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ELECTRON ENERGY-DISTRIBUTION" FUNCTION'S IN GASES

L. C. Pitchford, Sandin National Laboratories

Knowledge of the electron energy,distribution is fundamental to the /
modeling of electron swnrr. phenomena(and to most aspect:; of gaseous electron-
i c . The experimentally measured quan:. ities in these areas are properties
or" ihe macroscopic behavior of the electron swam. Since there is no mauiM--
.«;<;• >pic theory for electron t••.•innport phenomena, it in nt'cess.iry to ;;<> hack in
vho inicroscopic deC<itls of the electron-neutral scnt^erlnj; processes to prrtlii-
rhu :iwnrn behavior. The Bnltnnann equation providca'V connection between i.tv
::.u:nsfopic and the macroscopic domains. Solutions of the Boltr.mann equaf. ion
arc enoi-j-.y distribution functions and it is appropriate averages over t'nr
<!;: tr:'>i!t ion Uiv.rtions .-.hat yield the lr.caaurcable parauioters.

The solution of the Jlolt::nar.n equation can be carried out analytically
!"-<:" unly a fc:-' very restricted cases, as, for example, in the Maxwellian or
r:•T.iyve::tr:yn cr.r.cs. For r.iout physical situations, solution to the
<••:-.:.) L; mi nmt in: carried out nuneri rally.

iiol tzmann equation for electrons nay be written

= c:(f) (l)

'". a is the acceleration due to the applied electric field (--JJ,) and C is
'oilision operator. The electron energy distribution function, v, is reia-
to the electron number density by the relation,

::-.r-i, since f is a function of "r, v, and t, some assumptions must obviously
"re :-.a i - jr. solving tlsc equation. Fortunately, there are few, if any, experi-
mental situations that demand the detail of a complete solution of f(r,v,t).
i'.ithcr, it is appropriate averages over functions of f that we desire for
;nod<-JiTi£ purposes.

In what follows, we discuss the numerical calculation of the electron
enerRv distribution functions in the regime of drift tube experiments.
The discussion is limited to constant applied fields and values of E/N
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(ratio of electric field strength to neutral density) low enough that electron
growth due to ionization can he neglected. We first present a brief survey
of solution methods of the electron Uoltzmann equation and then elaborate on
the multiterm spherical harmonic expansion solution technique of Pitchford,
ONcil and Rumble." Results of the multiterm lloltzmann analysis in the case
of !<2 are compared with two-term expansion results. The latter method has
been used almost exclusively in the analysis of electron swarm behavior and
in the derivation of low-energy electron scattering cross sections fron swarm
data.' It is our intention to indicate regions of validity of the two-tern
analysis and show the errors introduced by the two-term approximation by
comparison with a more general calculntional procedure.

Survey _o_f Solution Mot hods

A. Tv;o-term expansion

iiy far the innr.t common solution technique in the drj.ft tube regime has
been tho two-term spherical harmonic expansion solution. ' In the simplest nas

!.••• fi'dure the dependence of f from .'icvcn variables to the three velocity vari-
ables. At this point the assumption is made that the angular dependence of
: fv") run !;p approxim.'itcd by the Hrrr.l two forms of a spherical harmonica
expansion,'*' or rather a Lomondiv- expansion because of the cylindrical
sysr.notry.

f(v) - E(tyQ) " f(,(f) + £± (X) c o s © . C r ) ,

The first assumption [Kq. (2a)] if: met satisfactorily in the drift tube experi-
ment;;-, when field strengths are low enough that there, is no appreciable ionir.it ion
nn<! whore there is no attachment. Then the electrons do reach an equilibrium
fairly quickly on the time scale of the experiment:;. While the steady-slate
.•iRS!ii-.iption simplifies the problem and, is often ap] ropriate, it is not essential
to ihf iiwo-terrsi method. Rockwood and his coworkers developed a solution method
for tliv time-dependent problem subject to assumption (2b) and (2c).

Tho second assumption [Kq. (2h)] is also fairly accurate in these cases,
but: in order to calculate diffusion coefficients it is necessary to include the
effect of the spatial gradients in some way. Parker and Lowke and Skullerud ,
for example, have proposed methods for doing this from a knowledge of fO$). ^
Thus the computational problem is that of determination of f("v*) even in these ^'
cases.



The third assumption [Eq. (2c) j in the "two-term" approximation. In order
for the two-term assumption to bo valid, the inelastic cross sections must be
small compared to the elastic cross sections, i.e., on the average the electrons
must io;;e only a small fraction of their initial energy upon colliding with the
neutral gas atoms or molecules. This is not always the case, especially for
molecules. Implicit in the two-term approximation, but not usually stated, is
the idea that the elastic electron-neutral cross sections are no more anisotropic
than cos&,. and that the inelastic, cross sections are isotropic. In other word.-,,
if the cross sections wore also expanded in spherical harmonics it would only be
the first two terms of the elastic and the first term of the inelastic that would
enter into the calculation.

(Jomputcr codes have been described by Luft , Morgan , and Rockwood^, '<:>a
Green', to name a few, to solve the Holtzmann equation subject to these assump-
tions and have been widely circulated throughout the gaseous electronics community.

