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modeling of electron swarm phnnomon\(lnd to mo t aspects of gaseous clectron- et
1es. The evperimentally measured quantities in these aveas are properties
of the macroscopic behavior of the electron swarm. Since there is ne wacre-
seopia theory far electron r:anvporr phenomena, it is aecessary to po back ta
the microsecopic detatls of the electron-neutral uanLchny processes to predict
the swarn behavior, The Boltzmanm equation provides' }’LonAchiun between the ...
raseapie and the macroscopic domains.,  Solutions of the Boltzmann equation

anerpy distribution funetions and it is appropriate averages over the
dittrittion functions that yield the measurcable paramcters.

The solution nf the #oltzmann cquation can be carried out analytically
for enly a few very restricted cases, as, for cxample, in the Maxwellian or
nwvestovn cascs.  ror most physical situations, solution to the Boltznann
comation mast be carried out numerically.

che foltamann equation for electrens may be written

\.\“IF\(
o, e D sz
e B v S X "°Vvt = C(f) (1) %
. - et . . -
whire o ig the acceleratinn duc to the applied clectric field (-‘—) and € is
the eollisinn operatnr. The electron cenergy distribution fungtlon f, is rela-
ted tn the electron nunmber density by the relation,
-
£(T,% 1) v = n(F, ) -
I : . ¢ . e 2 ) . s . -
deara, since f is a function of 7, v, and t, some assumptions must obviously
te maie in solving the equation. Fortunately, there ave few, if any,_pﬁperi—
meatal situations that demand the detail of a complete solution of f(T,v,t). v

Rfather, it is appropriate averapes over functions of { that we desire for

modeling purpnses,

1n what fallows, we discuss the numerical calculation of the electron
energy distribution functions in the cegime of drift tube experiments.
The discussion {s ilmited to constant applied fields and values of E/N
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(ratio of electric fleld strength to neutral density) low enoupgh that electron
growth due to lonizatlon can be neglected. We first present a brief survey

of solution methods of the electron Boltzmann equation and then elaborate on
the wmultiterm sphgrical harmonic expansion solution technique of Pitchford,
Oleil and Rumble.” Results of the multiterm Boltzmann analysis in the case
of Ny are compared with two-term cxpansion results. The latter method has
been used almost exclusively in the analysis of electron swarm behavior and
in the detivatlon of low-encrgy clectron scatteving cross sections from swarm
data.” It is our intention to indicate reglons of validity of the two-tern
analysis and show the errors intreduced by the two-term approximation by
comparisan with a more general calculational procedure.

Survey of Solution Marhods

A Two-term exnpansion

8y far the wost common solution technique in the drift tube regime has
k K3 3 ¢ K]
been the two-term spherical harmonic expansion solution.” In the simplest case

one assuanes

f«)"“ bad ” (2;\)
ST
(e

JE =0 (2hy L

t+ voeduce the dependence of £ f{rom seven variables to the three velocity vari-
e At this polnt the assumptien is aade that the angular dependence of

gpproximnted hy the fivst two terms of a spherical harmonics .-
17 oy rather a Legendre expansion because of the cyliadrical

oan

expansion,

symnetry.

E(V) = £(6,0) = £.(e) + £ (£) cos @, (Ze) o

The first assumption [Eq. (2a)] is met satisfactorily in the drift tube experi-
ments when field strengths are low cnough that theve is no appreciable ionizatien
and whore there is no attachment. Then the clectrons do reach an equilibrium
fairly quickly on the time scale of the experiments. While the steady-state
assumption simplifies the problem and, is often apjropriate, it is not essential
to tha tua-term method. Rockwood and his coworkers’ developed a solution method

fer the time—dependent problem subject to assumption (2b) and (2¢).

The sccond assumption [Eq. (2h)] is also fairly accurate in these cases,
but in order to calculate diffusion cocefficients it is necessgry to include the
effcct of the spatial gradients in some way. Parker and Lowke ™ and Skullerud”,
for example, have proposed methods For doing this from a knowledge of £(3¥).
Thus the computational problem is that of detcrmination of f(V¥) even in these

casces.

v

\



The third assumption {Eq. (2c¢)] is the "two-term” approximation., In order
for the two-term assumption to be valid, the inclastic cross sections® must be
small compared to the elastic cross sections, i.e., on the average the electrons
must lose only a small fraction of their Initial energy upon colliding with the
acutral gas atoms or molecules. This 1is not always the case, especially for
wolecules, Implicit in the two—term approximation, but not usually stated, is
the idea that the elastic electron-neutral cross sections are no more anisotropie
than cos®,, and that the inelastic cross sections are isotropic. 1In other words, v
if the cross sections were also cxpanded in spherical harmonics it would only be
the first two terms of the elastic and the first term of the inelastic that would
enter into the calculation,

. 0 o B
GConputer codes have been described by Luft! ) Notganll, and Rockwoody, “iva =
Green’, to name a few, to solve the Boltzmann equation subject to these assump-
tions and have been widely circulated thraughout the gascous electronics community.

