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1. INTRODUCTION

Theresearch supported under Lawrence Livermore National Laboratory Intramural Order

Number 2698203, Project Title "Nondesm_ctive Evaluation of Residual Stresses in Anisotropic

Materials," focused on the ability to use a new nondestructive method for evaluating residual

stresses in a wide range of materials which might exhibit anisotropy in their response. This new

technique falls within the family of ultrasonic techniques referred to as acoustoelasticity.

Acoustoelasticity is anultrasonic technique for stress evaluation which is based on the fact

" that the speedsat which various waves travel through a deformed body dePend upon the state of

stress to which the body is subjected. The basic approach has been to try to obtain estimates of

the stress state from sufficiently precise measurements of the velocity variations.

The work :supported by this contract has conclusively demonstrated that measurements of

the variations in the speed at which longitudinal waves travel through a stressed body are

sufficient to evaluate the complete state of stress within the body, provided certain conditions are

met.

The specific focus on anisotropic materials in theresearch was addressed in a manner

which was primarily analytical. Ali of the experiments involving materials with substantial elas-

tic or plastic anisotropy indicated that the materials in question exhibited a level of acoustoelas-

tic response which was at or below the limit for useful stress evaluation. Nevertheless, the

analysis performed indicates that if an experimental system is built which allows determination

of the velocity variation roughly an order of magnitude more preciselythan is possible with the

system used in this work, the complete state of residual stress may be obtained, despite the pres-

ence of anisotropy.

The remainder of this report consists of a detailed description of the technique and experi-

mental system proposed for the evaluation of residual stress states. The underlying analytical

developments are reviewed, and a numerical investigation into the application of this approach

for anisotropic materials is presented, lt is shown that an accurate assessment of the complete

residual stress state may be obtained even in cases of extreme anisotropy. Finally, an experi-

mental investigation of the technique is presented in which the experimentally determined stress

_- state is compared with that predicted nun_erically. It is shown that the two estimates of stress

agree well for the material involved.
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2. OVERVIEW OF NONDESTRUCTIVE METHODS FOR STRESS EVALUATION

Experimental methods for the determination of residual stresses in structural components

have been the focus of considerable attention through the past several decades. A widely used

class of techniques involves either destructive (parting and sectioning techniques) or semi-

destructive (blind-hole drilling) methods. In addition to leaving the part examined unfit for ser-

vice, these techniques require substantial expertise and are fairly costly to perform. A range of

nondestructive techniques for stress evaluation have also been developed. One major technique

involves diffraction of x-ray or neutron beams as a method 0f determining the strain on a partic-

ular lattice plane of the material. The physics of these processes is well understood and both dif-

• fraction techniques are capable of good spatial resolution, although the x-ray technique is limited

to measuring the stresses near the surface. Neutrons are moredeeply penetrating, but require the

presence of a high flux reactor. Thus, there are relatively few facilities that can perform s_ess

evaluation from neutron diffraction measurements.

An alternate nondestructive technique, acoustoelasticity, involves the measurement of the

variation of speeds of ultrasonic waves caused by the present, 'Jf the stress field. Within the

broad heading of acoustoelasticity, there axe a range of different methods that have been con-

sidered, ali of which are limited to the evaluation of plane states of stress. The most common

acoustoelastic technique is is called the birefringence technique(Hsu, 1974; Fukuoka, et 'al.,

1983; Pao, et al., 1984). This technique is based on the fact that for an initially isotropic

material, the difference in the speeds at which two shear waves propagating normal to the plane

of stress, but polarized in the principal stress directions, is proportional to the difference in the

principal stresses. The constant of proportionality is a material constant (called the acoustoelas-

tic constant for birefringence). Another technique which is currently receiving considerable

attention involves the difference in the speeds of two SH waves propagating in one principal

direction and polarized in the other (King and Fortunko, 1983; Thompson, et al., 1986; Man and

. Lu, 1987). In this case, the difference in the square of the SH wave speeds is equal to the differ-

ence in principal stresses divided by the material's mass density. There is no acoustoelastic con-

. stant which must be determined a priori for the SH wave technique. A third technique, called

the longitudinal wave technique, involves the change in the speed of a longitudinal wave travel-

ing in the direction normal to the plane of the stress (Kino, et al., 1979). This technique, like the

birefringence techoique, requires that the acoustoelastic constant be known in advance.

