
,t,

, , LA-UR-9o-3692
LA-UR--90-3692

DE91 001850

Los Aiamos NahonaL Laboratory iS operated by lhe Umversfty of Cahfornta for the Un_ted Slates Department of Energy under contract W-7405-ENG.36

TITLE OBJECT-ORIENTED INVENTORY CLASSES : COMPARISON

OF IMPLEMENTATIONS IN KEE (a frame-oriented

expert system shell) and CLOS (the Common Lisp

Object System)

AUTHORi'S) Richard R. Silbar and H. W. Egdorf

SUBMITTED TO 1991 Western Simulat ion M.ulticonference,

January 23-24, 1991, Anaheim, CA

DISCLAIMER ,..,

This report was prepared as an account of work sponsored by an agency of the United States

Government- Neither the United States Government nor any agency thereof, nor anYresponsi.Oftheir 0 "
e,mplo)ees, makes an)v, arrant'y, expre_ or implied, or assumes an)' legal liability or _O\J '_)1_t_0
biht_ for the accuracy, completeness, or usefulness of any information, apparatus, product, or

" .

prc,ce:._ dl_cl,:_cd, or represents that its use would not infringe prwatelv owned rights. Refer-
ence herein _o an) specific commercial product, process, or sera'ice by trade name, trademark,

manufacturer, or other,aise does not ,,_ecessaril) constitute or impl); its endorsement, recom-
mendation, or favoring b? the United States Government or an, agency thereof. The views
an_ OOlmons of authors expressed herein do not necessaril) state or reflect those of the
Un,ted States Government or any agency thereof,

B, accep,a-',:e _, r,-,,sart,cre the p_._ohsher reco-4r,,zes that the O S Government teta,ns a nonexclus,ve royalty-free hcense to pubhsh or reproduce

t_'e D_r__s.-ed _,:_rr',_ :'j, r'_,S COntr,but,on or tO allow others to do so for U S Government D_rposes

Tr:., L..35 A _3'_ r,at 9">,?t Latboratory req_.,ests that the pubhsner _dent,ty th,S art,cle as wOr,. pe,formed under the ausp,ces of the U S Department oi Energy

Los Alamos, New Mexico 87'545
'5 " h,,3 2_2':, 5 J3!

Object-Oriented Inventory Classes:
Comparison of Implementations in KEE and CLOS

Richard R. Silbar and H. W. Egdorf

Los Alamos National Laboratory, University of California,
Los Alamos, New Mexico 87545

ABSTRACT 1987) to the simulation of the manufacturing processes.
The general OOP description of a manufacturing plant

The modeling of manufacturing processes can be might also involve objects representing a foreman (for
cast in a form which relies heavily on stores to and decision-making), a controller queue, workcenters and

draws from object-oriented inventories, which contain parts, as well as inventories. In a working simulation
the functionalities imposed on them by the other ob- there would be generic class-objects which would be

jects (including other inventories) in the model. These fleshed out with member-instances, such as particular
concepts have been implemented, but with some dif- inventories or workcenters. The instance-objects com-

ficulties, for the particular case of pyrochemical oper- municate with one another by passing messages; aa
ations s.t the DOE's Rocky Flats Plant using KEE, a object receiving a message chooses to deal with that
frame-oriented expert system shell. An alternative ira-

request according to coded methods incorporated ia
plementation approach using CLOS (the now-standard the data structure for the object itself.
Common Lisp Objec, System) has been briefly ex-
plored and was found to give significant simplifications.
In preparation for a more extensive migration toward At LANL we have undertaken a discrete-event sim-
CLOS programming, we have implemented a useful ulation of the pyrochemical manufacturing processes
subset of CLOS on top of the KEE shell, at the DOE's Rocky Flats Complex (HODGE, SILl3t_t

and KNUDSEN 1990a). In this work we worked ia
the OOP paradigm (HODGE, SILBAR. and KNUDSEN

I. INTRODUCTION AND BACKGROUND 1990a), testing the concept of object-oriented inveato-
lies discussed above (SILBAR et a2. 1990). Our initial

A manufacturing process involves draws from a prototype was implemented using Sun-4 workstations

number of inventories of different types--inventories running the KEE expert system shell (INTELLICORP
for materials and resources_and it eventually stores 1989).