B. Multiterm expansion

At the cost of computational complexity, one may of course retain higher
terms in the Lugcn?'e expansion. The cxtcfgion to three terms has been inves-
tinut?d by Ferrari'®, Wilhelm and Winkler, and more recently by Makabe and
Mori. As expected, the results of these workers suggest that in cases where
the ratio of ineclastic to elastic cross sections is large, the two-term approxi-
mation bepins to break down, and it remains uncertain whether the addition of
ona more Legendre component is sufficient.

Recently two more general multitery _solution techniques have appeared in
the literature. Lin, Robson, and Mason™~ have presented a general moment
methnd for calculating transport cocfficicents from the Boltzmann equation in
which a nultitern Legendre expansion is employed. In this approach, it is the
velocity moments of the distribution function rather than the function itself
that are caleulated as the moments rclate directly to the transport coefficients.
Pitchiord, ONeil and Rumble™have developed a second multiterm method using a v
Galerkin method in which the distribution functiew is calculated divectly. Trans-—
port and rate cocfficients are then calculated as integrals over functions of
the distribution function. In a later scction we will discuss this. method and
show applications in the case of N,. This calculation provides a straightfor-
ward comparison with the two-term fesults and gives an indication of the severity
of the two-term approximation for a case of practical intevest.

C. Direct Solution Methods

All the methods mentioned above convert the Boltzmann partifal differential
equation (PDE) into a set of coupled ordinary differential equations (ODE), one
such equation for each term rctained in the Legendre expansion. Alternately,
one might make a more divecct attack, avoiding the Legendre expansion entirely
and cuploying the techniques available for the solution of partial difgerential
equations. Thif7has been carried out in the work of Kleban and Davis™”, and
Kitamori ct al. The drawback to this latter approach is that the state
of the art of PDE's is not nearly as advanced as that for ODE's, so that while
a direct solution of the Boltzmann equation as a PDE is an interesting and
promising alternative, it is currently not computationally competitive.

This list of direct methods is not meant to be comprehensive, but rather
illustrative of recent efforts.
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D. Honte Carlo

In the Boltzmann equation, the wvlectron ensemble in a swarm experiment is
described by a probability distribution which reflects the statistical nature
of the macroscopic behavior of the clectrons due to a large number of individual
interactions. An alternate approach, perhaps closer in spirit to the actual
experinent, would he to calculate a series of clectron trajectories through a
gas, with the exact OutCTgc of the collisions modeled by a random variable for
each process considered, Although a single such trajectory is simply evalu-
ated, these Monte Carlo procedures are gencrally inefficient since they require
a vast number of trajectories to achieve an accuracy comparvable to that available
from a Boltzmann treatment. Such methods do, however, offer a mecans for verifving
a solution independently derived from a given set of cross sections.

Outline of Multiterm Formulation

Since the details of the multitera formulation of Reference 2 have heen
described in detail in that reference, we give only a _brief outline here. The
density gradient expansion as fiphulated by Skullerud’ is used to transform the 1\~
Boltsmana equation for f£(r,v,t) into a series of cquations relating the velocity -~
dependent coefficients of the pavers of the gradient of the deansity. Thus, the
cxpannion,

et L A A 3 =
rE 70 = £ w@ ) - FWG a0 .. (3) -
together with the clectron continuity equation,

%X{_’ =@(0) n(r L) - (l .%n(f\,l:) + &U(Z) :661\(17\,!:) tean (4) v

P
: Rt . e ad s s : .
wirere the w )‘w are the transport coefficients (lonization growth frequeacy,
drift vo]o<1tv bnd diffusion tensor, in that order), leads to equations for

f(”)(g) and f (V). The forms of thc equatiygo are independent of the —
nuwber nf term in ‘?§ (M 0{ 4 ( and ¢o zi dcflned as 1nt8§ralq v
over functions of 2\1nd(u can hv found from f (v ) Once v
iq detnrmined, the same tec dnl?lgﬁ may be emploved to determine T (v). in -~
what t%llows we discuss only f (* « The Legendre expansion is now employed -
for V' ( 'Y, -
n-1
. Py - .
Oy 2 4,0 = L () Pylcose) (5) -
=0 )
Lz0
In refercence 2 details of the Galerkin solution method for the £.{(€)'s are v

presented.  The definitions of the transport coefficients in the multiterm

formulation reduce to the usual two—-term definitions' when (a)f1 = O for

1 > 1 and (f) inelastic scattering is negligible or isotropic. —
b



Lomparison of Two-Term and Mulriterm Results

In order to investipate the crror introduced in the two-term approximation
in a typical example we have performed caleculations in N, for values of E/N
from 1 ta 200 Td as a functiaon of the number of terms in the Legendre expansion

