced by the

editors, debuggers, etc.) and CASE tools can be integrated Department of Defense (DOD) in its series of automated

| into the environment so that programmers have access to data systems standards. Although other organizations have
any requisite software tool or utility within the developed similar standards, the focus of this paper is on

i environment. Equally important, a development the DoD standards and methodologies since the workmethodology that imposes compliance with a given set of presented herein has been sponsored by DoD.
development standards can also be integrated into the
BackPlane. The UDE was conceived as a means of prescribing

_| and enforcing uniformity of software development

_llm Software tools to enforce standards could be methodology and techniques under a variety of
integrated into the BackPlane in accordance with 2167A- development scenarios and conditions. For this reason, it
_.ailored requirements. Of course, documentation required was necessary that the environment offer a great deal of
by the enforcement tools would have to be, supplemented flexibility of enforcement since different situations call for
by judgment, and management acceptance of these differing degrees of standards implementation and
required documents would have to be obtained before administration.
incorporation of documents into the database as an

immutable object. The organization sponsoring this research is
charged with providing technical support to a number of

The major thrust of this work has been the design technical divisions that perform extensive analyses using
and development of a prototype UDE that could be simulation models. The sponsor must maintain several
imposed on contractors who develop software, Developers models and oversee the development of new models. This
could be required to develop programs under this effort is carried out through the use of many

..................................... ,_ ,r_.......... , _,_f,_,l,rr...... rPIrP_"_"r "'_i' r_II'_'_"1'_m........,,_r*_I_,,lllllrll+r_Irp_iflil.,,....

,,, Li, ,,,_l ,,, ,I,,lll ,dill ,iii,,,, _lll _k,,IJ,rli ,,,l_l,l_ lilJIl ,,,,,

t"

" subcontractor organizations; the sponsor does not provide environments are not considered to be particularly
these services directly. A major requirement this work. flexible.
attempted to address was that of allow ing the sponsor
organization to have a degree of control over the way its The ability to selectively enforce various subsets of
subcontractors did software development. 2167A as well as or in addition to any other standard or

development attribute considered important to a particular
This requirement led to an investigation of how development paradigm was central to the design of the

standards should be enforced as well as which standards UDE. The range of scope of various development and
should be enforced• The ebvious standard to enforce was maintenance projects active at arty time led to recognition
DoD-STD,.2167A, "Defense System Software of the need for selective standards enforcement. The UDE

Development" [5], since this sponsor was involved only is able to provide this flexibility of enlbrcement and
in defense-related analyses. However, 2167A is a tailoring of capabilities.
comprehensive standard, and unilateral enforcement of ali

its provisions was deemed to be counter to optimal The UDE is a programmable environment. Inherent
operation of this organization. A much more sensible in it is a capability for requiring software development
enforcement strategy was that of tailoring a subset of personnel who work under it to adopt certain practices
military standards to each situation, and standards. For instance, the person who has the task

of adding a function to a software unit may be required to
T_aeDoD-STD-2167A is based on a software life check out a controlled version of the software unit from

cycle model. This model is a linear process, often called the UDE and document what he/she intends to do. In

phase-oriented, lt basically recommends that software order to check the completed unit back in, he/she could
development consist of separate and distinct stages. In the be required to update the system data flow diagranls, user
DoD standard, these stages are: documentation, and provide evidence of testing of the

unit.

a. system requirements analysis/design

b. software requirements ana!ysis Another project could require software engineers to
c. preliminary design perform these same tasks and update entity relationship
d. detailed design diagrams as weil. The UDE can be programmed to
e. coding and software unit testing require one set of tasks for one project and a second set
f. software component integration and testing for a different project. Thus, the standards can be applied
g. software configt:ration item testing, and on a case-by-cam basis. An automated method exists for
h. system integration and testing evaluating the requirements of a software development

project and determining the most relevant aspects of
The life cycle model was originally derived from 2167A. The results of this process can be, used to provide

