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Sumnary

Rupture disc assemblies are used in piping network systems as a pressure-relief device

to protect the system from being exposed to excess pressures. Among the various disc

assemblies, the reverse-buckling type is chosen for application in the Clinch River Breeder

Reactor. This rupture-disc assembly consists of a portion of a thin spherical shell with

its convex side subjected to the fluid system. A cutting-knife setup is placed immediately

near the concave side of the disc. When the pressure on the disc is of certain magnitude

and frequency composition, the disc may develop large displacement, and is consequently torn

open by the knife satup.

The reverse-buckling type rupture disc assemblies have been used successfully in

environments where the fluid is gas, i.e. highly compressible, and their performances have

been judged as adequate in the liquid environment. To analyze the piping system, an

analysis method is needed taking into consideration of the fluid/disc interaction, the

nonlinear dynamic buckling phenomenon of the disc, and the possible cavitation of the fluid.

A computer code SWAAM-I had been written at the Components Technology Division, Argonne

National Laboratory. Aaong its many functions, one is to compute the response of 1—

dimensional pressure pulse propagation including the effects of many different types of

boundary conditions and possible pipe plasticity. Rupture disc assembly is treated as one

of the boundary conditions where rather than either the pressure or the velocity is

specified, the pressure and velocity is required to satisfy the equation of motion of the

disc. The SWAAM-I coda in nost cases has been observed to run well and yield good agreement

between computer's prediction and that of the test results.

However, in certain situations, when the initial pipe system pressure is not low, say

compared to the buckling pressure of the disc, the performance of the code becomes doubtful,

since the dynamic analysis of the disc uses the assumption that the disc was stress free

initially or when the disturbance within the pipe arrives at the disc. This paper reports

our finding from studying the effect of initial stress in an efficient way.



1, Introduction

The part of SWAAM-T computer code used in computing response in a fluid system is based

on the method of characteristics [1, 2]. In this method, the solution, i.e., pressure and

velocity, of the fluid is computed by simultaneously solving two equations which represent

the conditions the fluid must satisfy along certain specific "paths." At a regular

boundary, only one or the other of these equations applies depending on whether the boundary

node is located at "left" or at "right"; the other condition necessary to uniquely determine

the solution is provided by the so-called boundary condition specifying that either the

pressure or the velocity is to be equal to a prespecified value. A natural extension of

this is to specify the boundary pressure or velocity as a function of time or even the

solution of certain (differeential) equations. Another extension that may appear more

complicated in form, but is not in essense, is the rupture-disc boundary condition. Instead

of specifying either the pressure or velocity to satisfy certain prescribed condition, a

rupture-disc boundary requires both the pressure and the velocity to satisfy certain

condition, namely the equation of motion of the rupture disc.

The equation of motion of the rupture disc is numerically represented by a convective

or corotational finite-element model [3, 4]. This approach assumes that the disc has an

initial natural state and upon this state loadings are applied. Because of its formulation,

the dynamic disc model does not reduce to a static one when zero time-derivatives are

introduced into the system. Therefore, to obtain static solution using this model, a slow-

enough loading must be applied to the disc and the "equilibrium" solution of the disc then

be taken as the static solution. This method may require certain number of trials to define

the slowness of the loading and may consume computer resources; however, this is also the

most natural way of treating the "static" loading, considering the definition of a static

load is more a concept than a reality.

The limitation on the rupture-disc modeling, i.e., inability to treat the static

loading as it is conventionally treated, also reflects the same limitation on the SWAAM-I

which contains the rupture disc as a module. Therefore, SWAAM-I is expected to perform

reasonably well when the initial pipe system pressure is small such that the corresponding

initial stress in the disc is negligible. However, in reality, there exists situations

where the initial pipe system pressure is large, say about 70% of the buckling pressure of

the rupture disc used. The existence of high initial pipe system pressure prompts the needs

to improve the rupture-disc module to incorporate the ability to treat the effect of initial
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The equation of motion of the rupture disc is numerically represented by a convective

or corotational finite-element model [3, 4], This approach assumes that the disc has an

initial natural state and upon this state loadings are applied. Because of its formulation,

the dynamic disc model does not reduce to a static one when zero time-derivatives are

introduced into the system. Therefore, to obtain static solution using this model, a slow-

enough loading must be applied to the disc and the "equilibrium" solution of the disc then ;

be taken as the static solution. This method may require certain number of trials to define

the slowness of the loading and may consume computer resources; however, this is also the

most natural way of treating the "static" loading, considering the definition of a static

load is more a concept than a reality.

