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ABSTRACT

The uncertainty analysis of model predictions has to discriminate
between two fundamentally different types of uncertainty. The presence
of stochastic variability (Type 1 uncertainty) necessitates the use of a
probabilistic model instead of the much simpler deterministic one. Lack of
knowiedge (Type 2 uncertainty), however, applies to deterministic as well
as to probabilistic model predictions and often dominates over uncertain-
ties of Type 1. The term "probability" is interpreted differently in the

probabilistic analysis of either type of uncertainty.

After these discriminations have been explained the discussion cen-
ters on the propagation of parameter uncertainties through the model, the
derivation of guantitative uncertainty statements for model predictions and
the presentation and interpretation of the results of a Type 2 uncertainty
analysis. Various alternative approaches are compared for a very simple

deterministic model.
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1. INTRODUCTION

This paper is adapted from a more extensive working draft manus-
cript [1] in preparation for the International Atomic Energy Agency
(!IAEA) which reviews a series of practical concepts and procedures for
the assessment of the reliability of predictions produced by environmental
transfer models. The factors affecting the reliability of model predictions
have been identified as belonging to five distinct categories: (1) uncer-
tainty due to improper definition and conceptualization of the assessment
problem or scenario, (2) uncertainty due to improper formulation of the
conceptual model (3) uncertainty involved in the formulation of the com-
putational model (4) uncertainty inherent within the estimation of para-
meter wvalues and (5) calculational and documentation errors in the pro-

duction of results.

Because of the difficulties in recommending general rules or pre-
scriptions how to assure that the formulated assessment problem and the
formulation of the mathematical models are correct, the IAEA manuscript
[1] emphasizes procedures for reliability assessment when the predominant
sources of uncertainty in model predictions are due to uncertainties in the
estimation of parameter values. Despite this emphasis, the manuscript re-
commends that the best procedure for assessing the extent of potential
misprediction due to both improper model structure and parameter estima-
tion is the testing of model predictions against independent (and appropri-
ately derived) sets of data. This procedure is referred to as "model vali-
dation". Many of the examples pertaining to model validation in the IAEA

manuscript have been taken from [2]}.

When model validation is impossible or impractical, a "parameter
uncertainty analysis" is recommended. Model intercomparisons and the
quality assurance of computation and documentation of model resuits can

be seen as complementary methods.

Considering the objectives of the present workshop, this paper is
predominantly concerned with the discussions devoted within the |AEA ma-
nuscript to parameter uncertainty analysis.

2. - NECESSARY DISCRIMINATIONS

Prior to conducting an uncertainty analysis it is essential to
distinguish between two fundamentally different types of uncertainty [3]
subsequently referred to as Type 1 and Type 2.

Type 1 uncertainty is due to stochastic(!) variability. That is, the
quantity of interest exhibits stochastic variability within the system to be
modelled and therefore it is uncertain which value to use in the model.

Type 2 uncertainty is due to a lack of knowledge about determini-
stic components of the system. That is, the quantity of interest is de-

H The adjective ‘'stochastic" implies the presence of a random
variable.



termined within the system to be modelled but since it is only vaguely or
imprecisely known it is uncertain which value to use in the model.

In order to classify properly uncertainties with respect to the
distinction of Type 1 and Type 2 it is necessary to have a thorough un-
derstanding of the assessment question. The following simple example

should serve the illustration.

Example:

The assessment question: What is the value of the sum S = K1 + K2
if
K1 is the number shown by a die that will
be thrown many times during the prediction
period and
K, is the unknown number shown by another
given die that was thrown in the past and
will be left untouched and unseen?

The system to be modelled: The die (no. 1) being repeatedly thrown and
the die (no. 2) lying untouched and unseen.

Type 1 uncertainty: The uncertainty of K. is of Type 1 since K1
varies stochastically within the system to be
modelied.

Type 2 uncertainty: The uncertainty of K, is of Type 2 since K2
is determined within @he system to be model=

led but is unknown.

