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MESHCONSIDERATIONSFOR FINITEELEMENT
STRUCTURAL DYNAMIC APPLICATIONS

by

Ralph Robert Stevens

ABSTRACT

Three factors relating to a finite element mesh and
discretization scheme are discussed: the geometric
accuracy of the node locations, the amount of warp
of a quadrilateral shell element, and the
directional biasing effect of similarly oriented
triangular elements. These factors can have a
significant effect on the accuracy of a finite
element structural dynamic analysis. Two finite
element models that illustrate these effects are
described.

I. INTRODUCTION

Many factors affect the accuracy of finite element method (FEM)
solutions. One class of factors may be called "mesh-related
factors": those factors which elate to the finite element mesh and
discretization scheme. For example, mesh density (number of
elements in a given region) and element aspect ratio (,ratio of an
element's longest length to its shortest length) are two mesh
factors that can strongly affect the accuracy of the solution with
shell elements. The choice of a good mesh density depends on the
analyst's experience and the observed convergence of the solution
with increasing density. (The convergence of several shell elements
with increasing mesh densities is described by Butler and Stevens. _)

Other mesh related factors are not as obvious as the mesh density,
but may, in some situations, lead to significant error in solution

o accuracy with shell elements. Three examples are considered here:
geo,r_etric accuracy of node locations, quadrilateral element warp,
and triangular element biasing. When a finite element preprocessor
is used to create the FEM mesh, these factors can be overlooked.
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However, without attention to these factors, the resulting mesh may
be the cause of surprisingly poor solution accuracy.

Two examples of shell element structural models that were found to
be sensitive to these mesh factors will be discussed. The first
model was a cone frustum. For the intended application, two planes
of symmetry were used, resulting in a one-quarter model. The
second model was an octant of a sphere (with symmetry and/or
antisymmetry boundary conditions on the three edges). These
models employed the linear shell elements TRIA2 (3-node
triangular) and QUAD4 (4-node quadrilateral)in the finite element
code NASTRAN. The performance of the meshes was judged by
comparing vibration mode shapes and computed scattered pressures.
Either a theoretical solution, an FEM solution with a much f_ner
mesh, or a nonfinite-element refe.'ence was available for ali tests
to judge the accuracy of the solutions.

II. CONE FRUSTUM

| The mode shape of the n=O, m=2 mode (where n is the

I circumferential mode number and m is the longitudinal modenumber) is shown in Fig. la. Typical of shell structures of this type,
- the modal density was high' in this example, at least four' n>0 modes

existed within 1% of the frequency of the desired mode.

When the eigenvalue problem was solved with the initial mesh, no
n=0, m=2 mode was found. The mode with a frequency closest to the
frequency of the true n=0, m=2 mode showed a significant n=0, m=2
component, but it was "contaminated" with higher n and m modes
(see Fig. l b). The convergence of the eigensolution was not the
source of the poor mode shape; different eigenvalue solution
methods within NASTRAN, and even a different finite element code
(using the same mesh, but a different element), yielded a similar
mode shape. The "true" frequency and mode shape were determined
by two methods: a finite element model with a much finer mesh and
an axisymmetric nonfinite element method. These methods showed
excellent agreement with each other, both in frequency and in mode
shapes.

The cause of this poor accuracy was traced to small errors in the
locations of the nodes. A finite element preprocessor' (PATRAN2)
was used to create the mesh; the PATRAN options that were used



Fig. 1. Comparison of n=O m=2 mode shapes

(a) n=O m=2 mode, using accurately defined mesh;

(b) n=O m--.2 mode, using imperfect mesh.
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gave errors in node locations on the order of 0.5% in the radial
direction. This small deviation caused "dimples" in the otherwise
perfectly conical surface, and these dimples caused the
"contamination" of the calculated mode shape.

Details of the methods used to create the mesh with the

preprocessor and how to avoid this type of problem are discussed in
Appendix A. The important point is this: small deviations of the
model's node locations from the true surface resulted in significant
error in the calculated mode shape. Three other points should be
noted:

• In a less symmetric structure, the small nodal inaccuracies
may have been far less significant.