the hardware production model of requi_rements, input into the tailoring of the UDE to the needs of the
fabrication, test, operation, and maintenance. As such, it sep,arate projects within DoD.
reflects management concerns in production. It is
essentially a linear process, although the verificat;,_n and A software project may entail development
validation functions occur in parallel with other activities, standards that require the use of an approved computer
While this model works very well with hardware aided software engineering (CASE) tool (or set of CASE
production, its approp_'iateness for software development tools) in system development, lt may entail the use of a
is questionable. Instead, it was desired that the UDE be certain compiler or set of configuration management tools
able to selectively enforce those parts of the. DoD mandatory on the project. The key to the UDE is
standards that are applicable on a case-by-case basis, flexibility of standards enforcement rather than strict

adherence to an arbitrary set of standards.
The UDE could have been developed as a

standards-based programming support environment. This

i: one in which major aspects of the environment are The Argonne UDE ProtOtVlge
based on the application of a set of standards or an

ordained development paradigm. Traditionally, developers UDE Proto_pe Configuration. The prototype UDE
have worked under conditions and standards as set by the was assembled by Atherton for testing at Argonne. lt
company developing the system. Compliance with consisted of the BackPlane, Project SoftBoard, and the
standards was enforced manually, and teaan members had following integrated tools: a Fortran compiler, linker, ---
much discretion in their degree of use of standards and debugger, the (Unix) VI editor, a DEC VAX EDT editor
techniques. As the number of programmers employed on emulator, a project management system (SUN's PMS),
a project increased, so did the opportunity for deviation and a commercial CASE tool (Software through Pictures).
from the mandated standards. Standards-based The hardware system was a SUN workstation model

J

z

l_ll'_,llv_l_ll_r':_'_ _iII_ _lT_"n_**_ _ ' _ _"'II "_ ',n _,_,l_l_Ii_l_ ll,lll,r I, I,_' '_'lllqP_ i_'lqlll _q_l_l' _1"I'0 '_ _,'_11' _r r_il_r_l_ ','I'l'_l' '_" _qrllll' _'_'_" Ilrllq, ,_,Ipr '

o

3/260 running m_der SUN O/S 3.5 Unix. It should be quickly; the learning process is both facilitated and
noted that the SUN workstation ,'v_pports a windowing shortened by receiving instruction from Atherton either at
environment. The UDE can be operated from a scheduled classes at Atherton in Sunnyvale, CA, or from
windowing dtsplay or an ASCII terminal. The majority of instructors on site. One week of instruction is sufficient
operations are better performed in the windowing for the user to attain adequate mastery. After receiving
environment, although a few operations are easier on an instruction, the UDE is relatively straightforward to use,
ASCII terminal. Operation of the UDE without within the procedural constraints indicated above. (Such
windowing was found to be cumbersome and is not constraints are necessary to provide the configuration
recommended, management capabilities required.) Without instruction,

the time required to achieve adequate mastery would
UDE Features and Operation. The UDE typically probably be considerably longer. The manuals are

conlains a number of databases, one for each code adequate as reference material, but are of limited use to
package. To facilitate understanding by the reader, the novice.

consider the following scenario. A programmer is tasked

with placing a code package under UDE management for For configm'ation management, version control,
configuration management. Once the baseline is and integrity of system releases, the UDE provides almost
established, a team of programmers will proceed with bug ali of the capabilities required for mandating compliance
fixes and with several major modifications. A with 2167A. Report generation and action documentation
programmer will start up the UDE and create a new were cumbersome at the time we tested the UDE, but in
database for the code package. He/she will then "import" subsequent releases, this feature is much improved.
into the database requisite source files, text files
containing documentation, and any other files needed to Our initial reactions to the UDE were favorable,
generate the executable file(s) and documentation. Ali of and it was decided to evaluate the UDE under realistic
these files become parts of the baseline version, which is conditions at a contractor site. Rather than per'form a
immutable, lengthy evaluation, which would be required for code

development, it was decided to evaluated the UDE for
To fix a bug, the programmer obtains a copy of code maintenance, version control, and CCRs.

the immutable source code and proceeds to debug it. The
original baseline is not changed by this process. At some
later time this bug fix and others will be reviewed and, if The Field Prototype
acceptable, incorporated in an updated (and immutable)
version. Acceptance of the revision could require that A prototype similar to the Argonne prototype was
sufficient documentation be provided for inco_por'ation established at a contractor site for field evaluation.
with the new version. Funding constraints precluded integration of a production

Fortran compiler into the BackPlane and limited the
Major changes can utilize parallel branches for magnitude of the field evaluation. The field test and

simultaneous, totally independent code modification, evaluation were arranged for code maintenance of an