: products and residues to appropriate inventories and
returns resources to their inventories. The inventories

may be concrete (e.g., a supply of chemical beakers) In the following, Section II gives a brief discussion
the general types of inventories needed for process slm-or abstract (e.g., a recording of operator exposure to

hazardous materials), ulation. Section III goes into the KEE implementation
of the generic inventory classes in more detail, layi_g

Inventories can play an even greater role in process out functionalities, slots, and inherited behaviors and

modeling when one allows them to carry their own some of the implementation issues we addressed. Sec-
functionality. For example, one task that might be tion IV describes how many of the problems found ia

performed by an inventory is keeping a history of its our KEE implementation can be avoided using CLOS.
draws and stores. Or, a draw request on some inven- The last major section discusses how we implemented
tory might trigger other actions, such as calling for a a substantial subset of the CLOS standard within the

" draw from another, related inventory or for starting up KEE environment. This provides a programmer the
a whole new, related production process, option of developing his or her model simulations in

a higher level, more disciplined language. The paperPlacing functionality in inventories is an object-
oriented programming (OOP) approach (e.g., Cox closes with a summary and notes some questions to beaddressed in future work.

II \ I_ II
// \/__...)DRA¥- PARTIAL

// /r,_NTI_L-_,._/ /,,,./
/// / \-_-_$TOiIE-PARTIAL

_ //_S _OIE-LIMITE_--_$ TORE-LIMITE|-¥AITING

4 _/AITING_w"

Fig. 1. Hierarchy of inventory classes. (Tangle graph created using KEE.)

II. GENERIC INVENTORY CLASSES capacity to store, nor can one draw more items
than there are.

In brief, inventories should inherit their behavior
from the following set of inventory classes. More de-

tails, along with examples, are given elsewhere (SILBAR Waiting-List inventories - For certain critical
et al. 1990). resources--such as a particular kind of equip-

meat, material, or storage space---a process may
Simple Draws and Stores- These invento_es slm- have to wait until that resource becomes avail-

ply contain some bulk amount of a material or re- able. Such inventories maintain waiting lists f_r
source, and a draw or a store just decrements or those processes which have made unsatisfied re-
increments the inventory level (a number). These quests. When a subsequent store or draw makes
simple inventories have no limits on the quanti- the resource available, the (oldest waiting) pro-
ties drawn or stored. We need to distinguish a cess is informed to make its request again.
draw function from a "negative store" because a
given inventory often needs to differentiate be- Partial inventories - Inventories that accumulate

a bulk amount that will eventually form a com-tween these two functions and because they can

involve different arguments and side-effects (see plete unit (e.g., residues which are packed in a
below), drum). Such inventories typically pass the com-

pleted unit along to a parent item-inventory _u_d

Sub-Inventories - Inventories for which, say, a store re-initialize themselves to start a new unit.

must also increment some patent inventory. In Trigger inventories- Inventories which invoke some
fact, there might be a whole hierarchy of sub- special action when a threshold is reached. There
inventories contained by higher-level inventories. may well be several such thresholds and resl)on_

Item inventories - Inventories which track individ- functions for such an inventory.

- nal parts (which might be complicated structures
On _op of ali these inventories is a generic top-levelin their own right) rather than a bulk amount.
object, of which ali inventories are subclasses. Figure

Limited inventories - Inventories which have un- 1 shows the class hierarchy for these general classes
derflow or overflow functions which are invoked of inventories and how they inherit functionality from

when a draw or store request bumps into a floor one another. Note the doubling of types for draws and

or ceiling. One cannot store more than there is stores.