• The radial deviations of the nodes from the actual surface
was not random: systematic trends were observed.

• Visually, the model appeared correct. Frequently, no further
checks beyond a visual check are performed when using a
graphic-oriented finite element preprocessor.

When the model was remeshed with no node position error (to 6
decimal places), the mode shape appeared nearly indistinguishable
from the reference mode shape.

A method of quantitatively measuring the correlation between the
mode shape under question and a reference mode shape was used for
comparing these mode shapes. Two numbers, the modal scale factor
and the mode shape correlation coefficient, were computed for the
mode shape being evaluated. The mode shape correlation
coefficients computed for each mode shape in this cone frustum
example are shown in Table I.

I
Table I

Comparison of Mode Shapes

Mesh Mode Shape Correlation
(_oeffic_Le,.nt

Fine mesh (reference) (1.0)
Initial coarse mesh ("flawed") 0.59
Corrected coarse mesh ("perfect") 0.91
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The remaning mode-shape imperfection was attributed to the
coarseness of the mesh. The mode-shape correlation coefficient and
its statistical properties are discussed in Appendix B.

III. SPHERE OCTANT

An octant of a sphere is a difficult shape to mesh for several
reasons. Element warp, poor element aspect ratio, nonuniform
meshing density, or triangular element directional biasing can be
present in many meshing schemes. To determine the "best" method
of meshing a sphere octant, we considered the five meshing schemes
shown in Fig. C-1 in Appendix C. Four tests Were used to compare
the meshes' the far-field scattered prossure was calculated in an
acoustic analysis, two axisymmetric natural modes were extracted,
and a static pressure load was applied to isolate the effect of
stiffness-related effects from mass-related effects.

By definition, a sphere possesses spherical symmetry. A sphere
octant can be used to model a spherical shell in a linear finite
element analysis by properly combining symmetry and antisymmetry
boundary conditions on the octant's three edges. No finite element
mesh can possess spherical symmetry because of the discrete
element representation of the numerical method. However, ali of the
meshes considered here were axisymmetric about the x-axis, and ali
of the meshes except Meshes 1 and 4 were also axisymmetric about
the y- and z-axes Ali of the tests used to compare these meshes
involved axisymmetric deformation about the x-axis. The
performance of these meshes for deformation not axisymmetric
with respect to the x-axis was not considered in this study.

The five meshes considered for the sphere octant model did not have
the same number of nodes; for this reason, the comparison was not
rigorous. However, the meshing schemes could not be altered to
have equal numbers of nodes' e.g., the scheme of Mesh 2 could have

i 61 nodes (8 elements per edge) or 91 nodes (10 elements per edge),but it could not have 73 nodes (to match Mesh 1). Despite this
[]
i inequity, some observations can be made about the mesh schemes

themselves'

• Ali meshes had 8 elements (9 nodes) along each edge.



• Mesh 5 was constructed by simply dividing each
quadrilateral of Mesh 2 into two triangles. This doubled the
number of elements, but left the number and location of
nodes _he same.

• The quadrilateral elements of Meshes I and 4 were flat (zero
warp); those of Mesh 2 were not flat. Thi,s warpage is an
unavoidable consequence of the meshing scheme of this
mesh.

• Triangular elements are always flat.

The results of the comparison are summarized in Appendix C. One
noteworthy observation is this' although none of the meshes gave a
"perfect" mode shape, the mode shapes of Meshes 1 and 4 were
axisymmetric with respect to the x-axis. Meshes 2, 3, and 5 gave
mode shapes that were not axisymmetric; an example of such a mode
shape is shown in Fig. C-2a in Appendix C for Mesh 2. In Meshes 3
and 5, the mode shapes were also not axisymmetric, but they were
symmetric about the xz'-plane (where z' is an axis at a 45-deg angle
to the y- and z-axes in the yz-plane) as shown in Fig. C-2b in
Appendix C. The cause of this lack of axisymmetry is attributed to
element warp in the case of Mesh 2; in the case of Meshes 3 and 5, it
is attributed to the systematic pattern of the triangular elements
(triangle directional biiasing). The lack of axisymmetry in the mode
shapes was reflected in the lower correlation coefficients for these
modes, as shown in ]'able II.