When ali branches are finished, differences between existing, 600,000-line, Fortran source code. In brief,

branches are manually resolved, documented, tested, evaluation was planned tbr baseline establishment and tbr
! validated, and finally made into yet another version. CCRs. Ali results obtained using the UDE were verified

by comparison with code maintained and changed
'_ Only (immutable) versions are released for following established procedures. Specific details of't
i distribution. Because each version is identifiable through contractor tasks are provided in the next two major
! its unique identifier, released versions are identifiable sections of this paper.

unless deliberate efforts are made to delete identities.
I Baseline Establishment Methodology

I UDE Prototype Testing. The prototype was tested

! extensively at Argonne for ease and speed of learning, Database design. Bec,.use a database is being
' ease of use, adequacy of manuals, information supplied created by the UDE, care in d_.,abase design and creation

by the UDE, configuration management capabilities, to assure completeness, flexibility, and expansion is
action documentation, report generation, release mandatory. The structure of the database must be
management, version control, and integrity of system consistent with tlae directory structure previously used for
releases, maintenance. Thus, although baseline creation occurs only

once for a given code and version creation may occur

Typical large software packages, including the several times, well planned initial baseline creation is very

UDE, follow a fairly rigid logical operation procedure, impotent. The structure of the initial database will affect
: The typical user learns to conform to this procedure fairly versions created later. Special attention will have to h_

r li' _11" _1.... lilt.... lr.......... " "rl"';"?ll'_',' ',, "1..... I, _ _.,...rrlllll_I_,,rN .,,,,,._1._. ar.,._........ r....... H'_P""I_I"''HIII__r '_Pq_l""_hP'll'""' ,'lr" ' _1_,_"_!1_H"rl_r'_1!2r_"'_.,,1'"'1111_11," '' "ll_ I ' II _l II_laIIIa lli!,lI '_ _IlllIl_ rllIlliMlIIIlll_rll_iIMtll[_l_lI_I_MI

,,,.,,

paid to the source code, which specifies files in other Fortran_main components can be compiled, edited,
directories (e.g., INCLUDE statements tbr source files executed or debugged.
and open statements for &ira or output files). File naming
conventions will requi_e special attention to avo;d identity Database access control. The context feature,
complications caused by duplicate file names (native together with read and write permissions, grants or denies
operating systems permit duplicate file n_me for files in access to database objects. Different contexts may access
different directories, while the BackPlane does not). different portions of the database. F_r example,, the

project manager's context would have access to ali
Database creation and loading. The contractor collections and components. Program users utilize the

was charged with actually creating the database, loading it etde for their own purposes, while programmers maintain
with ali requisite files (i.e., "acquiring" files from the the code. Thus, users' contexts would only permit them to
native operating system as objects in the database), and access executable objects, data components, and some
demonstrating that a correctly operating code can be documentation. Programmers' contexts would permit them
generated from the UDE. to "see" source components, object components, etc.

Quality Assurance (Q/A) staff would have contexts
Native operating system O/S) accessibility and _llowing them to view their documentation components.

utilization. Access to the native O/S, from within the The UDE's flexibility permits the project manager to
UDE, must permit utilization of software tools and CASE define contexts to suit his/her particular needs. An
tools not integrated into the prototype UDE. For instance, important design requirement of the database is to
access to system information is provided by native establish contexts.
operating systems, and could be made available through
the UDE by simple integration procedures. In a UDE with Immutability. After the entire source code is
a minimal number of integrated tools, facile access to the imported into the UDE, tested, verified, and validated, it
native O/S would almost certainly be mandatory, is ready for "checkin". Once checked in, the baseline is

permanently established, lt is immutable. Clearly,
Implementation of event logging. In placing "checkin" should require prior management approval.

(acquiring) a h'u'ge number of files into the UDE, a log Further code modifications are easily performed by
file should be generated to provide a permanent, detailed "checkout" of objects to be modified. Modifications can
record of the process so that successful acquisition may be incorporated into new versions checked in later -- the
be verified, and problem areas adequately documented baseline cannot be modified. The contractor was _ked to
and readily detected, demonstrate that the objects in the baseline were indeed

immutable.

