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m ABSTRACT

I Some recent researches are described concerning the effects of the state of coherence of a source on

I ' the and the distributions of generated by the source. The researches have elucidatedspatial spectral energy
the foundations of radiometry and they have also revealed some unexpected new phenomena relating to

._t spectral changes which can be induced by source correlations and also by scattering on random media.
INTRODUCTION

t

I ' Until 1960 practically ali known sources of optical radiation were thermal sources, such asincandescent matter or gas discharge. The situation has changed drastically in 1960 when the first lasers

I were made. From the standpoint of statistical physics these two types of sources represent two extreme

I situations. Thermal sources are highly uncorrelated (incoherent), whereas well-stabilized single-modelasers are completely correlated (fully coherent). Today sources of many other kinds are available, whose

statistical properties are intermediate between these,two extremes but they are not as well understood asI! thermal sources and lasers. What is quite clear, however, is that the statistical properties of a source may

I affect the nature of the radiation field which the source generates. Our research has been mainlydrastically
concerned with elucidating how some of the basic statistical features of a source, more specifically its so-

+ called second-order coherence properties, affect the energy distribution in the field generated by the

U source.

1 SECOND-ORDER CORRELATION FUNCTIONS

m Let first recall what is meant by second-order coherence properties of sources and of fields. To
me

explain the essential features I will ignore polarization properties and I will treat the source variable and the

field variable as scalar quantities. Let Q(r,t) be the source variable and V(r, t) the field variable,

I representing the fluctuating source and the fluctuating respectively a r,
field at point at time t. We use the

so-called complex analytic signal representation of these quantities I.

U t at least in the wide sense. The second-
We assume that the fluctuations are statistically stationary,

• order coherence properties of the source and nf the field may then be characterized by the cross-correlation

I functions

m FQ(rl, r2, x)= (Q" (rl, t)Q(r2, t + z)), Fv (rl, r2, x) = (V* (rl, t)v(r2, t + x)), (1)
!

m where the asterisks denotes the complex conjugate and the angle brackets denote the ensemble average.For our purposes it will be more convenient to characterize the second-order coherence properties of the
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sourcesand of the field not by thesequantities but ratherby their Fourier transforms,known as cross.
speczra/densities:

I I WQ(rl, r2,v) = f FQ(r|. r2,'c) e2ni_ch , WV (r,. r2. v) - f FV (rl. r2,'r) e2ni_d'c. (2),-,,,ILO --,,IIQ

I

I Because the field variable and the source variable are related by the inhomogeneous wave equation,these two cross-spectral densities are also related. In particular, for radiation in free space one can show

I (V_ + k2)(V_ + k')Wv (rl, r2.v)= (4n)Z WQ(rl.r2,v ). (3)
I

i Here _72.is the Laplacian operator acting with respect to the coordinates of the point (j = 1 2), and.j 5) )

| k = 2 n'v/c , c being the speed of light in vacuo.

i Two important quantities which are readily expressible in terms of th_ cross-spectral densities are
of special interest. They are:I

I Spectral density: S A(r,v) = WA(r,r,v) (4)
t

SpecD'aldegreeof coherence: laA(rl.r2.v)--WA(rl,r2,v)l_/SA(rl,v)ISA(r2.v ). (5)

Ii withA =Q or V. Onecan show thai the upper bound of the absolute value of the spectral degree of

I coherence is unit),, i.e. that 0 < ["A(rf'r2' v)]__. I. The extreme value unity characterizes complete
I correlation, the other extreme value, zero, characterizes complete absence of correlation.

i The researches which I v,'ill nov,' describe have been largely concernecl with elucidating how thespectral degree of coherence affects the nature of the radiated field, both in free space and in scattering
media. Because of limitations of time I will mainly consider radiation in free space. This may appear to be
a severe restriction, but I hope to show you that there is still a lot to be learned even about this rather

I restricted case.

_ COHERENCE EFFECTS IN RADIOMETRY

I Because of the complexity of studying energy transport on the basis of either Maxwell's equations
i or quantum electrodynamics, one frequently uses in the treatment of many wave-propagation problems, a

i much older and a more intuitive model, namely the theory of radiative energy transfer. The chief quantityin this theory is the so-called specific intensity of radiation, also known as the (spectral) radiance or the

t (spectral) brightness, Bv(r,s). lt is defined as the rate at which energy is radiated at frequency co,per

I unit area at r perpendicular to a unit vector s, per unit solid angle around the s-direction. By heuristic
t arguments one can show that the radiance satisfies the transport equation

l ,.,., (r,s)=-OCv(r,s)Bv(r.s)+ J'13v(r,s,s')Bv(r.s')dCZ'+D (r,s).) v v (6)

i 14n)where ct (r,s) is the extinction coefficient, [3v(r,s,s' ) is differential scattering coefficient and D (r,s)W V
is the source function.