Table II
Mode Shape Correlation Coefficients

Mesh Mode 1 Mod0 2

1 0.999 0.977
2 0.997 0.825
3 0.995 0.770
4 0.999 0.985
5 0.879 0.406



IV. CONCLUSIONS

Geometric accuracy of node locations, quadrilateral element warp,
and triangular element biasing are three mesh-related problems that

L:

can cause significant errors in some FEM shell dynamic analyses.
The cone frustum and sphere octant models illustrated these
effects, These meshing problems can be inadvertently caused by a
finite element preprocessor or can be an unavoidable consequence
for some mesh scheme/structure surface combinations (e.g., sphere

octant Mesh 2). Triangular element directional biasing may be ,difficult to avoid in many mesh schemes.

The significance *of these effects may be greater for some
structures (e.g., symmetric structures) than for others, but the fact
that they can lead to substantial errors makes them worth attention.

A statistical method for quantitatively comparing two mode shapes
was employed in the analysis of the mode shapes of the example
structures. This method gives a measure of the correlation between
a reference mode shape (taken to be the "true" value)and a mode
shape under test; it is a convenient way to judge the accuracy of a
mode when a reference is available.

REFERENCES

I. T. A. Butler and R. R. Stevens, "Shell Element Evaluation," Los
Alamos National Laboratory document, May-September, 1989.

2. PATRAN Plus User's Manual, Release 2.4, PDA Engineering,
PATRAN Division, Costa Mesa, California, 1989.
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PATRANGEOMETRICACCURACY

lt has been observed that finite element meshes made with PATRAN
may contain some errors in the location of nodes, i.e,, the nodal
coordinates that PATRAN computes are not exactly where the user
intended them to be. Such errors have been observed in arcs (lines)

-_ and surfaces.
.,

i In some cases, the errors arise because PATRAN uses third-order
(cubic) parametric equations to approximate ali shapes. This
approximation will always give errors for Shapes that cannot be
exactly described by a cubic equation ('e.g., circular arcs). In other
cases, the sources of PATRAN's errors are not known.

Two cases of typical mesh-generating methods that can create
small errors in nodal locations are described below. These ca_es are
not exhaustive' other methodsmay also create nodal location errors.

A. Case One: Accuracy of Circule,r Arcs

Four circular arcs were constructed (using the PATRAN ARC line-
generation command), with arc lengths of 90, 45, 22.5, and 11.25
degrees, with a unit radius, and lying in the xy-plane. Nodes were
then created on these lines at 5.625-degree intervals. The nodal
coordinates for these four line segments are given in Table I.

Observations'

(1). The r_dial distance of ali nodes is very close to the
intended radius.

(2). The nodes have exact coordinates at both end points and at
the midpoint of the arc. The x- and y-coordinates of the
other nodes are in error' the greater the arc length, the
greater the error.

(3). Although the nodes are out of proper position, they have the
correct radius. This is probably due to th,e parametric
representation of the line, with the x-coordinate going from
1.0 to 0.0, and the y-coordinate going from 0.0 to 1.0. For
noncircular shapes, the radial distance error would not
always come out zero.
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B. Oe,se TwQ:_Acc_racy of Pe,tches CSvrfa0es)

Nodes on a surface are defined by the geometry of the surface's
"parent" patch. There are many ways to create a patch in PATRAN,
but the general approach is to create two or more lines that define
the edges of the patch.

A conical surface was defined by the two-line (2L) patch option
Arcs of various lengths were used as the two curved edges of the
patch. With this method, the accuracy of the nodes created on the
surface of the patch is determined by the accuracy of the two arcs,
and the information above (Accuracy of Circular Arcs) applies,

Observations'
i

(1). The axial coordinates of ali nodes are essentially exact.

(2). The nodes have exact coordinates on both straight edges and
on the straight midcurve line of the surface.