Internal collection type utilization. The native O/S
term "directory" or "sub-directory" becomes "collection" Historical records. The UDE tracks and maintains
or "sub-collection" in the BackPlane. A collection is records of every "checkin" and "checkout", together with
analogous to a directory. However, a collection has the user-supplied comments accompanying these actions.
properties, unlike a directory. These properties include The contractor was required to determine which level of
fortran...l_roject, ccode, internal_text (the catch ali enforceable documentation should be required and to

property), binary, method_map, isb_pool, etc. Other demonstrate that necessary and sufficient documentation
collection properties are possible. Properties serve to keep was thereby generated.
similar objects together. A collection is an object in the

database, and in the Object Oriented Programming (tOP) UDE Chan_e Procedures_ Manzgement, and Tracking
paradigm, an object must have enough intelligence (i.e.,
properties) to respond to messages sent by the program. With the establishment of the immutable baseline

complete, the next step is to set up change procedures:
In the UDE, a component (of a collection) is CCRs. Project SoftBoard was designed by Atherton to

indivisible: the smallest possible o_ect, lt is equivalent to manage these requests.
a file on the VAX. For example, a component may
contain a Fortran subroutine or function. Unlike files, Simple change implementation and tracking. A
components have properties such as ADA, binary, simple change request might be a minor bug fix. The user
c_source, forlran main, foru'an_subroutine, text, and so detecting the bug would submit a CCR documenting the
on. bug using the PSB facility. Then the designated software

person, following established procedures, would determine
Collection and component properties simplify the the course of action to be taken to respond to the CCR.

job for the user. Fortran_subroutine components, at user He/she could designate a certain programmer through the

direction, will be candidates for editing or compiling. UDE to investigate the bug; a priority could be assigned

................... I1............. I_ r[, ' _,,,m 111, I[11[.... II,Ir _11,.... qlSfl 11' I1'_I r_I1 , li!, rl,........ I_r i_i',=,,'fllln "r_l'lllll_[',_'l_,"=l lr' IIIr rl' ,Iii, rill _lll_iiiifllr,.._,r.ll,, ,el_,sl_,_'lm'l_ilFFI', ',_r 'l"= 'IIl!rl''- =v ',I......rfllIl'

8'

_ to the CCR; a deadline could also be created; ali of these documentation object, etc. Due dates or deadlines are set
actions, as well as tracking, are supported by PSB. when CCRs are created. Thereafter, users are

automatically notified when the due date arrives or when
Typical operations with CCRs include 1) opening corrective action is overdue.

new CCRs, 2) displaying existing CCRs, 3) displaying
newly created CCRs, 4) querying CCRs on specific Baseline Establishment Findings
criteria, 5) printing CCRs, and 6)closing existing CCRs

by changing their status to resolved, rejected, or deferred. Database design, lt was found that the
In addition, CCRs may be. linked (related) to one another, BackPlane's collection structure is very similar to

, may be linked to users, delegated to other users, or directory structures commonly found with moclern file
!

| forwarded to other owners. Tracking of CCRs may be management systems. "Include" files were thought to be a
i achieved through querying CCR status and/or history, possible source of difficulty, but that could not be verified
| during the evaluation. The BackPlane will not permit two

Multiple change implementation and tracking. For files in a database to have identical names even though
more multiple changes, each programmer might check out located in different collections or subcollections. This

a branch. Within his/her own branch a programmer could problem did not arise in the evaluation; in any case, good
modify code without affecting modifications made in configuration management practices normally require ali

another branch by another prograrnmer. 'I,'hus, multiple, files to have unique names. The contractor found no_ parallel changes can be made independently. Ali of the problem in database design, or in the actual database
change management capabilities described above are creation.
available for this more complex case.