Functionalities axe not only inherited by, but can be documentation strings, commenw, and ease of main-

compounded by subclass inventories. As a result, be- tenance and transportability. There is a draw-back to
havior tends to become more complex tile lower down this, however; we were unable to take advantage of th_
the hierarchical tree one goes. Figure 1 shows the mul- KEE "wrapper-body macros". Because we were work-

tiple parentage of the generic inventory classes; Store- ing with compiled defuns, it was necessary to restrict
Partial, e.g., is a subclass of the Store, Partial and Sub our coding to "before" and "after" wrappers. These
inventory classes. Inheritance of behavior from multi- consisted of a few lines of code (containing compiled
pie parents allows us to exploit the existing technology defuns) that were then inserted with the proper KEE
of flavor-mixing and/or wrappers, syntax in the respective method slot. The lack of KEE

wrapper-bodies led to some complexity in the logic of
Not shown in this hierarchical diagram are any in- storing to and drawing from inventories.

ventory instances. In the RFP pyrochemistry model,
there are about 75 different inventory instances. Many Store ar.d Draw inventories were treated in a l)aral-

(if not most) of these inventory instances are a mix of Icl fashion, except that the store method may require,
some number of the generic inventory classes shown as an argument, a list of items to be stored and that

in Fig. 1. For example, the inventory named MSE- the draw method may return, in addition to a keyword
F_ACF..S is an example of a Draw-Limited-Waiting :SUCCESS and the quantity drawn, a list of the items

inventory (of an equipment resource) which inherits drawn. To simplify the following discussion, we dis-
behavior from the Draw-Item, Draw-Limited, Draw, cuss only the case of drawing. Storing to an inventory

Item, and Waiting classes. It is also a Store inventory; is handled in a similar way.

otherwise there is no sense waiting for a furnace to be- Consider the case of a draw-inventory instance
come available. It happens in fact to be a Store-Item which is a member of several different inventory clmsses,
inventory, i.e., an inventory which has a "wrapped" draw func-

tion. There are two major methods involved in draw-
III. THE KEE IMPLEMENTATION ing from such an inventory, a predicate called DRAW-

FAILS? and the DRAWfunction itself. As the names

The functionality of an inventory, in our model of imply, the first method checks to see if a draw is pos-
the RFP manufacturing processes, is largely assembled sible and the other actually performs the draw.
through inheritance of behavior filtering down through
the hierarchy of class objects to the member instances. The DRAW-FAILS? method consists of a basic tulw-
That is, a given inventory is usually completely speci- tion that is performed by every invocation of the

fled by assigning it as a member instance of some set of method plus some "before-wrappers" for handling the
parent inventory classes (although, in principle, a given mix of constraints that must be checked before a draw
functionality for r_ inventory instance could have its can occur. (DRAW-FAILS? is, in fact, always called ev-
primary method overwritten with its own special rune- ery time DRAWis called.) To simplify program logic

tion). The following describes some details of how this (within the constraints of the KEE software), DP,AW-
was done in the framework of the KEE software. FAILS? has, by fiat, no after-wrappers. The method

returns nil if it is ali right to draw, i.e., ali the cou-
First, OBJECT provides two accessor methods, GET- straints on this inventory can be met. Otherwise,

ATTRIBUTE and SET-ATTRIBffrE, for reading and writ- BRAId-FAILS? returns a list of keywords which indicate

ing slot values. These methods a.re also ava.'t!able to any where the draw would fail and why. For example, the
child of 0['JECr. (In practice, only those attributes that retl, ru value might indicate a failure to draw becaus(_
hz:ce been declaxed "public" can be accessed this way. the inventory's parent inventory is of the Draw-Limited
This allows the prograanmer to reserve some "private" type and the draw would drop that parent's inventory
slots for internal use.) Further down the hierarchical level below a floor. These keywords can be very use-

inventory tree there axe methods for other functional- ful for development and debugging purposes, as well _
ities, such as GET-AVAILABLE-INVENTORY,DRAW,etc. for the planning that other objects in the simulatiou

model might undertake in the case of a failure.In KEE, methods axe stored in special "method