The need for this discrimination becomes most obvious in the case
of risk assessments. Type 1 uncertainty is a constituent of the risk to be
assessed while Type 2 uncertainty inheres to the assessment process. The
discrimination is therefore essential for decision making.

"Probability" can be thought of as the mathematical language of un-
certainty [4]. The practical interpretation of the term "“probability" is,
however, different for Type 1 as compared to Type 2 uncertainty. For
Type 1 “probability" is interpreted as the relative frequency(2)of values
from a’ specified interval among a sample of randomly selected values (i.e.
the frequentistic interpretation). For Type 2 "“probability" is interpreted
as the degree of belief that a determined but vaguely or imprecisely
known value is within a specified interval (i.e. the subjectivistic in-

terpretation).

If "probability" is used in the classical (frequentistic) interpretation
it is simply called "probability". If it is used in the subjectivistic (or

(%) More precisely, the 1limiting value the relative frequency
approaches as the sample size increases.



Bayesian) interpretation it is called "subjective probability"(3).

A model that uses probabilities to represent Type 1 uncertainty is
called ‘'probabilistic'. A probabilistic model produces predictions in
distributional form. In the context of probabilistic environmental radio-
logical assessments it is of interest to ask "What is the probability for Y
{concentration, dose, consequence etc.) to exceed a level of concern y?".
For this reason it is preferred to present the distributions provided by
probabilistic models in complementary form. While the customary cumula-
tive distribution function (cdf) F,, provides the probability P(Ygy) the
complementary cumulative distribution function (ccdf) provides the proba-

bitity P(Y>y) which is ‘I-FY (see Fig. 1c).

Often, however, quantities that exhibit stochastic variability are
depicted in the model as a single value (i.e., the quantities are modelled
as being deterministic). This procedure is frequently adopted for the
sake of simplicity. In the extreme case, the entire model neglects the
stochastic variability in the system and thus produces only a single pre-
diction wvalue for a given assessment question. In this case the model is
deterministic. This extreme simplification is the one most commonly adop-
ted for environmental radiological assessment modelling.

"Modelling Type 2 uncertainty via subjective probabilities has been
practiced only in the past few decades. The reason for this is the in-
creasing need to predict the behaviour of complex systems under condi-
tions in which a substantial lack of knowledge prevails. In this situation
stochastic wvariability of a quantity about its mean value is quite often
negligible when compared to the lack of knowledge about the mean value
itself. The uncertainty in this guantity is then dominantly of Type 2. In
the context of Type 2 uncertainty analyses, it is of int.rest to ask "What
is the degree of belief (subjective probability) for Y £ y?" if the model is
deterministic, and "What is the degree of belief for P(Y>y)<p?" if the
modei is probabilistic. Consequently, it is preferred to present the sub-
jective probability distributions provided by Type 2 uncertainty analyses
in the form of a cumulative distribution function.

Figure 1 illustrates the typical prediction format for the four ana-
lysis situations:
1 a deterministic model is adequate (Fig. 1a)

2 a deterministic model is adequate but Type 2 uncertainty is to be
modelled by subjective probabilities (Fig. 1b)

(&) In practice we shall additionally differentiate with respect to
the basis for quantification of Type 1 and Type 2 uncertainty. If,
in the frequentistic case, the probability value is largely based
on relevant observations (sample evidence) we simply call it an
"estimate". If, however, it is largely based on expert judgment
(rather than sample evidence) we call it a "subjective estimate".
If, in the subjectivistic case, the probability value is largely
based on relevant observations (sample evidence) we simply call it
a "confidence level". If, however, it is largely based on expert
judgment (rather than sample evidence) we call it a "subjective
confidence level”.