Each of the three acoustoelastic techniques discussed in the previous paragraph has certain

advantages and disadvantages. A clear advantage of the SH wave technique is the absence of an

acoustoelastic constant whose uncertainty affects the precision of the resulting stresses. The
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birefringence technique has an advantage in that there is a relatively larger velocity vm'iation per

unit stress than in either of the other techniques. The advantage of the longitudinal wave tech-

nique is the ease with which measurements can be made over a large region of a sample, and the

spatial resolution which can be achieved. As will be shown later in this report, ali of the tech-

niques use relative measurements (as opposed to absolute measurements) of velocity variation,

The remainder of this report addresses the application of the longitudinal wave technique to

evaluating the residual stress state throughout a sample. A recent analytical development has

made it possible to estimate the complete residual stress state (both normal and shear s_ess corn-

ponents) everywhere in a planar structure (Johnson and Dike, 1988). Neither of the other acous-

" toelastic techniques have yet to be demonstrated as having the capability for such whole-field

stress determination.

In the next section, the basic theory is presented for )he stress evaluation from measure-

ments of variations iii longitudinal wave speeds. While the technique should provide exact

results for the case of an isotropic material (given perfect data), we consider also the more realis-

tic case of a material which exhibits acoustoelastic anisotropy. Experimental considerations are

presented in Section 4, where we provide new equations for the exact determination of spatial

velocity variations from measurements of variations in time-of-flight andsample thickness. Sec-

tion 5 presents certain numerical considerations which must be taken into account in solving the

system of equations given the limitations of the measu,'ed data. lt is shown here that the tech-

nique for dealing with the anisotropy provides the corr_ ct stress solution, even for rather extreme

cases of anisotropy. Finally, experimental results fo> the residual stresses in an aluminum ring

are presented and compared with numerical estimates of the stress state. It is shown that both

the spatial variations and the magnitudes of the experimental and numerical estimates are in

good agreement.

3. THEORY FOR STRESS EVALUATION USING LONGITUDINAL WAVES

Consider a body subject to a plane state of residtlal stress, with Cartesian components _xx,

, _yy, and Crxy,through which a longitudinal wave propagates in the direction normal to the plane.

The material in question is taken to be initially homogeneous and acoustoelastically orthotropic,

so that the shift in the speed V of this longitudinal wave from the speed Vo in the unstressed

material is (King and Fortunko, 1983; Johnson and Mase, 1984)

V- Vo
Vo = Ax (Jxx + Ay (Yyy , (1)
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where Ax and Ay are the acoustoelastic constants, which may be different for an anisotropic

material. An alternate form of this equation, which may be more revealing in terms of the even-

tual stress evaluation, is

V - Vo
= A+(oxx + Oyy) + A_(oxx- Oyy), (2)

__..

Vo

where

A+ I/2(Ax + Ay ) + A_ = I/2(Ax - Ay ) . (3)

Note that for a material which is acoustoelastically isotropic, A_ = 0 and the change in wave

speed from the unstressed state is proportional to the sum of the in-plane normal stresses. In

most engineering materialsl the magnitude of A + is considerably greater than that of A_, so that

the material can often be considered as being "slightly anisotropic". Although we do not impose

a condition of such slight anisotropy, we do assume that tA+1> IA_I and that the values of the

acoustoelastic constants are known.

The equilibrium equations for the residual stress field in the absence of body forces are

o= ,x+ ,y= 0, (4)

+ %y,y=0,

wherecomma denotespartialdifferentiationwithrespecttotheindicatedcoordinate.An equa-

tionfortheshcarstressOx),intermsofthenormalstressesmay be obtainedbydifferentiating

Eq.(4)iwithrespecttoy andFall(4)7.withrespecttox,andadding.Thus,

V2Oxy =--(Oxx + Oyy ),xy (5)

whereV2 isthetwo-dimensionalLaplaceoperator.Equation(5)isa Poisson'sequationforthe

shear stress in terms of the mixed derivative of the sum of the normal stresses.

If an accurate estimate of the sum of the normal stresses can be obtained from acoustoelas-

tic measurements, then Eqs. (4) and (5) can be solved for the entire stress field in the body. If A_

= 0 (acoustoelastic isotropy), the right-hand side of Fzt, (5) is directly related to the acoustoelas-

tic measurements. Let us now focus attention on the problem posed by a material which is

acoustoelastically anisotropic.

