
A DISCRETE NODAL INTEGRAL TRANSPORT-THEORY METHOD

FOR

MULTIDIMENSIONAL REACTOR PHYSICS AND SHIELDING CALCULATIONS

by

R. D. Lawrence and J. J. Doming

Neitfm Iff, UnUwJ Srwn Gowt

•MT'OTIV. eipnsc or implied.

ciirnpleitncu n uvfclncn o
raunagnw (rut -11 I I W w u h ) n

(3>mmercMl c*Odut1, vocen. «•

m l necttaVtlv omtitu^e or ir

>un? of wok w n u i n i ) v » > 4
mwi» '*« *ny ^era.^ Ihms)',
w i s u i w any tasrt iubo>

« O « r by trxte nimt. iratfwi

ntJti il l «TdW*f"*tit r«o>mr

V Thtreul The v « w *^1 <*»"•
Hw Urvrad SutA GcMrnirvnt

pency ot t»w Lkw
no> •>> at tHe*

v ' • <e*JO"«n

+*'. tle4«Tenv

rwnditvn tw U

m o< »j1*WJ ei

or i"y «#mcv ft

<T> Inr -tw HTi^arv

r«rew I D ,jn» a»rt '«

i« ;* ort#rwnr dan

worfflQ b* l)v lintw!

p w o •*»»*» *> >vi>

Prepared for

American Nuclear Society Meeting

1980 Advances in Reactor Physics and Shielding

Sun Valley, Idaho

September 14-17, 1980

OF NHS DOCUMENT IS

UdCiUt USSK

Operated under Contract W-31-109-Eng-38 for the
U. S. DEPARTMENT OF ENERGY



A DISCRETE NODAL INTEGRAL TRANSPORT-THEORY METHOD FOR
MULTIDIMENSIONAL REACTOR PHYSICS AND SHIELDING CALCULATIONS

R. D. Lawrence

Applied Physics Division
Argonne National Laboratory
Argonne, Illinois 60439

and

J. J. Doming*

Nuclear Engineering Program

University of Illinois
Urbana, Illinois 61801

ABSTRACT

A coarse-mesh discrete nodal integral transport theory
method has been developed for the efficient numerical solu-
tion of multidimensional transport problems of interest in
reactor physics and shielding applications. The method,
which is the discrete transport theory analogue and logical
extension of the nodal Green's function method previously
developed for multidimensional neutron diffusion problems,
utilizes the same transverse integration procedure to
reduce the multidimensional equations to coupled one-
diaensional equations. This is followed by the conversion
of the differential equations to local, one-dimensional,
ln-node integral equations by integrating back along
neutron flight paths. One-dimensional and two-dimensional
transport theory test problems have been systematically
studied to verify the superior computational efficiency of
the new method. It typically required a computational
effort that was significantly reduced from that of the
widely-used discrete SN method for the one-dimensional
test problems studied, and an even greater reduction was
achieved for the two-dimensional transport test problems.

*This research was supported by the Electric Power
Research Institute.



INTRODUCTION

Prompted by the high accuracy obtained on very coarse meshes and
concomitant high computational efficiencies achieved in multidimensional
thermal and fast-reactor neutron diffusion problems by the nodal Green's
function method, two nodal integral transport methods, the discrete
nodal transport method (DNTM) and the piecewise polynomial nodal trans-
port method (PNTM) have been developed recently and applied to one-dimen-
sional transport problems.^>& This paper extends and applies one of those
methods, th° DNTM, to two-dimensional problems. This method is developed
for multidimensional geometries by first integrating the transport equa-
tion over all but one of the independent Cartesian spatial variables^"?
within a computational node to convert the multidimensional transport
equations to coupled one-dimensional'transport equations, and then dis-
cretizing the angular flux in a manner analogous to the discretization in
the original Wick-Chandrasekhar discrete-ordinates method. The resulting
coupled local ordinary differential equations are then integrated back
along the discretized neutron flight directions within the node to obtain
local within-node one-dimensional integral equations for the discretized
transverse-integrated directional fluxes that are coupled to nearest-
neighboring node fluxes through the continuity of the transverse-inte-
grated discretized surface directional fluxes.