3 a probabilistic model is required to account for Typé 1 uncertainty
while Type 2 uncertainty is negligible {Fig. 1c)

4 a probabilistic model is required to account for Type 1 uncertainty
and Type 2 uncertainty is to be modelled by subjective probabilities
(Fig. 1d)
1 Type 1 and Type 2 uncertainties are negligible
a

deterministic

— prediction

y

2 .Type 2 uncertainty is not negligible but Type 1 is

subjective 1
jec as e

probability g

for YSy &~ |
005 ¢ (deterministic) reference prediction
0 A M__vr\— y and
90 % subjective probability interval
3 Type 1 uncertainty is not negligible but Type 2 is
c
! probabilistic
probability p prediction
for Y>y
y
4 Neither Type 1 nor Type 2 uncertainties are negligible
d
/ (probabilistic) reference prediction
1 Teaa ———
probability p ~ ~
™\ \\-——~ 0.95 | cumulative
for Yay \ \
N 0.05 ) subjective probability

Figure 1: Prediction formats for different analysis situations



In this paper it is assumed that either a deterministic model is
adequate and employed or that the model is probabilistic, expressing all
relevant Type 1 uncertainties by prohability distributions. The model
prediction will then be either a single value or a ccdf (see Figs. 1a and
1c). Consequently, all that is left for an uncertainty analysis is to assess
Type 2 uncertainty. Although the sources of Type 2 uncertainty are those
associated with (1) scenario specification, (2) formulation of the con-
ceptual model, (3) formulation of the computational model, (4) value se-
lection for model constants (subsequently referred to as model parame-
ters), and (5) computation errors, presently, only those uncertainties
associated with parameter value selection (point (4)), and certain aspects
of model formulation (points (2) and (3)), are amenable to a rigorous
quantitative uncertainty analysis. This is why the subtitle "parameter
uncertainty analysis" was chosen for this paper.

3. MAIN STEPS OF A PARAMETER UNCERTAINTY ANALYSIS

The main steps involved with conducting a parameter uncertainty
analysis are:

1. List all of the parameters that potentially contribute to uncertainty in
the final model prediction.

2. For each parameter listed, specify the maximum conceivable range of
possibly applicable alternative values.

3. Specify the degree of belief (in percentage) that the appropriate para-
meter value is not larger than specific values selected from the range
established in Step 2 above and select a probability distribution that

best fits the quoted degrees of belief.

4. Account for correlations among model parameters by introducing suit-
able restrictions, by quoting appropriate conditional degrees of belief,

or by estimating correlation coefficients, respectively.

5. At this stage a subjective probability density function (pdf) is set up
for the combined range of parameter values. This will subsequently be
referred to as a joint pdf. Propagate this joint pdf through the model
to generate a subjective probability distribution of predicted values.

6. Derive quantitative statements about the effect of parameter uncer-
tainty on the model prediction.

7. Rank the parameters with respect to their contribution to the uncer-
tainty in the model prediction.

8. Present and interpret the results of the analysis.

These steps are discussed in detail in the {AEA draft manuscript
[1]. See also [5] for a comparison of uncertainty and sensitivity analysis
techniques for computer models and [6] for a relevant practical example
of sensitivity analysis.



For the purpose of this paper the discussion will be restricted to
Steps 5, 6 and 8. Particularly, it will be of interest to ccmpare the

following alternative approaches

- Variance Propagation

- Moment Matching
- Distribution-free Fractile Estimates from a Simple Random Sample (SRS)

- Distribution-free Statistical (u%,v%) Tolerance Limits from an SRS

- Fractile Estimates from an SRS (under the assumption of a normal or
lognormal distribution)

- Statistical (u%,v%) Tolerance Limits from an SRS (under the assumption
of a norma! or lognormal distribution)

- Distribution-free Fractile Estimates from a Latin Hypercube Sample (LHS)

- Fractile Estimates from an LHS (under the assumption of a normal or

lognormal distribution)

with respect to the kind and quality of information they provide about the
effect of parameter uncertainties on the model prediction. These approa-
ches are described in the IAEA manuscript [1] where their application is
illustrated for the very simple fictitious model Y = ABC/D. In this model
Type 1 uncertainty is negligible (so that a deterministic model is adequa-
te) and parameters A, B, C and D are subject to Type 2 uncertainty.
Their joint subjective pdf (resulting from Steps 1 to 4 of a parameter un-
certainty analysis) is presented in Table 1.