In order to find a solution for the shear stress by integration of Eq. (5), the values of Oxy

along the boundary must be known. Because the stresses are residual, the boundaries are taken

to be traction free. Consider a point on the boundary with outward unit normal vector n which

makes an angle 0 with the x-axis. The stress tensor at this point may be expressed either in
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terms of the Cartesian (x-y) components used above, or in terms of normal-tangential (n-t) com-

ponents onn, ott, and o'n_,which are related to the, Cartesian components as

onn = Oxxcos20 + ayy sin20 + Oxysin20

Ott = Oxx sin_ + Oyy COS20 -- Oxy sin20 (6)

(rn, = l/2((ryy- era )sin20 + (:rxycos20

In the case considered here (traction-free boundaries)i the only nonvanishing stress component

in normal-tangential coordinates is (Ytt.' Thus, the Cartesian components are expressed in terms

of (Ytt as

_ = _ttsin20, (:yyy - _ttcos20 , Oxy =-l/2_ttsin20. (7)

In light Of Eq. (1), the velocity change from the unstressed state is related to thetangential com-

ponent of stress as

" V-Vo
Vo =o#(Axsin20+ Aycos20). (8)

Assuming that measurements of velocity change can be made along the boundary and that the

geometry of th,: boundary (0) is known, the shear stress (:rxycan be determined through Eqs. (7)3

and (8).

Unfortunately, because the material is not isotropic, we cannot obtain the right-hand side of

Eq. (5) directly from the measurements. Instead, we propose to use an iterative scheme in which

the velocity data is used to provide an estimate of ox.x + 6yy which is updated at the end of each

step of the iteration. Specifically, the initial estimate of the sum of the stresses is obtained'by

letting A_ be zero in Eq. (2). The boundary values for Oxy and this initial guess are used to solve

for the shear stress throughout the sample. The equilibrium equations are then used to estimate
,

the normal stresses. At this point, we have estimates of cr_, _yy, and Oxy which are not con-

sistent with Eq. (2). However, by using these estimates and the actual value of A_, we obtain at

the end of each step of the iteration, a new estimate of the sum of the stresses through the equa-

' tion

1 V-Vo ](Crxx+ C;yy)n+l = _ Vo J - A-(Oxx - Oyy)n (9)
I

where the subscripts "n" and "n+l" refer to the iteration steps involved, lt is shown later that this

scheme converges for synthetic data to the actual stress field, even for fairly extreme levels of_

anisotropy.
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4. EXPERIMENTAL PROCEDURES

The algorithm presented in the preceding section assumes that sufficiently precise estimates

of the velocity shift with stress can be experimentally determined. Velocity is not, however, a

directly measurable quantity, Further, we would like to be able to evaluate the residual stress

state without prior knowledge of the unstressed velocity Vo. We show in this section that the

use of two scans whichprovide spatial variations in the time-of-flight and path length of the

longitudinal waves are sufficient to obtain the necessary velocity shift.

It is im_,.,rtant to recognize that there are two types of variations or shifts involved in the

' experimental work, We refer to these as configurational variations and spatial variations. For

the velocities, these variations are associated with the following definitions'

AV/Vo is the configurati0nal velocity change. It is the relative velocity change

between the final (stressed) and initial (unstressed) configurations, at the same point.

SV!V is the spatial velocity variation. It is the relative velocitydifference between

two poinLs in the final configuration.

The configurationa! velocity change is the quantity which is needed for the stress evaluation,

while spatial variations of the thickness and time-of-flight az'eactually measured.

In keeping with our previous usage, we let a subscript o denote quantities associated with

the initial (unstressed) configuration. Symbols written without a subscript are taken to represent

quantities in the final (stressed) configuration. In order to discuss the spatial variation of a quan-

tity, we let X denote any genetic material point, and Xr denote a specific reference point, Thus,

the velocities in the initial configuration would be written Vo (X) = Vo ('gr) = Vo, while the velo-

cities in the final configuration would be written V (X) and V (Xr), where these two velocities

would in general be different. For simpScity, we often omit the argument X for the genetic

material point (so that V (X) would be written simply as V).