The limitation on the rupture-disc modeling, i.e., inability to treat the static

loading as it is conventionally treated, also reflects the same limitation on the SWAAM-I

which contains the rupture disc as a module. Therefore, SWAAM-I is expected to perform

reasonably well when the initial pipe system pressure is small such that the corresponding

initial stress in the disc is negligible. However, in reality, there exists situations

where the initial pipe system pressure is large, say about 70% of the buckling pressure of

the rupture disc used. The existence of high initial pipe system pressure prompts the needs

to improve the rupture-disc module to incorporate the ability to treat the effect of initial

pipe system pressure.

2. Approach

A natural approach is to develop a computer code using the same methodology (i.e.,

corotational- or convective-coordinates formulation), but computing directly the static

solution of the rupture disc. This approach is straightforward for a methodology of which

the final equation of motion is linear and of which the global stiffness matrix is

explicitly available. Unfortunately, the corotational-coordinates method does not require,

hence does not have, an explicit stiffness matrix. Therefore, the efforts necessary to

develop a new static code or to reduce a static code from the existing dynamic one is not a

trivial task and may require considerable work.

However, this approach is applicable to thin shells of any geometry and boundary

condition subjected to arbitrarily distributed static loads. This feature is more than



needed for the rupture discs, since they are assumed to be thin 5;pherica.l shells with fixed

edge subjected to uniformly distributed loadings. This simplification provides the possible

existence of analytical solution for statically loaded rupture discs. Analytical static

solutions for clamped spherical shells subjected to uniform pressure are, therefore, sought

for to provide the initial condition for the dynamic response of the rupture disc.

In short, a compatible static solution for a spherical shell is needed. And the

compatibility of the solution with the dynamic analysis is explained next.

3. Compatibility between static solution and dynamic analysis

The dynamic response of a rupture disc is computed by the following sequc-oce:

1. Obtain the (initial) displacement d(i), velocity v(i), and acceleration a(i) for

time step i.

2. Compute the displacement d(i+l) for the next time step using

d(i + 1) = d(i) + v(i)h + a(i)h2/2

where h is the titae-step size.

3. Compute internal nodal forces f (i+1) from the nodal displacement d(i + 1 ) * This

is accomplished through the use of the corotational-coordinates formulation.

4. Compute external nodal forces fext(i+l) from the applied loading at time step i+1.

5. Compute the acceleration by a(i+l) =• M"1[fext(i+1) - flnt(i+l)] where M"1 is

the inverse of the mass matrix M.

6. Compute the velocity by v(i+l) = v(i) + h[a(i) + a(i+l)]/2

7. Use d(i+l), v(i+l), and a(i+l) as the new initial conditions and repeat steps 1 to

7 until the final tine is reached.

The external nodal equivalent force fext due to the "static" force applied to the disc

and tha internal nodal equivalent force fint due to the displacement of the disc under the

static pressure can be computed automatically by the dynamic analysis code as a part of the

initial condition computation,.

As can be shown by a direct substitution that nonzero velocity and acceleration would

be generated for the next time step if a condition corresponding to fint j6 fexc is used.

Therefore, the compatibility of a static solution and the dynamic analysis is defined when

f = fex , i.e., no fictitious motion results from a nonchange of loading.

Note that the definition of the compatibility depends on the detail formulas used for

fint and fexC of the particular dynamic analysis.



where h is the time-step size.
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7. Use d(i+l), v(i+l), and a(i+l) as the new initial conditions and repeat steps 1 to

7 until the final tine is reached.

The external nodal equivalent force fext due to the "static" force applied to the disc

and the internal nodal equivalant force fint due to the displacement of the disc under the

static pressure can be computed automatically by the dynamic analysis code as a part of the

initial condition computation.

As can be shown by a direct substitution that nonzero velocity and acceleration would

be generated for the next time step if a condition corresponding to f*nt £ fext is used.

Therefore, the compatibility of a static solution and the dynamic analysis is defined when

fin = fex
 > i.e., no fictitious motion results from a nonchange of loading.

Note that the definition of the compatibility depends on the detail formulas used for

f n and fext of the particular dynamic analysis.

4. Analytical static solution

Many analytical solutions of a clamped spherical shell of constant thickness subjected

to a uniformly distributed pressure are computed numerically through finite-element or

finite-difference methods. The solutions obtained may be different from each other

depending upon the particular shell theory or equations used. That is, everyone of the

solutions thus obtained is only an approximation and its applicability should be determined

upon its performance.

Three approximate static solutions of an elastic shell are used in this study and they

are given below

(a) Asymptotic integration solution

One of the approximate methods is the method of asymptotic integration [5,6]. This

solution is accurate when applied to regions except the vicinity of the apex. The solution

for the in-plane membrane force and banding raoments and rotation of the shell generator is



- X \ J iN = - cot( a - 40 Ce s in ( X\|> +

X/7
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where the subscripts <(> and 6 represent the meridional and circumferential directions,

respectively, and the other symbols are

a - half opening angle

il> - positional angle measured from edge to apex

X - defined by t3(l - v2) (a/h)2]1'4, representing thinness of the shell

v - Possion's ratio; E - Young's modulus

a - radius of the disc; h - thickness of the disc

C,Y - integration constants to be determined by the edge and load conditions

For the fixed-edge spherical shell subjected to uniform pressure, the values for C and

Y are

C - Pa(l-v)/(2X); Y - T/2

where P is the magnitude of the applied uniform load.