(3). The x- and y-coordinates (coordinates in the plane of the
cone's perpendicular cross section) of the other nodes are in
error: the greater the arc length, the greater the error.

(4). The radial distance of ali nodes is very close to the
intended radius. (Again, this surface Was created from two
circular arcs. Noncircular arcs could give rise to radial
direction errors.)

Note' Surfaces created by other patch options give rise to other
errors.

i
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Table I

Nodal Coordinates for Four Line Segments

Intended wCoordinates;

Point x-Coordinate y-Co0rdinate Angle

1 1.0 0,0 0.0
2 0,,995185 0,098017 5,625
3 0.980785 0,195090 11.25
4 0,956940 0.290285 16.875
5 0,923880 0,382683 22.5
6 0,881921 0.471397 28,125
7 0,831470 0,555570 33,75
8 0,773010 0,634393 39.375
9 0,707107 0,707107 45.0

points 10-17 are the mirror image of 1-9 about a 45-deg axis

(1) 90 degree a.r_

Point x-Coordinate y-Coordinate Angle Radius x-Coordinate y-Coordinate
_ L.__ C% error) (%error1

1 1.0 0,0 0 0 0 0 0
2 0 994837 0,102;.'44 50 8679 0.0077 -0,0350 4,3125
3 0 979684 0,201535 110 6244 0 -0.1123 3.3036
4 0 955042 0.297369 170 2950 0 -0,1980 2.4404
5 0 921415 0.389245 220 9013 0 .0.2668 '1,7147
6 0 879305 0.476659 280 4615 0 -0.2966 1.1163
7 0 829216 0.559109 330 9903 0 -0,2711 0,6370
8 0.771649 0.636093 390 4998 0 -0.1761 0.2680
9 0.707107 0.707107 450 0 0 0 0
points 10-17 are the mirror image of 1-9 about a 45-deg axis

11
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Table 1 - con't

(2) 45 degree ar_

Point x-Coordinate y-Coordinate Angle Radius x-Coordinate y-Coordinate

(% error) (% error) _/_error)

1 1.0 0,0 0,0 0 0 0

2 0.995107 0.098837 5.6460 0 -0,0078 0,8370

3 0.980608 0,196001 11,3032 0 -0,0180 0,4670

4 0.956775 0.290835 16,9079 0 -0,0172 0,1895
5 0.923879 0.382683 22,5000 0 0 0

points 6-9 are the mirror image of 1-5 about a 22.5-deg axis

(3) 22,5 degree arc

Point x-Coordinate y-Coordinate Angle Radius x-Coordinate y-Coordinate

Ld..e.g.J. _/.(,__...e._ELg_(% error[

1 1.0 0.0 0.0 0 0 0
,',

2 0.995173 0.098134 5.6317 0 -0,0012 0.1196

3 0,980785 0,195090 11.2500 0 0 , 0

points 4 and 5 are the mirror image of 1 and 2 about an 11,25-deg axis i

(4) 11.25 d_,gree arc

Point x-Coordinate y-Coordinate Angle Radius x-Coordinate y,,Coordinate

(% error) (% error) (%error)

1 1 ,0 0.0 0.0 0 0 0

2 0,9951 85 0,098017 5,6250 0 0 0
3 0,980785 0,195090 11,2500 0 0 0

12
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MODESHAPECORRELATION

A Fortran program has been developed to numerically compare two
mode shapes. This program may be extended to handle complex
quantities lt is useful for quantitatively comparing an approximate
or uncertain mode shape with a reference (known) mode shape. For
example, a mode from a relatively coarse finite element mesh could
De compared with the corresponding mode found from a finer finite
element mesh, or the mode could be compared with an
experimentally determined mode.

The program essentially does three things:

(1). Based on the nodal coordinates (required input), the closest
reference node to each test node is determined.

(2). Two statistics are computed'

(a). Mode scale factor (msf)' the slope of the best (in the
least squares-sense) straight line fit through the
points and passing through the origin'

rl

- 2
msf(x,r) = j=l l

n

j=l

where jx is the "test" mode shape, jr is the reference
i mode shape, and n is the number of points in, the test

j mode shape. This parameter gives no indication ofthe quality of the fit of the points to the straight line,

I only the slope, lt is affected by the normalization ofthe two mode shapes.