slots", either as named LISP procedures or as explicit The DRAW-FAILS? method has an optional argu-
lambda forms. We chose to ,;tore ali our methods in meat SIDE-EFFECTS, which, if nil (the default value),
LISP files, which we compile, rather than in the KEE means that DItAW-FAILS? acts as a pure, standalozlc

knowledge base itself. This allows us to have use of predicate. If SIDE-EFFECTS is set to t, however, the

method accumulates a list of side-effect actions that draw held, and if so, completing that draw. ttowev¢'r,

will be performed by the generic DBJtWmethod if and a WItAPP_ODY in KEE is net a true function but ft
only if all tile DRAW-FAILS? before-wrappers return nil special marker which is replaced by the KEE meth(_(l

(i.e., there are no failures). That list is stored in a pri- combination mechanism. One therefore cannot simply
vate slot (in each inventory involved), A-T0-EVALUATE- replace it with a defun name and have the argun_¢:llts
IF-0K, so those side-effect actions will be available to for the composed method come out properly. (WRAP-
the subsequent DttAWmessage. PEP,BODYgets evaluated twice.) This is not a prob-

As an example, a Draw-Sub inventory will put a lem for BEFORE and AFTEB.wrappers in KEE, just f(_l'

message oa A-T0-EVALUATE-IF-0K to carry out the WB.APPEBJBODYs.In fact WtLAPPF_,P.BODYswork well wh(_ll
draw from its parent inventory. Similarly, a Draw-Item the coding is e.ltered directly into the method slot._ (_f
inventory puts on A-T0-EVALUATE-IF-0K a function a KEE tcnowledge base as lambda forms. Havi_g t_
which removes an item from the inventory item-list, "handcraft" wrapped methods, however, dees a¢_t til

well into our design decision to use compiled mctho(l._
checking that the number of items in that list is con-
sistent with the inventory level (the number of items), flies and to build and load the KEE knowledge ba._(_s

programmaticaJly. This is, to a large extent, why wc
On the other hand, the DI_AWmethod is often just decided to use two methods, DRAW-FAILS? azl(l DRAW,

the generic version and contains only after-wrappers, as described above.
if any. There are in fact only two cases:

Another complication of the KEE software forced us

For Trigger inventories, the after-wrapper checks to to keep the inheritance tree for methods relatively shal-
see if a threshold has been reached or passed. If so, low. This was for the following two reasons. The DRAW-
it then carries out the particular response function FAILS? before-wrapper for Draw-Limited-Waiting, f(_l'

(defined separately in the methods file) associated example, will be performed before that of i_s I)al'¢'llt,
with that threshold. Draw-Limited. This may not be what the progral_-

For a Draw-Limited-Waiting inventory, a successful mer/developer always wants. Also, having most llc_t-

store may allow some waiting process to have its ing go to only two levels, as in Fig. 1, gives the pl,_-
draw request serviced. If so, that waiting item is grammer better control over what is being done aJ_(I
removed from the list and a "run" message is sent when. (At an earlier stage of our development, we had

to the waiting process. The sleeping process awakes considered Draw-Partial to be a subclass of Draw-Sul_.)
and attempts another draw (which should now be
successful). I'V'. A CLOS IMPLEMENTATION

After decrementing the inventory level, the main As we have seen in the last section, the problem witll

DRAWmethod evaluates each side-effect function put in the present KEE implementation is that the inability
the A-T0-EVALUATF.-IF-OK list by DP.AW-FAILS?. On to use KEE WB.APPERJBODYsprogramatically for(:_s u_,
exit, DI_AWalso resets A-T0-EVALUATE-IF.-0K to nii in to write an an extra method, CAN-DRAW?. This fu_('-

preparation for the next draw requesL ties checks the constraints that a particular invent(_ry

For calls to DRAWfrom parents of sub-inventories, instance has to satisfy, such as whether it can ([l'aw
which must be handled with some care, an optional from a parent inventory or hits a floor or ceiling. CAN-

boolean argument FAILUP,E-CHECK (which is t by de- DI_AW?writes out_ to private slots, error messages if it

fault) can be set to nil to avoid re-invoking the DP,AW- can not draw and, if it can, the side-effects that ar_ to
FAILS? method with its SIDE-EFFECTS argument set be evaJuated.