II. Multiterm expansion

At the cost of computational complexity, ono may of course retain highnr
terms in the l.egendrc expansion. The extension to three terms has been inves-
tigated by Ferrari , Wilhclm and Winkler, and more recently by Mnkabe and
Mori. As expected, the result.*; of those workers suggest that in cases where
th<> ratio of inelastic to elastic cross sections is large, the two-term approxi-
mation begins to break down, and it remains uncertain whether the addition of
one more I.egendre component is sufficient.

Recently two more general multiform solution techniques have appeared in
the literature. Lin, Robson, and Mason have presented a general moment
method for calculating transport coefficients from the Boltziaann equation in
which a nu.ltitem l.egendrc expansion is employed. In this approach, it is the
velocity moments of the distribution function rather than the function itself
thai ;m> calculated as the moments rcln'-c directly to the transport coefficients.
Pitchford, ONeil and RumbleXhnve developed a second multiterra method using a
Gnlerkin method in which the distribution function is calculated directly. Trans-
port and rate coefficients a m then calculated as integrals over functions of
the distribution function. In n later section wo will discuss this, method and
show applications in the case of N-,. This calculation provides a straightfor-
ward comparison with the two-term results and gives an indication of the severity
of the two-term approximation for a case of practical interest.

C. Direct Solution Methods

All the methods mentioned above convert the Boltzmann partial differential
equation (PDF.) into a sot of coupled ordinary differential equations (ODE), one
such equation for each term retained in the Legendre expansion. Alternately,
one might make a more direct attack, avoiding the Legendre expansion entirely
and employing the techniques available for the solution of partial differential
equations. This has been carried out in the work of Kleban and Davis , and
Kitamnri ct al. The drawback to this latter approach is that the state
of the art of POK's is not nearly as advanced as that for ODE's, so that while
a direct solution of the Boltzmann equation as a PDE is an interesting and
promising alternative, it is currently not computationally competitive.

This list of direct methods is not meant to be comprehensive, but rather
illustrative of recent efforts.



D. Monte Carlo

In the Boltzmann equation, the electron ensemble in a swarm experiment is
described by a probability distribution which reflects the statistical nature
of the macroscopic behavior of the electrons due to a large number of individual
interactions. An alternate approach, perhaps closer in spirit to the actual
experiment; would be to calculate a series of electron trajectories through a
gas, with the exact outcome of the collisions modeled by a random variable for
each process considered. Although a single such trajectory is simply evalu-
ated, these Monte Carlo procedures are generally inefficient since they require
a vast number of trajectories to achieve an accuracy comparable to that available
from a Bol'tzmann treatment. Such methods do, however, offer a means for verifying
a solution independently derived from a given set of cross sections.

Outline of Multiterm Formulation

Since; the details of the rau.lt A term formulation nf Reference 2 have boon
described in detail in that reference, we give only a brief outline hero. The.
density Rradient expansion an ffrtynulated by Sktillonur is used to transform the
Bolt::mann equation for f(r,v,t) into a series of equations relating the velocity
dependent coefficients of the power:: of the gradient of the density. Thus, the
expansion,

f(r,v,t) - f<0)(v) n(f\t) - " ^ ( v J - X f n C t V ) + . . . (3)

to^ethi-r with the electron continuity equation,

n(r,t) - £ C 1 ) .*n<r\O + U><2) :^n(r",t) +... (4)

wherv thcw v l )'s are the transport: coefficients (ionization growth frequency,
drift, velocity and diffusion tensor, in that order), leads to equations for
t: '̂'•*(?') and f̂  (v). The forms of these equations are independent of the
suii.-.b«.-r of term in Kns. (3) or f'i), £*/ ' and ci^' are defined as integrals
ovf.-r function.-, nf f('&anfldo (;ln b c fo"»l1 fi'om f̂  '(v).9 Once f|°](v)
is determined, the same techninues may be employed to determine f̂  (v). In
what follows we discuss only f^J'{v). The. l.cpcndre expansion is now eraploved
for (0;tf

n-1

f(0)(v) Z f(l,0) - "^ f 5(O I'.(cos©) (5)

In reference 2 details of the Galcrkin solution method for the f .(O's are
presented. The definitions of the transport coefficients in the multiterm
formulation reduce to the usual two-term definitions when (a)f^ - 0 for
i > 1 and (Jf) inelastic scattering is negligible or isotropic.



Ca::)jViri,Ko;) of Two-Term anc\ Mult:itorm Results

In order to investigate the error introduced in the two-tern approximation
in a typical example wo have performed calculations in N, for values of E/N
i'von I to 200 Td as a function of the number of terms in"the Legendre expansion
of i". At these'values of E/N ionizntion may be treated as an energy loss only.
For those 'calculations we used a set of cross sections derived from previous
swarm experiments by Tachibana and I'hclps. This cross section set includes
a single level approximation to the rotational excitation, excitation from the
ground state to seven vibrational and eleven electronic levels, and ionizatirn

Since the computational problem is the determination of the Legendre expan-
sion coefficients, the f^'s, we will first look at those. The normalized
fj(C)'s in No at an E/N of 100 Td (where the average energy of the electrons ^
in. the swarm is 2.2 cV) are shown in Kip,. 1 as n function of energy. The result.';
•.•ihowi ;\ro v.ho first four coefficients in n six-tevm expansion. The isotropic
component, f«, is the largest at all energies. The higher order coefficient!? are
a ;v smaller hut still significant: in comparison to TQ. This is especially true
in r.ho ?. v.\' region whore the vibrntional cross sections aro largo. The consid^rnh]"
strut1!, uro in the ?. eV region and again around 7-8 c.V seems to reflect the onr;i>t of
.inpc>r'u->nt inelastic cross sections ai: those energies.