I (b). Mode shape correlation coefficient (mscc)' a measure
of the least-squares deviation of the points from the
straight line'

(q)x)j(q)r)j
I.i=1mscc (x,r) =

n li

j=l j=l



Note that the mscc is a real quantity, even if the
reference and/or test mode shapes are complex. The
mscc does not indicate whether the deviations of the
two mode shapes are due to random scatter or
systematic trends.

If the test and reference mode shapes are closely correlated
(i.e., both mode shapes represent the same mode shape),
then the mscc will have a value close to 1.0. If the two
mode shapes are also normalized in the same way, then the
msf will be close to 1.0. If the mode shapes are
uncorrelated, the mscc will have a value close to 0.0.

These statistics are described in more detail in Ref. 1.

(3). The two mode shapes are plotted against each other on a
node-by-node basis, that is, for each pair of corresponding
nodes, the reference mode shape value is plotted against the
test mode shape value. In this way, if the two mode shapes

were perfectly correlated, ali the points plotted would lie
on a strsight line. If the mode shapes were normalized in
the same way, the slope of the line would be unity. An
examp!e of such a plot is shown in Fig. B-1.

REFERENCES

1. D. J. Ewins, Modal Testing' Theory and Practice (Research
Studies Press LTD., Letchworth, Hertfordshire, England, 1986),
p. 224.



Node-wise Mode Shape Comparison
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0 G 1msf = 0,964
mscc = 0,923
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Fig. B-1. Node-by-node mode shape comparison.

d

16



f
/

,APPENDIX C I' /

SPHEREOCTANTMESHCOMPARISON

17

I, iPllI q l



' SPHEREOCTANTMODELING

¢he five meshes used in the sphere octant comparison are shown in
Fig. C-1. The meshing methods were compared in three ways:

(1). The scattered pressure from a plane wave (at two
frequencies) was calculated and compared with an
analytical solution,

" (2). The frequency, generalized mass, and mode shape of two
natural modes were compared with reference values.

(3). A uniform static pressure was applied, and the resulting
displacement was compared with the theoretical value.

Fig. C-1. Five Mesh Schemes for a Sphere Octant.
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As shown in Table C-I, the five meshes considered ali had eight
elements (nine nodes) along each edge, giving varying total numbers
of nodes and elements. .

Table C-I
Comparison of Meshes

Mesh Number of Number of
i . Nodes_ Elements.
i i

Mesh 1 7 3 64
Mesh 2 6 1 4 8
Mesh 3 4 5 64
Mesh 4 6 3 60

_" Mesh 5 61 96

Mesh 5 was constructed by simply d'lviding each quadrilateral of
Mesh 2 into two triangles, doubling the number of elements but
keeping the number and location of nodes identical.

1, ScatteredPressure

II The percent error (defined as FEM/analytical - 1.0) in the scattered
pressure is given in Table C-II. In this table, forward refers to
pressure scattered in the same direction as the incident wave, back
refers to the pressure scattered backward toward the source of the
wave, and side refers to the pressure scattered at a 90-deg angle to
the incident wave,

Table C-II
Scattered Pressure 0omparison (ka=l.0)

(Percent Error)

Forward _ .i,_

Mesh 1 -3,70 -2,91 0.10
Mesh 2 -0.49 -3,68 -0.54
Mesh 3 1.80 -8.17 -1.57
Mesh4 -2.20 -2.62 -0.10
Mesh 5 -0.39 -3.32 -0.79



Table C-Ill
Scattered Pressure Comparison (ka=l.6),

(Percent Error)

Forward Back Side

Mesh 1 3.14 3,44 3.42
Mesh 2 0.79 2.51 4.56
Mesh 3 -5.57 -1,54 3.75
Mesh 4 2 14 3,22 4 46
Mesh 5 -0,73 1.32 3.82