to t. This avoids over-drawing grandparent invento- It appears there can be considerable simplifications

ries. in the coding of the inventory class hierarchy using

Most of the above complication involving private CLOS (e.g., BOBROW eta/. 1988, STEELE 1990) over
slots and boolean arguments results from the inability the present version written using the frame archit('¢:-
to use KEE WP,APPF2UBODYsprogrammatically, that is ture of the KEE shell. As an experiment, we tric(l t(_

to say, with compiled defuns defined in a methods file. see how things would look in a CLOS implement_ttio_
This was a disappointment to us, since the ability to of inventory classes. The test code included definition
do so would have been very useful for checking, e.g., of the Inventory, Limited-Inventory, and Sub-Inventory
whether the conditions to be satisfied for a successful classes and the draws and stores to/from them. (\Vc

did not bother trying to include functionality for recov- V. IMPLEMENTING CLOS ON KEE

ering histories and the like; there should be no prob- Motivated to some extent by the desire to u_(,
lems in doing so, if desired.) the newer CLOS syntax, we came to consider l,(,w

The basic point is that, because of the ability in one might integrate it with KEE. Eventually we r('-
alized that, because they had similar at)I)roa(:ll('s t()

CLOS to invoke call-next-method, things become method inheritance and to method combinatioll, til(,
much cleaner and easier to read. There is no need to in- two different-appearing programming styles couhl ill-

yoke a DRAW-FAILS? sub-call at ali (although one might deed be largely reconciled. This line of thinkitlg th('ll
wish one in any case). Nor is there any need for the pri- evolved into an implementation of the CLOS laz_g(i,g(,
vate slots A-FAILUKE-LIST and A-T0-EVALUATE-IF- and syntax on top of the KEE shell (EGI)ORI ._ 1990).

OK. These simplifications are illustrated by the follow- This has the obvious advantage of retaining ali til(.

ing code fragments for the DPAWgeneric function: other useful features of KEE, such a.s the gral)hi(,._ _ll(l
rule-reasoning capabilities. It is also optional; the l)r()-
grammer need only use the CLOS super-structure if tic

(defgoneric drae (inr amt)) desires to.

(defnothod draw We now describe briefly how the CLOS syntax is

mapped onto the KEE core-functions, indic_tting sot_lo
((inr inventory) amt) of the limitations of our KEE implementation.

(doel (level tar) amt)
First, a subset of the CLOS meta-object i)roto('()l

'(:succeU ,(name inr) draw ,amt)) is defined. Every class (defined by the CLOS fil11(,-

(defmethod draw tion defclass) is an instance (i.e., a member-chihl) of
Standard-Class or one of its subclasses. Moreover,

((inr limited-inventory) amt) every such class is also a subclass of Standard-0bj ec t,
(if (< (- (level inr) amt) (inr-floor inr))

The CLOS construct (defclass ...) is built oil tel)
'(:failure :draw-hit-floor ,(name lav)) of KEE'S core-function (create.unit ...). CL()S

(call-no_t-nothod))) slots are slots in the KEE unit representing a (,la._
which will have instances (member units) defined fat (_'r.

(defmethod draw The :accesser functions are limited, being built ;_s

((inr sub-invQntory) amt) defuns rather than true generic functions, also, (,ll_'
class option, :default-initargs, and some slot ()p-

(let* ((drau-parant (draw (parent inr) amt))
tions, ":allocation :class" and ":initargs", at'o

(retpar (car draw-parent)) not supported in the present implementation.