_i In spite of its exlensive use, the conditions for the validity of this equation are not known and, in
fact, even the relationship between the radiance function and the basic cluantities of _,a..... ,,u,¢A_'Ji i_,_ v'v_,,,a a ,a

!



!

| "
, electromagnetictheory are poorly understood. What is known is that the radiancefunction is not a

11 measurablequantityunderall circumstances,lt shouldbereally regardedasa kind of quasi-probability,

I analogous to the Wigner distribution function 3.

t Several definitions of the radiance function have been proposed on the basis of coherence theory.

I ' Here are two examples of proposed definitions of the radiance function of a planar source of any state ofcoherence in terms of the cross-spectral density function of the source4_:
i

c': Ic 1I B!l)(r.s)= _ sz W r+½r'.r-½r'.v e-iks'r'd2r'
! v ' (7)(z=0)

!
c,: i . .! B(2)(r's)= Sz W(r'r"v) e-'ks'('-' )d2r'

i v • (8}(z=0)

The sourceis assumedto occupy a finite portion of the plane z = 0 andsz is the componentof theunit

I vector s along the normal to the source plane.
The first definition, Eq. (7), is analogous to the quantum-mechanical definition of the Wigner

I distribution function. The second one, given by Eq. (8), is analogous to the phase-space distribution

I function associated with the so-called antinormal ordering. These quantities have some unphysical

feaiures. For example both B(l)vand B(2)vma), become negative for some values of their arguments. They

I cannot, therefore, represent the radiance of radiative transfer theory, which postulates that the radiance isalways associated with real energy flow and must, therefore:,be always non-negative.

_. To obtain some insight into the relationship between radiative transfer theory and statistical wave

I theory we have first considered propagation in free which is the domain of traditionalenergy space,

! radiometry. In this case the equation of radiative transfer takes the simple form s.B v(r,s) = 0 implyingi

that, with s fixed, Bv(r,s) - censt, i.e. that Bv(r,s) remains constant along each s-direction.
_ Because geometrical concepts and results such as this, p'.laya substantial role in radiometry, we have

I investigated whether it is possible to derive the radiometric model from coherence theory as a kind ofgeometrical optics limit, i.e. as a short wavelength limit or, more precisely, as an asymptotic limit as the

t wave number k = 2rt/_. _ **. We have found that this is, indeed possible for fields generated by a

I certain class of sources, known as quasi.homogeneous sources 6. A source of this class is characterized

by the property that its spectral degree of coherence la(0) depends on its two spatial arguments r1 and r2

I their difference and that its S(0) remains constant distances ofonly through spectral density sensibly over
the order of the correlation length of the source. For such a sourcet

2 _ _, ',,,j (9)

I spectraldensity spectraldegreeof(slow function) coherence

j (fast function)

I Many laboratory sources and many sources which occur in nature belong to this class. We will onlyconsider planar sources of this kind.

I By a long argument based on the solution of equation (3), we have obtained the followingresult'7'8: Ali the radiance functions of a quasi-homogeneous source, which can be defined as linear
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I transform of the cross-spectral density, [which include those defined by Eqs. ('7) and (_)], have the same 4

I asymptotic limit as k .-.e **,namely

I _<r..,-,',_'0'(r_.,__)_'°'(k_v). <,0,
I z

i where I_(0) is the two-dimensional spatial Fourier transform of lt (0). This result has the simple
t geometrical interpretation indicated in Fig. 1, which is in agreement with the equation for radiative

I Fig. 1. Interpretation of Eq. (10)

1 for the spectral radiance Bv(r,s)

I produced by a planar, secondary,quasi-homogeneous source a. P
is a point whose location is

t specified by the position vector r.

I ............ Q0 is the point in the source
I _ plane whose posiiion vector

I p = r - (Z/Sz)S .. lt is the point
P

J Quasi-homogeneous of intersection with the source

I plane, of the line through thesource o point P, in the direction of the unit
vector s. [After J. T. Foley and

J E. Wolf, ref. 71.