2. NaturaiMode

1 The two vibration modes that were considered were axisymmetric'
one had 4 half waves and the other 12 half waves (radial
displacement) around the circumference (see Fig, C-2). The
reference against which the four meshes were compared was
calculated by BOSOR (a finite difference axisymmetric shell
analysis program1), Symmetry boundary conditions were used on ali
cutting planes of the three-dimensional meshes to simulate the
entire spherical shell. The following table summarizes the modal
parameters,

Table C-IV
Natural Mode Comparisons

-

MODE 1

Mesh Frequency Generalized Mode Shape
LI-_, Mass Correlation Coefficient

BOSOR 121.63 12 995 (1,0)
Mesh 1 121.30 10 698 0,999
Mesh2 121,51 12 908 0,997
Mesh 3 122,22 15 210 0,995
Mesh 4 121.35 11,720 0.999
Mesh 5 121.75 10,973 0,879

20



axis of symmetry _ axis of symmetry

box,indicates
modeled octant

MODE1 MODE2

Fig. C-2. Two natural modes of vibration of _,osphere.

Table C-V
NATURALMODE COMPARISONS

MODE2

Mesh frequency generalized mode shape
Mass ..Correlation Coeffioient

BOSOR 170.02 3629..88 (1.0)
Mesh 1 154.34 3744.11 0.977
Mesh 2 158.53 4012.88 0.825
Mesh 3 178.50 8033.54 0.770
Mesh 4 156.79 3749.87 0.985
Mesh 5 171.56 4635.56 0.406

3. Static Pressure

i The radial displacement caused by a uniform static pressure over
, the surface of each mesh is given in Table C-VI.!

i
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Table C-V!
RADIAL DISPLACEMENT

Mesh Average R_'_dial Standard Deviation of
Displacenlent Radial Displacement

(m), (m)

THEORY 2.818 e-10 (0.0)
Mesh 1 2.817 e-10 1.410 e-ll
Mesh2 2.794 e-10 0.783 e-ll
Mesh3 2.744 e-10 2.502 e-ll
Mesh4 2.798 e-10 1.006 e-ll
Mesh 5 2.809 a-10 3.375 e-ll

, .

Observations

The scattered pressure results show no clear superiority of one
meshing method over another, with the exception of Mesh 3, which
gave relatively poor backscattering results at ka=l.0, lt is
noteworthy that this mesh had the fewest nodes.

The data for natural frequency and natural mode shapes show an
interesting result. Theoretically, the mode shapes should ali be
axisymmetric (i.e., ali displacements of a given polar angle should be
equal). Mesh 1 and Mesh 4gave axisymmetric mode shapes, but
Meshes 2, 3, and 5 gave mode shapes that were not axisymmetric.
An example of an axisymmetric mode shape is shown in Fig. C-3a for
Mesh 2. In Meshes 3 and 5, the mode shapes were not axisymmetric,
but they were symmetric about the plane with a 45-deg angle to the
xz-plane and containing the x-axis (see Fig. C,3b). This lack of
axisymmetry in the mode shapes was reflected in the lower
correlation coefficient values for these modes. This lack of
axisymmetry occurs for both modes considered, though it is most
pronounced for the higher mode.

The frequency prediction for the higher frequency mode for ali
meshes except Mesh 5 showed a 5 to 9% error (Mesh 5 gave only a 1
% error). However, for the lower frequency mode, which had a
simpler mode shape, ali meshes gave a frequency prediction within
0.5% of the reference. The higher frequency mode was considered to
be a severe test for these relatively coarse meshes.

22
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The average radial displacements for the uniform static pressure
load are ali within 3% of the theoretical value. The mesh with the
least average radial deviation is Mesh 2, while Mesh 5 had the
greatest deviation,

REFERENCES

1. D Bushnell, "BOSOR 4' Program for Stress, Buckling, and
Vibration of Complex Shells of Revolution," in. Sti'uctural
Mechanics Software Series- Vol, 1, N. Perrone and W. Pilkey, Eds.
(University Press of Virginia, Charlottesville, Virginia, 1976)
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