Database creation and loading. Creation of the
Reconciliation of multiple branches for new database was no problem, but loading the database with

baseline or version establishment. When modifications are all 0ae source files proved somewhat difficult at first. By
completed, the project manager may decide to create a experimenting with different methods, it was found
new version for release. The initial baseline is called relatively easy to create "_ript" files (known as
version 1 by the UDE. To generate version 2, differences "command" files on some systems and "batch" files on
between different branch versions must first be microcomputers) that performed the task (as a background
reconciled. Unfortunately this is a manual task. Q/A and job) satisfactorily while generating a log file to indicate
validation and verification (V&V) are required. After any trouble spots.
formal approval, the "checkin" procedure will create

version 2. Now both version 2, the new version, and Native O/S accessibility and utilization. Ready
version 1, the baseline, are immutable and available. The access to the native O/S is available from within the

contractor was tasked to study multiple changes and UDE. Further, it was found possible to create directories
branch reconciliation only if time permitted, in operating system that mirrored collections maintained

by the BackPlane. Hence, it w_s possible to take
Documentation of changes. PSB provides extensive advantage of the native O/S using these

capabilities for complete, printable records of CCRs and directories. Changes in directories are mirrored in the
their dispositions. The report shows the status of each collections.
CCR: completed, open, closed, etc.

Implementation of event logging. The BackPlane
Differences between collection versions and generates logs of user activities. Also, it provides

component versions. Differences between component numerous opportunities for the user to comment further
versions can be displayed using the native O/S on activities. The challenge to the user and manager is to
"differencing" facility. Differences between collections are limit these records to a meaningfully short discourse.
indicated as differences in version numbers of objects Otherwise, the logs can become so voluminous that
attached to the collections. Differences ,are important in desired information is virtually impossible to find, even
documenting changes, using sophisticated text editors. The contractor chose to

provide comments only when tasks were completed,
Correspondence establishment and utilization; feeling that this method provided manageable

Deadline notification. A correspondence is a relationship documentation.
between two component versions. If one component is
changed, a notification message is sent to the other Database access control. In the UDE, contexts are

components for which correspondence is established, used to determine who may access which database object.

Thus, the programmer is notified of changes that may The contractor found it possible to establish contexts for
affect his/her work, and other objects are notified when a this purpose, but had no time to explore the context
programmer makes changes that affect the corresponding capability at length.

............ ,, 'lure,,,,r,T...................... ,,_, ,, _r _',_ ,_ ' 'l,n_nnln',m,,,,',_r,tr,...... n,I,lll;_ltln,,vnrr,,qrsr...... '_rl'pM',llp......._lpr......."n"'_lqllll_n"Ir"'"_'1tlI1'..... II!lr" Inlll,_P"_n_''nr_'wl"'""n_'rl'' '"I_r _In"q'sn"lrl_'_nl'_' al,'rlnlrllllql='_lqn_nmlllll!pl

lr"

" Immutability. The UDE was found to create Even more encouraging is the reaction of the
immutable versions successfully, programmer who performed testing in accordance with

the scenarios. Initially he was opposed to the UDE, but
Historical records. By providing comments at when file evaluation was completed, he stated that he

"checkin" time, satisfactory event documentation was liked the UDE and was in favor of its utilization.
created. To create a readable document for future usage,
we feel that this documentation could provide the basic Speed limitations. Most of the evaluation was

_ facts for an edited document having additional performed using a common but dated super-minicomputer

iJ explanatory text and statements relating different, that performs slowly in comparison with currentsequential paragraphs, engineering workstations that have been on the market for
several years. Atherton no longer markets its software for

Component Chan_e Request Findings that hardware platform. In the preliminary evaluation at
Argonne, the UDE, running on a state-of-the-art

Simple change implementation and tracking. The workstation, responded promptly except for the initial
contractor was able to simulate a CCR issued by the startup of the UDE which requires one or two minutes.
sponsor to the code maintenance contractor. The
contractor felt that an electronic CCR was far superior to Terminal limitations. The UDE was designed to be
a hand-writ,en piece of paper, which could get lost or operated in a windowing mode, although it can also be
might be illegible. The user can attach a comment to the operated in the ASCII mode. Utilization of the UDE
CCR as a permanent part of the CCR documentation. A without a bit-mapped terminal that supports windows was
new version of the entire code was easily generated, determined to be unsatisfactory.

Multiple change implementation and tracking. Learning curve problems. During the first half of
Time constraints did not permit full evaluation of this the evaluation, the contractor perceived numerous
capability, problems, but they were resolved as he moved up the

learning curve.
Reconciliation of multiple branches for new

baseline or version establishment. The contractor felt that Other problems. Other problems are being resolved

this procedure could be performed using commercially by Atherton as it refines and extends UDE capabilities.
available software that could be integrated into the Only one or two minor problems reported by the testing
BackPlane, time and funding permitting. No further work contractor have no currently planned resolution,
was done.