4-7
As a result of the transverse integration procedure, and the

formal mathematical details which follow, the required local coupling
matrices are more easily calculated and the resulting global solution
more easily obtained than when the full multidimensional transport equa-
tion is treated as in a direct multidimensional coarse-mesh method.9-11
The present method is related to the Nodal Discrete-Ordinates Method;7
however, the assumptions, on the azimuthal symmetry of the transverse-
integrated flux, on the isotropy of the incoming node-surface angular
currents and on the double-P- representation of the incoming transverse-
integrated node-surface angular fluxes, made in the development of that
method? are not made here. Hence, numerical solutions for integral
quantities obtained via the present DNTM converge with decreasing node
size to the exact solution of the Wick-Chandrasekhar discrete-ordinates
equations. **

FORMALISM

Although the formalism for the multidimensional discrete nodal trans-
port method previously was presented briefly in Appendix A of Reference 6,
it is repeated here for completeness. The development is for two-dimen-
sional Cartesian geometry; however, the extension to three-dimensional
Cartesian geometry is straightforward. The formalism begins by parti-
tioning the system into K homogeneous nodes and writing the two-dimen-
sional multigroup transport equation for the k-th node



h *g

p k=l, ..., K, g=l G, (1)

where the dimensionless (local) variables x and y ara written in terms
of the node half-widths Ax and Av_. The source term S K (x,y,u,i~i) includes

2 2 8

contributions from inscattering, fission, and cxtern.nl sources. Analogous
to the diffusion-theory NGFM, the multidimensional equation is reduced to
two coupled one-dimensional equations by integrating Eq. (1) sepcrately
over each of the two co-ordinate directions. For example, integrating
Eq. (1) over y from -1 to +1 yields the x-dependent equation

k k
where ij/ and S are partially-integrated angular fluxes and sources,
e.g.

k i r1 k
V~ (X.M.TI) = -j I dy t|£(x,y,vi,n), (3)

and the leakage in the transverse direction is

Equation (2) is then solved separately for u<o and u>o. For M>o, the
solution is

dxo I e ' X o ) 1J{sJ|(xo.y.n) - LgX(xo.n,n)}
-1

+ 1 ) / w (5)

where Z = —^ 2 • . Equation (5) gives the node-interior transverse-inte-

grated group angular flux in terms of the transverse-integrated sources

within the node and the group angular fluxes OR the three surfaces of the



node. An equation for the outgoing transverse-integrated flux on the right
surface is obtained by evaluating Eq. (5) at x=l:

k A*

-1

v (6)

IVo analogous equations are obtained by solving Eq. (2) for u>o. Finally,
four additional equations are derived for the y-dependent partially-inte-
grated fluxes by integrating Sq. (1) over x from -1 to +1. Thus, a total
of eight coupled equations must be solved for the two-dimensional case.
The nodes are coupled by requiring that the angular fluxes calculated using
Eq. (6) be continuous across the node-boundaries.

APPROXIMATION TECHNIQUES

The angular dependence in Eqs. (5) and (6) is approximated by pro-
jecting onto discrete ordinates, and the one-dimensional spatial dependence
of the node-interior fluxes and sources, and the spatial dependence of the
transverse leakages are expanded in local Le&endre polynomials:

< x n V V x > (7a>
n=o 6

«»vV • E ^ r sgxn (W V*> <7b>
n=o

E ^r W*VV
n=o

An equation for the expansion coefficients of the angular fluxes is obtained
by substituting Eqs. (7) into Eq. (5), weighting with Pn(x), n=O,...,N, and
integrating over x from -1 to +1:

(8)

Substituting Eqs. (7b) and (7c).into Eq. (6) yields the discretized
equation for the outgoing node-surface angular flux:

k k k
where * , S , and L are vectors of expansion coefficients.