I energy transfer in free space. Moreover, one can show that expression (10) satisfies ali the postulates of
i the phenomenological theory. We note that the radiance function given by the above formula depends not

I only on the spectral density of the source but also on its spectral degree of coherence. In feet theexpression (10) for the radiance shows for the first time how the spectral degree of coherence of the source
affects the radiance function of the field. Two examples are given in Figure 2. These results have a

t bearing on a number of problems of current research interest, for example in the field of non-imaging

I and in connection with radiation.optics synchrotron
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_ Fig. 2. Polar diagrams, calculated from Eq. (10), of'he spectral radiance at different points in the x,y-
I . plane, generated by some planar, secondary, quasi-homogeneous sources. The points with subscripts 1,2, 3, 4 and 5 are at distances r = 4 cre, 6 cre, 8 cre, 10 cm and 12 cm respectively from the center ) at the

source. (a) From an uniform, circular, quasi-homogeneous, lambertian source,

I {I.t(O)(r') : [ sin(kr')/kr']}, of radius a : 2 cre. (b) From an uniform, circular, quasi-homogeneous,

Gaussian-correlatedsource,{I.t(O'(r')=cxp[(-r'2/2o2]},of radiusa=2 cm andwith ott=O.Sk
I /After J. T. Foley and E. Wolf, ref. 7].

COHERENCE EFFECTS IN SPECTROSCOPY

I I have spoken so far mainly about the effects which the coherence properties of a source have on

i the spatial distribution of the radiated energy. But we have found that the state of coherence of a source

I also affects the spectral distribution of the emitted radiation and this fact has lead to the discovery of anumber of rather surprising new effects. In this connection let me remind you that it is an implicit
assumption of all spectroscopy that the (normalized) spectrum of light which is incident on a detector after
the light has propagated from its source through free space is the same, irrespective of the location of the

I detector and is equal to the at the I have shown that such invariance of thespectrum source. an spectrum
of light on propagation is, however, not an universal property of light and that light produced by common

| laboratory sources is an exception in this respect. More specifically I have shown that the spectrum of

I light produced by a source depends not only on the source spectrum but also on the correlation betweenthe source fluctuations at different source points 9"_1. This conclusion applies irrespective of whether the

source is primary, such as a set of radiating atoms, or is secondary, e.g. is the image of a primary source

i formed by an optical system, or is a scattering medium illuminated by a beam of polychromatic light. Thisprediction has now been confirmed by experiments carried out in several different laboratories 12.

| The fact that, in general, the spectrum of light changes on propagation even in free space follows

I from the basic equation (3) which relates the densities of the field and of the Ifcross-spectral source. wc

wish to determine the spectrum Sv(r,co ) - Wv(r,r;co ) of the tic]d, wc have to start from thc cross-

I spectral density of the source - not from its spectrum alone - and then determine the field spectrum by the

I following sequence, starting from Eq. (3): WQ(ri,r2;(o ) _ Wv(rl,r2;(o ) -->Wv(r,r;_)• Sv(r,co).

I t,et mc illustrate these remarks by a simple cxample13,involving two small fluctuating sources, ._

I_ located in the neighborhood of points Pl and 1:'2"Since the sources fluctuate, they must be described, for

I each frequency co,by statistical ensembles{Q(P,,_)} and {Q(P2,co)}. The field which these sources
I generate at a field point P will also fluctuate. We may characterize the field fluctuations by a field

I
i4
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i . 6ensemble{U(P,to)}. A typicalrealizationofthefieldatpointP,atfrequencyto,is givenbythe

. formula

I' • _2

+
R! R2 (II)

I whereR IandR 2 arcthedistancesfromPlandP2respectivelytothepointP. The spectrumofthefield
atthepointP,isgivenbytheexpressionI

l wheretheangularbracketsdenotetheensembleaverage.On substitutingforU (P,to)fromEq.(1])into

ii Eq.(12)we findatoncethat
i

ii' + + +°°' 03)

m | where ec denotes the complex conjugate. We have assumed here that the two sources have the same
II

spectra, SQ(to). The crucial fact to note is that in addition to the source spectrum SQ(to) we have,
4

l according to Eq. (13), a contribution to the field spectrum which involves the function Wo(Pl,P2,to ) that
characterizes the correlation of the fluctuations at the two source points. The formula shows that, in

i a general, the spectrum of the field is not proportional to the spectrum of the source, but that it also dependson the correlation of the fluctuations of the two small sources.