Disadvantages. Being compelled to work under the
Documentation of changes. This topic is covered UDE places a burden on the programmer. This burden

above in the simple change evaluation report, has been estimated at a 6% overhead of his/her workload.
This seems a small price to pay to ensure that proper

Differences between collection versions and methodology and procedures are followed.
_, component versions. This topic is adda'essed above under

multiple branches. Conclusions

Correspondence establishment and utilization; What has been accomplished thus far is to
Deadline notification. These features of Project SofIBoard demonstrate that the UDE has potential for standardizing
were found to be very useful, software development procedures. The BackPlane and

Project SoftBoard have the flexibility to be tailored to the
. degree of procedure enforcement desired by the sponsc,,_.

Further Evaluation Observations Tools to enforce workflow methodology and to require
the user to supply requisite documentation can be devised

General. Management involved in the evaluatiot: at and integrated into the UDE, as desired. Workflow
the contractor site had a favorable reaction, especially methodology enforcement will require clever software
noting the merits of CCR management by PSB. We have tool integration. Unfortunately, time and money
been told by a reliable source that the testing contractor limitations prevented exercising the UDE in this way.
has approved a request to acquire the BackPlane and
Project SoftBoard, subject to the speed limitations Similarly, we were unable to test other advantages
reported below, offered by the UDE such as interoperability,

transportability of code, transportability of users and

programmers, data interchangeability, and utilization of

_' CASE tools to aid in development an d maintenance of
codes.

We believe that the UDE can provide improved
control for DoD such that its burden of inoperative and

flawed software provided by contractors could be
substantially rexluced.

Acknowledgment

Work supported under a military interdepartmental
purchase request from the U. S. Department of Defense
through the U. S. Department of Energy contract W-31-
109-Eng-38.

References

1. Paseman, W., "Architecture of an Integration and Portability Platform", Compcon 87, page 1.

2. Black, E., "Software Configuration Management with an Object-Oriented Database", USENIX, January 1989, page 1.

3. Marco, A., and Buxton, J., "The Craft of Software Engineering", Addison-Wesley Publishing Company, Wokingham,

England, 1987.

4. Hekmatpour, S., and Ince, D., "Software Prototyping, Formal Methods, and VDM", Addison-Wesley Publishing
Company, Wokingham, England, 1988.

Ii

5. Department of Defense, "Military Standard DOD-STD-2167A", 29 February 1988.

!

;i

I

!, DISCI_AIMER

,'i This report was oreoared as an account of work sponsored by an agency of the United States

ill the United States Government nor any agency thereof, nor any of their

l w

',', Government.employees, makesNeitherany warranty, express orusefulnessi DI.mr_ted, ofor anyassumesinformation,any legalapparatus,liability or responsi-or

i bility for the accuracy, completeness,itsOr would not infringe n y owned rights.Pr°duct'
Refer-

i'
:!i process disclosed, or represents that use or serviceriVatelby

trademark,trade name,

--'/* ence herein to any specific commercial product, process,
ii manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

favoring by

_, mendatiOn,andopinions°r of authors the UnitedhereinStatesGovernment or any agency thereof. The views
exr,ressed do not necessarily state or reflect those of ther

i!i United States Covernmc-t or any agency thereof,

rI
1 ,,_,q,,......... ip_,el,,.......... ,_,,r rn,,,_l_,'l_llr_,__1,,,lIil.... _,n,,,,,,r', III,' ,' "ll,l'_llll't'_'_''",_IrJl',_lllrll' 'rl_'.'P_pll_.... , r, ,., IIqprl',l,,lIFt*01'_Fn_rll{r'r_'lP"_'ll_"m'[llIqltll

i " ,,,i_',,',hl''qm'I' ,i....,Irl,_,,,_,,',,iil....... _,,,ppqlr',,,"'IllI'llrq llil,l,_llrll,_r,l_ir, ,_iUr'_r....1111fllqrl,lllq,,qurlmrll,ipll,r'_,lqlm'IIlli_ll',"_rp'II_)r'_I"IUIl'p='r"p'_l'_'_,lln,,rqll_ll,,_l,11r,_,,"nl',ll'"',"H !ll)I!_l'r'

J

t

• .'.. JL I III r • I -- ,_,li.l II , '