"TJX gx gx



The entries of the matrices in Eqs. (8) and (9) are given by

n

(10b)

The expansion coefficients for the space-dependent transverse leakage
must be determined using the information available from the solution of
Eq. (9), i.e. the average values of the node-surface angular fluxes. From
Eqs. (4) and (7c), it is clear that the P spatial moment of the transverse
leakage is

Hence a simple "flat" transverse leakage approximation can be constructed
using Eq. (11) with NS=O in Eq. (7c). In the NGFM developed for diffusion
theory,° a quadratic approximation for the transverse partial currents

, across a node surface in two-dimensional problems was constructed by fitting
partial currents on the node surface and on the two colinear adjacent-node
surfaces. However, the use of exactly analogous fits to construct higher-
order transverse leakage approximations in the two-dimensional DNTM is not
appropriate since the transverse leakage for a node depends upon the
spatial shape of the angular flux on the surface intersected back along the
ordinate and not upon the angular fluxes on the two colinear adjacent-node
surfaces. Only the flat transverse leakage approximation given by Eq. (11)
is used here. However, higher-order approximations utilizing information
obtained by tracing back along the ordinate would most likely yield more
accurate results.

Equations (8) and (9) are solved using directed sweeps through the
spatial mesh similar to those used to solve the discrete S equations. ^
The outgoing angular fluxes along an ordinate are calculated by solving Eq.
(9) and its y-counterpart simultaneously for these angular fluxes on the
two "outgoing" surfaces (the two surfaces which neutrons cross when leaving
the node in the direction of the ordinate). These surface angular fluxes
are then used to update the leakage terms needed in Eq. (8) and its y-
counterpart for the calculation of the expansion coefficients of the node-
interior angular fluxes. Both inner (in-group scatter) and outer (fission
source) iterations are accelerated using coarse-mesh rebalancing^ an(j
asymptotic source extrapolation.

The equations for one-dimensional applications are obtained from Eqs.
(8) and (9) by eliminating the transverse leakage terms and suppressing the



H-dependence of the angular fluxes and sources. An error analysis for these
one-dimensional equations is summarized in Appendix A. As shown there the
global truncation error of the one-dimensional DNTM equations is O(Ax2N+2)}

where N is the order of the flux and source expansions introduced in Eqs.
(7a) and (7b).

A simple device that leads to a slightly modified formulation of the
DNTM can be used to decrease the actual error in calculations for scatter-
ing-dominated systems. As discussed in Appendix B, this simple intuitive
device leads to a more accurate representation of the actual removal along
neutron flight paths by approximately accounting for inscattering and fis-
sion as well as outscattering and absorption along the paths.

In many applications the discretization of the angular dependence of
the flux leads to poor results. This difficulty can be overcome by ex-
panding the. angular flux in piecewise continuous functions. This has been
done in the development of the one-dimensional piecuwise polynomial nodal
transport method (PNTM)6 which in all cases studied" was superior to the
DNTM. The extensic . of that method to two-dimensional applications would
utilize piecewise continuous spherical harmonics expansions of the node-
surface and node-interior angular fluxes on subdomains (or patches) on the
unit ft-sphere and therefore would be free of the ray effects that result
from discretization of the angular variables.



NUMERICAL RESULTS

Numerical studies based on applications on the DNTM and PNTM to a
series of one-dimensional test problems have shown that both methods repre-
sent significant improvements over the conventional diamond-difference dis-
crete-S^ method. For a one-dimensional eight-group representation^ of a
1000-Mwe heterogeneous-design fast reactor, the DNTM and PNTM required
seven and fourteen times less computer rime than ILLSN (ILLinois SN>, a
special-purpose in-house discrete-S^ code which uses the same convergence-
acceleration schemes as those incorporated in the DNTM and PNTM. For' this
same problem, the DNTM and PNTM were one hundred and two hundred times
faster than the widely-used diserete-Sjj code ANISN*4 for comparable accuracy
requirements.

13 15
Table I summarizes DNTM Dg and TWOTRAN Sg results for the two-

dimensional ray-effect benchmark problem.15 (in order to avoid confusion
with the discrete-Sfj method, we use Djq to denote a DNTM calculation using
an SJJ quadrature set.) The DNTM results were obtained using a quadratic ex-
pansion of the node-interior fluxes and the flat transverse leakage approx-
imation. Although the errors in both the 16-node DNTM calculation and the
6804-cell TWOTRAN calculation are 1.5xlO~2, the DNTM calculation required
150 times less computer time than the TWOTRAN calculation. These results
show that the DNTM, even with the lowest-order (flat) approximation for the
spatial dependence of the angular fluxes on the transverse surfaces, is
capable of very high computational efficiency (high accuracy in small com-
puting times) relative to standard discrete-Sjq methods for multidimensional
problems.