Tha axial and normal displacements u and w of the shell can be computed by

/4^a sm<j>

w = u cot$ - ae .

where

cement distributions are obtained from the results for u,
*————



Y are

C = Pa(l-v)/(2X); y = */2

where P is the magnitude of the applied uniform load.

The axial and normal displacements u and w of the shell can be computed by

where

w = u cot* - ae.

«» - - V
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Therefore, the needed displacement distributions are obtained from the results for u,

w, and v, which can be computed either explicitly or by numerical integration.

Note that the asymptotic-integration solution is not valid near the apex of the

shell. However, for thin shells, i.e., those with high radius to thickness ratio (a/h), the

solution should be governed by membrane stress only. The region where bending stresses

become important can be identified by studying the results given by the asymptotic-

integration solution and the membrane solution. For displacement solution a region that

spans five degrees from the apex is considered the raembrane region for a disc with a/h =

225.

(b) Membrane solution

The solution for the shell is taken as the membrane part of the above solution, i.e.,

no bending stress is present. This means that the boundary condition may be violated in

this approximation.



(c) Trivial membrane solution

The solution for the shell is taken as a special case of the membrane solution in which

the equilibrium of forces is also violated. Specifically we take the solution to be zero;

i.e., the static load does not generate any response from the disc.

5. Numerical Examples and Discussions

Numerical examples are studied using a straight pipe with one of its ends connected to

a rupture disc and the other end considered as a pressure source. The pipe is filled with

liquid under a certain pressure. The displacement due to the initial pipe pressure is

computed and used as the initial condition for the rupture disc.

The numerical results for the pressure at the disc obtained for various initial pipe

pressures show that the disc pressure first drops and then oscillates about the initial pipe

pressure when the initial pressure is small corapared to the characteristic, say buckling,

pressure of the disc. The disc develops into a large displacement and opens itself when the

knife assembly is reached if the initial pipe pressure is not small. In all test runs using

solution-A, the drop of the disc pressure at an early time is about 10-30%, and the time

required for the disc to reach an "equilibrium" pressure of the pipe is reasonable.

The results for the membrane solution, solution-B, indicate that the disc buckles for

pressures that do not cause disc failure for the other two, solutions-A and -C. This, of

course, means that the effect of the edge on the static displacement, and subsequently on

the dynamic response of the disc, is large for the disc used in this study (even though the

membrane solution is a good approximation for a good central portion of the disc). The most

interesting and striking phenomenon, however, is reflected through the comparison of results

from the asymptotic-integration displacement, solution-A, and the zero displacement,

solution-C, the latter being trivial as noted before. The disc pressure is expected to drop

when the computation starts, with the drop for solution-C larger than that for solution-A.

Nonetheless, the numerical results indicate the reverse is true. For example, the drop of

disc pressure from the initial pipe pressure of 1.47 MPa (213 psi) is about 26% for

solution-A, and is about 1Q~ for solution-C. The disc failed for the solution-B

displacement.

Since none of the three approximate solutions is compatible with the dynamic analysis

in the sense defined previously. This observation suggests that the incompatibility between

the internal nodal forces conputed from the approximate displacement and the external nodal

forces from lumping the unifora pressure is very important particularly for imperfection-



membrane solution is a good approximation for a good central portion of the disc). The most

interesting and striking phenomenon, however, is reflected through the comparison of results

from the asymptotic-integration displacement, solution-A, and the zero displacement,

solution-C, the latter being trivial as noted before. The disc pressure is expected to drop

when the computation starts, with the drop for solution-C larger than that for solution-A.

Nonetheless, the numerical results indicate the reverse is true. For example, the drop of

disc pressure from the initial pipe pressure of 1.47 MPa (213 psi) is about 26% for

solution-A, and is about 10S for solution-G. The disc failed for the solution-B

displacement.

Since none of the three approximate solutions is compatible with the dynamic analysis

in the sense defined previously. This observation suggests that the incompatibility between

the internal nodal forces conputed from the approximate displacement and the external nodal

forces from lumping the unifora pressure is very important particularly for imperfection-

sensitive structures. This difficulty can be circumvented only if compatible formulas for

internal and-fcxternal nodal forces are used. Due to the complexity of the factors involved,

this is not an easy task.

The numerical results also indicate that the equilibrium of the disc pressure can be
•i

reached within a reasonable tine. In other words, for all cases except those in which the

disc failed, the .pressure at the disc converges quickly to small oscillations about the

initial pipe pressure. This convergency is identified by observing the moving average of

the disc pressure.