The configurational velocity change is then just

" AV V - Vo
"V_--o- _ (10)

while the spatial variation is expressed as

5V V - V (Xr)
' --V-= V(Xr) ' (11)
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The measurements made are of two types: spatial variations of the time.,of-ftighi of the

longitudinal wave, and spatial variations 'of the thickness of the sample (which is the path length

of the wave). The system used for the time-of-flight variations is a slight modification of the

double-pulse overlap system described by !lic', et al, (1979). In this system, a single transducer

operates in a water-bath and is excited by two rf tone bursts which are timed so that the first echo

caused by the second pulse and the second echo caused by the first pulse return to the transducer

at the same time. Both tone bursts have the same carrier frequency (typically around 10 MHz)

which can be adjustedto provide a particular phase delay between the two overlapping echoes,

By using the analog phase-lock loop described by Ilic', et al. (1979), this phase delay can be held

• constant as the time,-of-flight changes due to ch_nges in the wave speed and sample thickness.

The condition at which such a phase condition is achieved is called a "null" and the associated

frequency is denoted fT, with the subscript 'indicating that this frequency is related to the time-

of-flight.

The system used for the measurement of thickness variation is the two-transducer system

proposed by Fisher and Johnson (1984). The two transducers are collinear and are mounted
?

pointing directly at one another on a "rigid" fixture. The sample is placed between the transduc-

ers with its major surfaces normal to the axis of the transducers. The fixed distance between the

transducers is L, while the distance from each transducer tOthe nearest face of the sample is li

or 12o Each transducer is excited by a single rf tone burst. If we consider only the first echo

returning to each transducer, the total phase delay for each wave is

fd lc_

¢_a= gw ' ct=l,2 (12)

where fa is the carrier frequency of the tone bursts and Vw is the speed at which the waves

travel in the water. Adding the two phases, and noting that L = l 1 + !2 + d, gives

2fd _ 2fd
O=_1 +_2 = _ (11+ 12)- _ (L -d), (13)

This phase sum can be held constant for changing thickness by v_u'ying the frequency fd. Thus,

if Vw is taken to be a constant, the variation in thickness can be related to the variation in fie-

quency through the relation

8d 1+
--d- "--dT-r77 -=°' -

r=

where the symbol _ is used to denote the spatial nature of the variations, and dr is the thickness

of the sample at X r . We note that this expressien is exact, while the associated relation given by __

Fisher and Johnson (1984), ignores the term which is nonlinear in the variations.

=
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Given this method for determining the spatial thickness variation, let us return to the single

transducer system. The phase delay _ between the two echoes may be writ!en as the product of

the frequency and the time-of-flight. Alternatively, the time-of-flight may be eliminated in favor

of the thickness and velocity, so that the pha_ delay becomes

, = 2f_.. (15)

Since ¢ is held constant at a particular null, the spa0al velocity variation is related to the spatial

variations in null frequency and thickness as

5V _)d _T g3cl 8fT. "V-=--or -+ __ + "-d- _ ' (16)

where this expression is again exact.

The importance of retaining the exact expressions in Eqs. (14) and (16) is clear when the

acoustoelastic constants of the material being investigated are small. In such cases, the max,

imum velocity change may be on the order of 0.1%, while the variations in thickness andnull

frequency may be much larger (on the order of several percent) and of the opposite sign. The

terms which are nonlinear in the variations in these equations may then contribute substantially

to the resulting velocity variation.

We now have a method with which to determine the spatial variation in the velocity, but in

fact need the configurational variation in order to evaluate the stresses. To obtain this latter vari-

ation, we make use of the fact that the residual stress field must be self-equilibrating.

Specifically, the volume integrals of the normal stress components over the entire region must

vanish. Since we are dealing with the case of plane stress, these intega'als over the volume can

be replaced by integrals over the surface of the sample, Given Eqs. (1) or (2), the vanishing of

these surface integrals then requires that the integral of the configurational velocity change over

the sample must be zero.

Let us now consider the relation between the configurational and spatial variations of velo-

city. Equation (11) may be expanded as

1"_- = V (]J(r ) V (Xr ) '- V-(X_ -Vo - ' (17)
k .i

where C is the configurational velocity change at the reference point and will be treated as a

constant. The ratio of initial velocity to final velocity at the reference point is taken to be nearly

unity (it rarely deviates from unity by more than 1%) so that Eq. (17) may be rewritten as=

AV_ 8V
-W + c. (18)

_



Since the integral of the left-hand side of Eq. (18) must be zero, the constant C may be deter-

mined from the integral of the spatial variation over the surface area E as

Thus, the measurement of the spatial variations is sufficient to provide the necessary

configurational data.