TABLE I

SUMMARY OF DNTM Dg AND TW0TRAN
a Sg RESULTS FOR

THE TWO-DIMENSIONAL RAY-EFFECT BENCHMARK PROBLEM

Method

DNTM
DNTM
DNTM
DNTM

TWOTRANa

TWOTRAN
TWOTRAN
TWOTRAN

No. of
Mesh
Cells

16
64
256

1024

/56
3024
6804
(c)C

Total
Leakage
(Group 1)

5.918x10-4
5.829xl0-4

5.827xl0~4

5.827xl0-4

5.10 xl0~*
5,64 xl0-4
5.74 xlO-4
5.82 xl0~4

Relative
Errora

1.5xl0"2

3.4x10-4
<2.0x10-4

Ref. Sol.

1.3x10"-1

3.3xlO"2

1.5xlO"2

<2.0xl0~3

Execution
Timeb (s)

2.3
6.1

25.1
120.2

• S39
S154
^356
-

aTWOTRAN results taken from Ref. 13 in which total leakages were reported
to only three digits.

bCYBER 175. The TWOTRAN times for the CYBER 175 were obtained by dividing
the CDC 6600 execution times given in Ref. 13 by 2.5. Pointwise conver-
gence criterion of 10" ̂ was used in DNTM calculations.
c 9
Obtained by h -extrapolation of the three-digit TWOTRAN results.



Table II summarizes results for a light water reactor cell problem*-'
I consisting of a fuel region with 4x4 homogenized pin cells surrounded by a
light water moderator. The DNTM results show that the calculations using a
6x6 mesh layout are accurate to 10"^. The DNTM Dg calculation is in excel-
lent agreement with the results obtained using QPI 1 0 and COXY17, both of
which use expansions in angle to approximate the node-surface angular
fluxes. The DNTM (D3) execution time is slightly greater than the times
for QPI and COXY; however, the spatial errors in the DNTM calculation
appear to be smaller. This is probably because the DNTM uses a quadratic
source approximation whereas the QPI and COXY use a linear source
approximation.

TABLE II

SUMMARY OF RESULTS FOR A LWR CELL PROBLEM

Method
No. of

Mesh Cells k-eff
Execution

(s)

DNTM (D2)
DNTM (D2)
DNTM (D4)
DNTM (D4)
DNTM (Dg)
DNTM (Dg)

6x 6
12x12
6x 6

12x12
6x 6

12x12

1.
1.
1.
1.
1.

2186
2186
2138
2139
2127

1.2127

0.9
4.1
3.0
10.8
9.4

37.5

QPI
QPI
COXY
COXY

6x 6
10x10
6x 6

10x10

1.2128
1.2124
1.2129
1.2140

= 2.7
= 6.5
= 2.8
S7.7

aCYBER 175. The QPI (COXY) times for the CYBER 175 were
obtained by dividing the CDC 6500 (CDC 6600) execution
times given in Ref. 10 (17) by 5.0 (2.5). A pointwise
convergence criterion of 10" 3 was used in the DNTM and
QPI calculations.

SUMMARY

A new discrete nodal transport method for the numerical solution of
the two-dimensional neutron transport equation in Cartesian geometry has
been developed and numerically tested. A transverse integration procedure
was used in the formalism to reduce the multidimensional transport equa-
tion within a node to coupled one-dimensional transport equations defined
in ficticious node-engulfing slabs. • These slab transport equations were
then formally solved to yield one-dimensional integral equations. The
integral equations were solved approximately by projecting the angular
dependence onto discrete ordinates and expanding the one-dimensional
spatial dependence in Legendre polynomials. Numerical results have
demonstrated that the method is capable of very high accuracy on
coarse spatial meshes and significantly increased computational



efficiency relative to standar'd discrete-S,. methods for systems that have
large homogeneous subregions. Hence the DNTM is potentially most useful
for shielding calculations and for global reactor calculations where trans-
port theory effects are important such as heterogeneous-core fast reactors.