In the hope to reduce the magnitude of the pressure drop at the disc when the

computation starts and to reduce the amplitude in the residual pressure oscillation, damping

is introduced imto the disc material. However, numerical results indicate the opposite

effect is introduced, i.e., the more material damping introduced into the disc material, the



"larger the magnitude of pressure drop. In fact there appears to exist a certain level of

damping value above which the disc becomes unstable in this disc-fluid interaction problem

(though it is stable when no damping is used).

This "contradiction" can be explained through the following reasons. First, the

concept or presumption that damping always reduces the "response amplitude" is incorrect.

To understand what damping will do to a response, the response must first be defined. For a

one-degree-of-freedoa system, if one examines the displacement response at the mass due to a

sinusodial force applied at the same mass, one then finds that the magnitude of the

displacement is a raonotonically decreasing function of the damping for forces at any

frequency. However, different situations occur, if one looks at the transmissibility

between the mass and its foundation (connected to the mass by a massless spring and a

massless dashpot). Here zb.e transraissibility is defined as the ratio of the force

transmitted to the foundation to the imposed sinusoidal force at the mass (or the ratio of

the corresponding displacements). An examination of the transmissibility of such a system

[7] reveals that the magnitude of the transmissibility is not a monotonic function of the

damping. In other words the transmissibility reduces as the damping value increases for

imposed forces with a frequency less than / 2 times the natural frequency of the system;

however the transraissibility increases as the damping value increases when the frequency of

the force is greater than the aforementioned value. Therefore, the transmissibility due to

an arbitrary force can not b-e predicted unless the frequency content of that force and the

natural frequency of the system are known. Since the transmissibility between the

foundation of the spring nass system and the mass can also be identified with that between

the fluid and the disc, it is clear that the "response," i.e., the magnitude of pressure

drop, may not necessarily he reduced since the effective equivalent force imposed on the

disc is a step force when computation starts.

The next "reason" to te discussed is that common sense derived from experience of

structures vibrating in air or vacuum can not be directly extended to vibrations in nearly

incompressible fluid such as water or liquid sodium. For example, the initial peak

displacement at the apex of an elastic rupture disc connected to a water-filled pipe is

greater than that corresponding to an elastoplastic disc in a similar situation [1]; also

there is a pressure reduction at the disc when the. disc starts to fail in a liquid-filled

system, but not in a gas-filled system [8]. This suggests that the interaction between the

fluid and disc is very important particularly when the fluid is near incompressible such as
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natural frequency of the system are known. Since the transmissibility between the

foundation of the spring mass system and the mass can also be identified with that between

the fluid and the disc, it is clear that the "response," i.e., the magnitude of pressure

drop, may not necessarily he reduced since the effective equivalent force imposed on the

disc is a step force when conputation starts.

The next "reason" to be discussed is that common sense derived from experience of

structures vibrating in air or vacuum can not be directly extended to vibrations in nearly

incompressible fluid such as water or liquid sodium. For example, the initial peak

displacement at the apex of an elastic rupture disc connected to a water-filled pipe is

greater than that corresponding to an elastoplastic disc in a similar situation [1] ; also

there is a pressure reduction at the disc when the disc starts to fail in a liquid-filled

system, but not in a gas-filled system [8]. This suggests that the interaction between the

fluid and disc is very inportant particularly when the fluid is near incompressible such as

water and liquid sodium. Intuition based on gas-structure system would not be adequate to

provide prediction for a liquid-structure system. For the liquid-disc system, to ensure

that integration stability is r.ot violated, many (sometimes hundreds) time steps are used to

integrate the disc's response for each time step used for the integration of the fluid. If

one insists on predicting the response through "common sense and intuition," one can predict

"qualitatively," but not necessarily correctly, the response for one disc time-step at the

most. Our experience in this aspect suggests that a crude liquid-disc model provides much

better predication than the incorrectly based "common sense and intuition."

6. Conclusion

The methods of incorporating the effect of initial pipe system pressure are studied and

many numerical examples are examined. We found the "high accuracy" of certain methods in

providing certain solution components may be less desirable than the need for compatibility



between the method chosen and the dynamic integration algorithm of the SWAAM-I code. Also

noted is that great caution must be exercised when extrapolating experience obtained froin

one condition to another.

In addition to the SWAAM-I code's original natural capability of handling the initial

system pressure (i.e., treating the initial system pressure as a slowly applied dynamic load

and use SWAAM-I code to run this problem as was), an additional control is introduced

allowing the rupture disc to "relax" to its equilibrium position with the initial system

pressure. The equilibrium is considered reached when a moving average of the pressure at

the disc stays almost a constant. This approach is considered as sufficient if the initial

system pressure is not very near the buckling pressure of the disc. If the pressure is that

high initially, a more compatible method must be developed.
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