The electronic system used for the single transducer measurements is essentially that

described by Illc', et al, (1979). The electronic system for the two-transducer system is similar,

although the analog signal processing is somewhat diffc rent, A schematic diagram of the system

used for the thickness scans is shown in Fig. 1. In order to isolate O, the sum of the individual

phases, the rf tone burst which drives one of file transducers, say the second one, is modulated by

a low frequency signal. Thus, the returning pulses ra, tx 1,2, are of the for'm

rl=Blcos(mat +_i), r2=B2cos(cocl t +0a)c osf2t, (20)

where Ba are the waves' amplitudes, cod = 2zfa, and f_ is the frequency of the modulation,

which is typically inthe low kilohertz range. These two signals are electronically mixed and the

result is filteredto isolate the second harmonic of the carder. This component of the signal has

the form

r 3 = B 3 cos(2c0a t + O) cosf2t . (21 )

" This signal is then mixed with a continuous wave whose frequency is 2ma, The amplitude of the

low-frequency component of this final signal is proportional to cosO,

r,l = B 4 cos_ cosf_t . (22)

Thus, when this signal is used as input to a lock-in amplifier whose reference frequency is _, the

output of the lock-in is a dc signal proportional to cosO. This dc signal is then integrated and the

result is used to drive an FM modulator until the lock-in output reaches zero (a null condition).

The present system uses commercially available 10 MHz, spherically focused transducers

with 50 mm (2 in.) focal lengths. In actually performing the scans for the thickness variation, we

must choose the geometry of the transducer holder (spacing L) in recognition that there are two

effects which compete with one another and which must be balanced. Onthe one hand, the use

of distinct rf tone bursts for the phase comparison requires that the lengths lt, be sufficiently

large, while on the other hand, large path lengths (large L) result in small frequency variations

for a given thickness variation,
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Most of the measurements made to date have been on the samples that are approxintately

10mm thick with the sample surfaces between 25 mid 40 mm from the transducers' faces. The

result is somewhat poorer spattal resolution than would be expected if the transducers were

operated at their focal lengths. If the transducers are used at their focal lengths, adjacent null fre-

quencies are only 0,07% apart and the sensitivity of the thicknessevaluation is poor. Thus_,we

can make measurements to within approximately 2 nam of the edge of the sample, Our current

positioning system consists of two perpendicular lead screw stages driven by stepping motors,

and has a nominal spatial resolution of 50 gin. When scans of the same region of a sample are

repeated, it is found that the null frequencies for these systems have a repeatability of ,005%

over a 1% maximum variation, as determined by the RMS difference in the null frequencies over

ali points of the scans.

5. NUMERICAL PROCEDURES

_ The basic _equations have been cast into a finite difference scheme for the solution of the

residual stress field. For the present work, we have restricted attention to disks or annuli which

are most conveniently described in plane polar coordinates. In this section we describe results

obtained using synthetic velocity data generated from a known stress state. This numerical

example does not use a residual stress state, but the requirement that the stresses be residual is

not operative as long as the appropriate boundary values of Oxy and the initial velocity Vo are

known, We demonstrate that the proposed procedure for Stress evaluation in materials which

exhibit anisotropic acoustoelastic response converges, and that the solution is basically in agree-

ment with the actual stress state. Experimental results for a residually stressed aluminum ring

are presented in the following section. _

We consider for this example the stress state generated by the far-field tension of an infinite

plate of elastically isotropic material containing a circular hole. We know the exact stress state

in terms of components expressed in either polar or Cartesian coordinates. Our approach is to

use the known normal stresses in Eq. (1) to generate the synthetic velocity variations given vari-

ous choices of acoustoelastic constants. The known shear stresses oxy along the edges of an

annulm" region are used with the velocity variations to estimate the stress state in the interior of

the annulus.

Contours of the shear stress and the normal stress in the loading direction are shown in Fig.

2 for an annular region of the plate under' a far-field tension of 100 MPa. The stresses displayed
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in Fig, 2 result from velocity data at discrete grid points within the interior of the region assum-

ing that the materiai is acoustoelastically isotropic and that A+ = 10 TPa -1 (typical of many

aluminums). In the results shown, tbere are 9 radial locations between the inner and outer boun-

daries, and the grid points are spaced at 5° intervals in the circumferential direction. This is a

rather coarse grid (orally 153 data points in the interior of the region), but it serves to show that

the a!gorithm provides stress values which are everywhere within 5 MPa of the exact values.
i,

j

When the material is taken to be acoustoelastically anisotropic, the same stress state leads

to a different velociiy variation. However, the same stress pattern emerges after the iterative

process described in! Section 3. Table I gives the number of iterations required to reduce the

maximum stress difference between subsequent iterations to within 0.1 MPa for a range of dif-
l

ferent anisotropies, iWe find thai: the technique converges for ali cases. In particular, we note

that the last case considered is an extreme case of anisotropy in which Ax = 20 TPa -I and

Ay *0 TPa-1. ' Despite this degree of anisotropy, the iterative procedure converged after only 14
iterations.