E 4
of . At these' values of E/N ionization may be treated as an energy loss only.
For those ‘calculations we used a set of crogs sections derived frow previous
swarm experiments hy Tachibana and Phelps. This cross sgition set includes

1 &

a single level approximation to the rotational cxcitation, excitation from the
ground state to seven vibrational and eleven electronic levels, and lonizaticn

Since the computational problem is the determination of the Legendre expan-
sion coeificlents, the f,'s, we will first look at those., The normalized
fi(é)‘s in ¥, at an B/N of 100 Td (where the average energy of the electrons
in.the swarm 1is 2.2 ¢¥) are shown in Fig. 1 as a function of energy. The results
ahown are the fivst four coefficionts in a six-term expansion. The isotropic
conponont, fq, 18 the largest at all energies. The higher ovder cocfficients are
ave sarller but still significant in compavison te fq. This is especially true
in rhe 2 oV repion where the vibrational cross gsections ave large. The considerahle
struacture in the 2 eV vepion and again around 7-8 eV sccas to reflect the onsel of
Imporiant inelastic cross sections ab those energies,

andy the first few coeoffleients enter into the calculation of the measurabie
paraniclers of interest in most swarnm applications and not the total distribution
fanetion. For the calculation of those measurables, it is veally not important

vt have the full distribution function. The important thing here is to detervmine
fee well we have calculated the first few ceefficients. Due to the coupling ia the
s
I

1
t
he salution obtained far f“, for ecxample, will depend en the number of

The converpgence of the transport coefficients and rate coefficients is
Tonnected very closely to the convergence of fu. Figure 2 shows the converpencr
ol the trangport cocfficients, drift velogity (vd), transverse and pavallel dif-
Tusion (DT and D,) coefficients and the AY electronic excitation rate in the ecane
af o aitrazen at 100 Td as a functien of the orvder of the solution or the number of

v

cal Yhwmrmonic components used in the calculation. From the figure it can by

the two-term values of the drift velocity and the transvevse diffusion

fiicicent are higher than the bigher—order caleulations. Conversely, the wvalues
Al

tate ewncitation rate, illustrative of eclectreonic excitation in gencral,
and the parallel diffusion cocfticient are lower in the two-term than in the
hicher-arder calculations. The caleulated values are seen to converge as the
arler of the aalenlation is increased, Beyond four terms, there is very little
change {n the valnes, lonte Carle calenlations performed using a code due to
AT are shown an the right for conparison.

Cajenlations sinmilar te the one above {ov values of E/N from 1 to 200 Td
reviesi that the largest ervor in Lhe two-term values of transport and rate para-
metlers over the vange investigated appeavs at 70.Td, the value of E/N at which the
eclorirans are "seeing”™ the larpest ratio of inelastic to elastic cross seclions.
The errors at 70 Td are small (~1%) {or the drift velocity, larger for the diffu- v
sisn coefficients (~5%) and up to 304 for some of the excitation rate coefficients. -
sopvertence of the transport and cxcitation coefficients with the number of terms

Zpansion to within a fev peyuent was achieved by four terms in all cases.




Conclusion

Convergence of the transport and rate coefficients is seen empirically
to he achieved independently of convergence of the distribution function at
these field strengths. As scen in Fig. 1, the higher order Legendre expansion
cocfficients at 100 Td in N, are not negligible with respect to the isotropic
component. However, the isotropic component changes very little between the
calvulations perfformed using four and six terms. Thus, it seems that caleculatinns
of clectron transport and rate pavamcters using four to six terms in the multi-ternm
Boltzmann solutions are as accurate as vequived for the iterative extraction of
of cross scctions from swarm cxpeviments over a wide range of E/N values,

Calculations similar to the ones above have been reperted for a model atom
and for CHAZ. In general, the effect of adding more terms in the sphevical har-
monic expansion is to railse the tail of the distribution at the expense of the
low enerpy or bulk portion. This, then, has the effect of loweving the drift
velocity, and raising excitatlon rates for processes with c¢ross sections large in
tho tail region. The division between the bulk and the tail region occurs at
hiphar energlies as B/N 1s increased. Thus, vibrational rvates in N,, for example,
are higher in the six-term ealculation than in the two-term at low E/N but lower
than the two-term at high E/N. The largest differences between the Lwo-toerm
and converged rvesults occur at valucs of E/N where the average electron cnergy
is such that the electrons "see” a larpe ratie of inelastic to clastic cross
sections,  In Gl at E/N = 2. 42 Td, the average cnergy swarm passes into the
Ramsaner winlmum and wost of the electron collisions are inelastic. The two-term
ercor in this case is 34% for DeN oand 6,47 for v.. For purpeses of cross seation
determination from swarm experiments, the two~term nusumpﬁ}on can intvoduce
intoiarably large evrof depending on the neutral species.” It is important e
to note, however, that two-term derived cross sections usced in two-term codes
will reproduce the swarm data in a single component ncutral gas.
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