(rostpar (cdf drata-partnt))) The CLOS (defgeneric ...) construction simply

(tr (eql rotpar :failure) turns into KEE's (unitmsg ...). KEE does ali tll(_
work of the method combination. A generic fu|lt:tioll

'(:failure : camaot-drat_-par_mt
is not automatically created, however, by this versiolt

, (nam. inr) ,re-tpar) of (defmethod ...) ; the programmer must exl)li(:it ly
(call-next-nethod)))) define the (defgeneric ...) belorehando The CLOS

options :documentation and :method are SUl)l),-_t't('_l.

where the functions level, inr-floor, and parent The (defmethod ...) is defined as a macro wl_ierli

are CLOS accessors for those slot-values (defined in adds LISP forms to the corresponding method slot in a

the appropriate defclass statements). KEE unit. KEE performs the task of method coml)ina-
tion in its own way. In contrast to full CLOS, only tht_

The simplicity of the above code, compared with first parameter is specialized. This reflects KEE's ewa-
. the KEE version we implemented first and discussed ership of methods by a class. Because the implemettt_t-

_ at length above, suggests that generic inventory classes tion does not try to compile the (combined) metho_l._,
implemented in CLOS would be both simpler to ex- (call-next-method) is simple, being implemented a,_

plain and to mMntaJn, a KEE WRAPPERBODY.

Q

Two other CLOS functions that are indispensible is a very useful enhancement of KEE that may bc of
are make-instance and slot-value. These are de- interest to the community at large.
fined using KEE's create.unit and get.value (or
put .value in the case of a setf function), respectively. REFERENCES

We have recently reformulated our RFP model us- D.G. Bobrow et al., "Common Lisp Object System
ing this CLOS implementation on top of KEE. (In Specification',X3J13 Document88-002R (June 1988).
the process we have de-emphasized the central role

B. J. Cox, Object.Oriented Programming--An Evolu.of inventories and given more emphasis to an event-
architecture style for the discrete-event simulation.) tionary Approach, Addison-Wesley (1987).

Our experience has been quite positive. The lack of H.W. Egdorf, "A CLOS Implementation ell Top of

'.initargs and other parts of CLOS not in our lm- KEE', presented at Conf. on AI in the DOE Coml)h'x,
plementation is not crippling. As a benefit, the code Idaho Falls ID, October 1990.
size of the model is much smaller than that using KEE
core-functions and, perhaps, the learning time for a C.A. Hedge, R. R. 5ilbar, and P. D. Knudsen, (a)
newcomer to the programming style is shorter. The lm- "Modeling Nuclear Materials Processes", annu,_l meet-
plementation certainly "works" in the small test cases ing of the Inst. for Nuclear Materials Management, Los
we have built to now. And, at the least, use of this en- Angeles CA, July 1990. (b) "Interaction of Objects izl
hancement now should ease any future migration from Manufacturing Process Simulation", Simulation Work-
KEE, a proprietary product nearing the end of its sup- shop, bi-annual meeting of the Am. Assoc. of Artificial
ported life, to a more standard CLOS programming Intelligence, Boston MA, July 1990.

environment. IntelliCorp, Inc., Knowledge Engineering Environmeut,
a software package referred to as KEE, June 1989.

KEE is a trademark of IntelliCorp, Inc. (Mountain
VI. Summary View CA) and is based on Sun Common Lisp, provided

for Sun workstations by Lucid, Inc. (Menlo Park CA).The main conclusion of this paper is that an im-

plementation of our object-oriented inventory classes R.R. Silbar, P. D. Knudsen, C. A. Hedge, an(l
would have been much easier in CLOS than in KEE. J.W. Jackson, "Object-Oriented Inventories for Si_ll-
However, there are many other reasons, e.g., the graph- ulations of Manufacturing Processes", Prec. of the
ics capabilities, why we use KEE for our model simu- Conf. on Artifical Intelligence Systems in Government,
lations besides object-oriented programming. We are Washington DC, May 1990.
not yet ready to abandon our use of this richly fea-

G. L. Steele, Common Lisp: the Language, 2Hd Ed.,
tured expert system shell. In fact, as we have shown
in the last section, it is possible to extend KEE so it Digital Press (1990).
implements a significant subset CLOS. This, we feel,

.... "....................................... I IIIIIIH|I III