Table Ii Number of iterations required for convergence in anisotropic

materials. In ali cases, A + = 10 TPa -1.

A _ (TPa-1) Iterations

1 3

2 4

,* 5•

6 7

8 9

9 11

10 14

6. EXPERIMENTAL RESULTS

An annulus of 6061-T6 aluminum, with nominal thickness of 12.7 mm, inside diameter of

38.1 mm, and outside diameter of 63,5 mm, was loaded in diametral compression until per-

_ manently deformed and then completely unloaded. Loading was performed usingball-in-socket

compression platens; acting on flat regions which had been machined on the top and bottom of

the annulus. One quadra_lt of the specimen was scanned over a 1 mm radial, ...5") °
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circumferential grid. _ Experimentally determined stress contours are compared With those

estimated by the NIKE2D finite element Code (Hallquist, 1986).
,.

Because measurements cannol be made at the very edge of the sample, the interior meas-

urements are extrapolated to obtain the boundary values Of the stresses, The extrapolation pro-

cedure used for the results shown below involved the least-squares fit of a straight line to the

points near the boundary. The interior data is used where it is available, with extrapolated data

used only where necessary.
',

Contours of residual pressure shown in Fig. 3 indicate generally good agreement between

. the experimental and numerical estimates. Note in particular the results of the two approaches

for the zero contour (C). While the experimental contour is somewhat noisier tha,a the numerical

' contour, the overall agreement indicates that the method for evaluating the constant C from Eq.

(19), and sothe sum of stresses, is valid. The fact that the experimental contours are noisier than

the numerical contours is to be expected due to the intrinsic uncertainty in the measurements.

This noise is especially noticeable in the low-stress regions of the annulus. We also note that the

contoursgenerally have the correct shape and are properly located spatially.

Figure 4 presents the experimental and numerical estimates of the shear stress Gxy. Again,

the zero-stress contour (E) has the same basic pattern throughout the region and is noisier in the

experimental plot. The regions of positive and negative shear are in uniform agreement, though

there are again certain regions within which the magnitudes are somewhat different. Under the

- flat at the top, for example, the experimental contours accurately aenote the stress concentration

at the edge of the flat, but overpredict the magnitude of the shear stress at this point.

Figure 5 presents contours for the normal stress ctx.x, which is the hoop stress at the top of

the sample. The region in which this stress component is small is accurately delineated and, as

in the previous plots, the zero-stress contours (E) agree reasonably well. The regions of tensign

and compression are in spatial agreement, though the magnitudes of the experimental estimates

are higher at the boundaries than are the numerical estimates.

Extrapolation tends to be an inherently inaccurate process and, as noted above, can cause

difficulties at the boundaries, It was found that while various extrapolation procedures yielded

large differences in the values of stresses at the boundary, the interior values were affected very

little. The larger the ratio of area where measured data is available to that where extrapolated

values must be used, the better the results of this method can be expected to be.

t
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Figure 1. Electronic block diagram for the two-transducer thtckness scanning system.
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Figure 2. Contours of (a) shear stress cr_, and (b) norm',d stress o= in an annular region of an

-_ infinite plate subject to far-field tension in the x-direction of 100 MPa, obtained by numeri-

- cally integrating Eqs. (4) and (5) given synthetic velocity data at the grid points, Contours

' are given in MPa.
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Figure 3, Contours of the sum of normal residual stresses c= + ayy obtained (a) experixnent_tlly=

and (b) numerically for a 6061-T6 aluminum ring subject to diametral compression and

" unloaded. Contours are given in MPa.
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Figure 4, Contours of the residual shear stress a_ obtained (a) experimentally and (b) numeri-

caUy for a 6061-T6 aluminum ring subject to diametral compression and unloaded. Con-

tours are given in MPa.
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Figure 5, Contours of the residual normal stress (_= obtained (a) experimentally and (b) numeri-

cally for a 6061-T6 aluminum ring subject to diametral compression and unloaded. Con-

tours are given in MPa.