<!n]y the first few cool: fie UMII.S outer into the calculation oC the m<.'a".ur,i!>i ••
p:ira;;i-:.rrs of interest in most swarm applications and not the total distribution
:"i:nc;. i on. Kor the calculation of those raensurables, it is really not important.
'.'..) have- the full distribution function. The important thing here is to determim-
i;-.w •.>••;!; we havu calculated the first few coefficients. Due to the coupling f.n the
equations, the .solution obtained for f^, for example, will depend en the number of
:(•;•;:.'! in the expansion.

Tho convergence of the transport coefficients and rate coefficients is
vir.r.octcd vory closely to the crinvorgcncc of f^. Figure 2 shows the convergence
.if Lho transport coefficients, drift velocity (.v̂ ), transverse and paralleJ dlf-
r-.isiui: (D™ and I),,) coefficients and tin; A X c loct ronic excitation rate in t.hc rase ^
• •.: •! i i ro;>r>n nt 100 Td as a function of tile order of the solution or the number of
lip'vri.;:;•>. 1 harmonic components used in tin: calculation. From the figure it can !.>•
si'oii lii.-it the two-term values of thr. drift velocity and the transverse diffusion
.-.(.i:f f i:: iynt art: higher than the: !:ij;hor-order calculations. Conversely, the v.i \\wr,
o!" •!)(• A-statc excitation rate, i.l..lustrat.ivc of electronic excitation in grncT.i!,
an.1 : iio parallel diffusion coefficient arc lower in the two-term than in tho
hi .'li-:r-order calculations. The calculated values arc seen to converge as the
'u\!i.-r if the calculation is increased. Beyond four terms, there is very little
i-h.v̂ o in the. values. Monte Carlo calculations performed using a code dun to
:!(.•:.)'"• .!!V! shown on the right for ronparison.

Calculations similar to the one above for values of E/N from 1 to 200 Td
r..-vf.-ii i:\u\i '.ho largest error in I.he two-term values of transport nnd rate para-
:noi-;r.-. '>v<-r the range investigated appears at 70-Td, the value of E/N at which the
<-• ;••:•". ro;;:; ;irt: "n«einj»" the lnrg<:r;l ratio of inelastic to elastic cross sections.
Tlsr -.m.irs at 70 Td are sma.11 ("••].") for the drift velocity, larger for tl)c diffn- '
s;o!i coefficients (^5%) and up to 30£ for some of the excitation rate coefficients. v-~
i'.";!vr--"ncc of the transport and c-xcitation coefficients with the number of terms
i ".i '.'".̂  (•-.-tpansion to vi thin a frv percent was achieved by four terras in nil cases.
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Conclusion

Convergence! of the transport and rate coefficients is seen empirically
to be achieved independently of convergence of the distribution function at
these field strengths. As seen in Fig. 1, the higher order Legendre expansion
coefficients at 100 Td in No are not negligible with respect to the isotropic
component• However, the isotropic component changes very little between the
calculations performed using four and six terms. Thus, it seems that calculations
of eicrtron transport and rate parameters using four to six terms in the multi-torn
iiol t/.rnann solutions are as accurate as required for the iterative extraction of
of cross sections from swarm experiments over a wide range of K/N values.

Calculations similar to the ones above have been reported for a model atom
and for CH, . In general, the effect of adding more terms in the spherical har-
monic expansion is to raise the tail of the distribution at the expense of the
low energy or bulk portion. This, then, has the effect of lowering the drift
velocity, and raising excitation rates for proccsr.es with cross sections larye in
the tail, region. The division between the bulk and the tail region occurs at
higher energies as U/N is increased. Thus, vibrational rates in H.,, for example,
are higher in the six-term calculation than in the two-tern at low 'E/.'l but lowur
than the two-term at high K/N. The largest differences between the Lwo-term
and converged results occur at values of K/N where the average electron energy
is such that tho electrons "see" a .large ratio of inelastic to elastic cross
sections. In CIl/( at K/'N ••* 2. '»?. Td, the average energy svarn passes into the;
Ransnuer minimum and most of l.ho. electron collisions arc inelastic. The twv-t.t'rr,
crrnr in this case is 34% for O.-N and (t.h'A for v,. Vox purposes of cross section
determination from swarm experiments, the two-term assumption can introduce
i ;i;.o!orabiy large error depending on the neutral species. It is Important v̂-
to note, however, that two-term derived cross sections used in two-tern codes
will reproduce the swarm data in a JJ ingle component neutral gas.
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