APPENDIX A: ERROR ANALYSIS

For isotropic scattering and one-dimension geometry, Eq. (9) becomes

N

n=o

where the source moments are given by

3 = f dx P (n J nS_ = / dx P_(x)S(x) (A-2)

-1

and [ G (|i.)] is defined by Eq. (10a). The local truncation error in Eq.

(1) is composed of contributions from (1) truncating the source expansion
after N terms, and (2) errors in the calculation of all source moments S
for n=o,...fN. Hence the local error is

El.oc = L V ^ V J N + I SN+1 + £ [<% (W±)]n En (A-3)

where E is the error in approximating S . An expression for this error
can be obtained from the one-dimensional form of Eq. (8); the result is

N )
. E '' (A-4)

Mn'=o

where ŵ ^ are the discrete ordinate weights and c is a constant relating
flux moments to source moments. Since

/

PN+1(x) [s(o) + x S'(o) + Jsx
2S"(o)"Thx PN+1(x) [

0(Ax N + 1), (A-5)



Jtnn

Eq. (A-3) yields

B, - O(Ax2N+3) + £ E O(Axn+1). <A-8)
L o c n=o n

Using Eqs. (A-51-(A-7) in Eq. (A-4), it follows that the second term in
Eq. (A-8) is O(Ax2N+4); thus the local error E L o c of the one-dimensional
method is O(Ax 2 N + 3), and the global error is O(Ax2N+2). Herce, for N=2
corresponding to the quadratic source approximation used here, the global
error in the one-dimensional DNTM is O(Ax6). Numerical results for a
simple test problem have confirmed this behavior. This O(Ax6) convergence
contrasts the O(Ax^) convergence, established by an error analysis12 and
confirmed for the same simple test problem,12 for the quadratic method
reported in Ref. 16. As discussed by Larsen and Miller,^2 the "flaw" in the
quadratic method is the O(Ax3) error in the difference formula used to
calculate the first spatial moment at the source; in the DNTM, the first
moment is calculated to O(Ax6) by using Eq. (8) rather than the lower-order
difference relationship.

APPENDIX B: ALTERNATE FORMULATION FOR SCATTERING-DOMINATED PROBLEMS

Although the error analysis done in Appendix A shows that the DNTM has
an Ofox^) spatial error irrespective of whether the problem is absorption-
dominated or scattering-dominated, intuition indicates that the actual
error in the latter would be greater than in the former since the exact
inversion of the left hand side of the transport equation using the total
cross section more closely represents the actual removal along a neutron
flight path in strongly absorbing regions. In scattering-dominated regions
the outscatter removal along a flight path is partially compensated by
inscatter contributions. A similar statement applies for the fission part
of the absorption cross section and the fission source term. Hence,
intuition suggests subtracting £ s + vEf/k from the total cross section
on the left hand side of the equation, to represent the actual physical
removal of neutrons along a flight path, and compensating exactly for this
In the source term. Hence we write the one-dimensional transport equation
(with isotropic scattering) in the form

,u) + [E3 - -JL v
o

i- vSf],Kx,y) + | [£8 + ̂ Z f ] f



where X Is a reference value of the eigenvalue> Expanding the angular
flux as °

and then substituting into the right side of Eq. (B-l) yields after
simplication

3x

•*« (B-2)

It is clear from Eq. (B-2) that the scattering source term does not include
a contribution from the isotropic component of the angular flux which is
generally large for scattering-dominated systems. Hence this term does not
contribute to the truncation error of the method, and the leading
coefficient of the error will be smaller since it involves only the higher
angular moments at the flux. However, for problems with strong absorption,
in which the flux is highly anisotropic these can be large, and the
truncation error can actually be increased due to the inclusion of the
error component resulting from the approximation of the angular flux term
on the right hand side of the equation in the modified formulation. This
behavior has been verified numerically for a simple fixed-source test
problem*^ which was solved over a range of values of c, the mean number
of secondaries per collision. As expected the results showed for this
problem, that while the modified formulation based on Eq. (B-l) actually
increased the error for c<0.2, a significant reduction in the error was
achieved for c?0.5. Hence for problems in which scattering is important
the slightly modified formulation should be used.
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