I' h is clear from En. (13) that in the special case when WQ - 0, i.e. when the two sources arecompletely uncorrelated or, as one says, they are mutually incoherent, the field spectrum will be
proportional to the source spectrum. There are some other situations where that is also true, but the

i formula shows clearly, that in general, the field spectrum ,'ill differ from the source spectrum and that it
i mas' be different at different points in the field," and further, that the spectral changes depend on the nature

of the correlation between thetwo sources.

ii The spectral changes induced by source correlations may many

#
be of different kinds. In fact,

depending on the nature of the correlations, the changes may be quite drastic including, for example, shifts
of spectral lines, broadening or narrowing of lines and in some case even suppression of lines or

ii ' generation of new ones. Some examples are shown in figures 3 and 4.
1.01 lo}

i:I (b lc)i_ 0.8

ii _' Fig. 3. Shifts of spectral lines induced
o.6 by suitable correlations between two

il small sources: (a) the normalized

0.4 spectrum SQ(to); (b) and (c): the

normalized spectra Sv(to). [After E.

, 0.2 Wolf, ref. 131.
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4 Sv(tO) I N [ ! Fig. 4. Generation of two spectral lines,from a single spectral line of Lorentzian

spectral degree of coherence. N is a
a normalization constant. (cf. A. Gamliel

O_. and E. Wolf, re.[.14).
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To bring out the essential feature of the phenomenon of correJadon-induced spectral changes I have
considered here only the simple case of two small correlated sources. However, this effect is very general

, and arises with two- or three-dimensional sources and also with some secondary sources, such as
' illuminated scattering media. Let mc say a few words about this.

We consider a medium whose refractive index or, equivalently, its dielectric susceptibility, vary
randomly in space. Suppose that the medium is illuminated by a plane wave. Let us examine the scattered
field in different directions. We can regard the illuminated medium as a source of radiation, because under
the influence of the electric field, the bound electrons in the medium are displaced from their equilibrium
positions and will oscillate. The polarization induced in the scattering medium in this way will, in general,
be correlated over finite distances and will imitate correlations in primary or in secondary sources. Clearly
the illuminated medium may be regarded as a secondary source. If one works out the theory in detail one

spectrum in the far field,finds 15that when the medium is statistically homogeneous, for example, the-

v'* (i) (tO) and on theS )(ru,tO), depends in the following way on the spectrum of the incident light Sv

, correlation function C n (R,to) of the dielectric susceptibility, rl(r,c0):

k'l,V

Here

' l f Cn(R,to)c_iK.Rd3 RCn(K'tO) = (2n)3 , (15)

t

C_(R,tO) = (1'1"(r, tO)rl(r + R,to)), (16)

u0 and u are real unit vectors in the directions of propagation of the incident and of the scattered field

respectively and CPis the volume of the scattering medium. We may call this type of scattering static
scattering, because nothing moves at the macroscopic level, lt arises from the spatial inhomogeneitics in
the macroscopic properties of the medium.

The above formula for the far-zone spectrum shows that even in slatic scattering the spectrum of
the scattered light differs, in general, from the spectrum of the incident light. Just like the examples we
have already considered, this kind of scattering may also produce shifts of spectral lines, but the changes
arc necessarily rather small. In fact they cannot exceed the effective widths of the lines. However, much
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I l_rger shifts can be produced in dynamic scattering, i.e. under circumstanceswhen the macroscopicresponseof themedium variesrandomlynot only in spacebut also in time. The underlyingtheory16is,
II , however,muchmorecomplicated.

I A remarkableresultthatwe havefoundinthecourseofourresearchregardingtheeffectsof
dynamicscatteringonthespcc_umofthescatteredradiationisthatwhenthespace-timefluctuationsinthe

II dielectricsusceptibilityofthemediumarcsuitablycorrelated,theinducedspectralchangesmay completely

I imitate the Doppler effect, even though the source, the scattering medium and the observer are at rest withrespect to each other. 1"1"19An example is given in Fig. 5.t

I Fig. 5. , Two 0 Hl lines

I ]o., .
_' (;L=4959A and 5007A) as

seen at rest (solid line), Doppler
I - 0.6 shifted (dotted line) and shafted by

i i dynamic scattering, on a suitably
i o.4 correlated random medium(dashed lines). For details see D.

I F.V. James, M. Savedoff and E.= o_ Wolf, ref. 19, from which this

I figure is reproduced.

° I

l ¢o[10Jss"_]

I Various applications utilizing spectral changes which can be produced by source correlations have
I already been made and others are being considered. Unfortunately there is no time to discuss them here.

I Let me conclude by saying that I hope to have shown that correlation effects play ayou very

significant rule in man)' energy-related problems, particularly in connection with spatial and spectral
distributions of energy in radiation fields which are produced by sources of different states of coherence or

I which are generated by scattering on partially correlated random media.
t
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I DISCLAIMER
,.,

I This report was prepared as an account of work sponsored by an agency of the United StatesGovernment. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
t bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

i i process disclosed, or represents that its use would not infringe privately owned rights. Refer-ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views

I '! and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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