Table I:

JOINT SUBJECTIVE PDF AND "BEST ESTIMATE" VALUES OF THE
UNCERTAIN PARAMETERS OF THE DETERMINISTIC MODEL Y = ABC/D.

A correlation was seen between parameters B and C only. It was
expressed via the ordinary product moment correlation coefficient p(B,C)

= 0.7.

Parameter Distr. Min. 5% "hest 95% Max .
Tyre Value Fractile estimate” Fractile Value
A log 102 103 104
triangular - (In103 = Mode of InA) _ -
B log. normal 5.10 ¢ 8.10 ¢ 4.10 3 4.10 2 10 1
(truncated) _ _ _ -
C log. normal 0 10 € 10 5 2.10 ¢ 10 3
(truncated) _ _
D log.uniform 5.10 6 1075 5.10°S

With the "best estimate" values of the uncertain parameters the mo-
del predicts Y = 4. The total resulting uncertainty range of Y is [0 £ Y £
20,000]. A more informative quantitative expression of the uncertainty in
the model prediction is the resulting subjective probability distribution of
Y. The fractiles of this unknown cdf immediately provide subjective confi-
dence limits or end points of subjective confidence intervals. The percen-



tage of the confidence levels is given by the fractile percentages or their
differences, respectively. This permits statements like:

"At a subjective confidence level of 95 %, the value Y to be predicted
is below ygs."(“)

with vy being the 95 % fractile of the subjective probability distribution
of Y. g!%'ter‘efore, it must be the aim of an uncertainty analysis to obtain
the desired fractile values or sufficiently safe estimates thereof. How do
the aforementioned practical approaches compare in this respect?

Variance Propagation only provides mean value and variance of Y
and thus only permits the construction of " * z standard deviation" inter-
vals about the mean value. The fractile percentages corresponding to the
end points of these intervals are unknown as Variance Propagation does
not provide information on the type of distribution of Y. The assumption
of a normal or lognormal distribution is typically employed, but such an
assumption requires sufficiently rigorous justification. This necessitates
information in addition to mean and variance. Variance Propagation applied
to InY of the simple model provided above produces E{inY} = 1.62 (mean
value of InY) and D{inY} = 2.95 (standard deviation of InY). The "t 2
standard deviation" interval [-4.3, 7.5] of InY about E{inY} corresponds
to the interval [0.014, 1808] for Y(5). For simplicity the truncaticns of
parameters B and C were neglected.

Moment Matching [7,8] does provide an approximation to the cdf of
Y and thus approximate fractile values are obtained. Applied to inY it
indicates that a normal distribution (with mean value E{inY} and standa.d
deviation D{InY}] as above) is a reasonable approximation to the subjective
probability distribution of inY. For simplicity the truncations of para-
meters B and C are again neglected. The 95 % fractile of the approximate
lognormal cdf of Y is exp(1.62 + 1.645 - 2.95) = 647. It may serve as an
estimate of the 95 % fractile of the subjective probability distribution

of Y.

Both, Variance Propagation and Moment Matching, are basically ana-
lytical methods requiring that the relationship between the model predic-
tion and the set of uncertain parameters be expressed as an algebraic equa-
tion. However, the so-called numerical methods for Step 5, involve the
selection of m-tuples of parameter values (where m is the number of un-
certain parameters) and computation of the corresponding model prediction.
Generally the m-tuples are selected at random according to the joint sub-
jective pdf of the uncertain parameters. There are also non-random tech-
niques like Fractional Factorials or the Discrete Variable Approach but
these are not discussed in the IAEA manuscript [1]. The number n of m-
tuples of parameter values selected via simple random sampling (SRS) or
Latin Hypercube Sampling (LHS) [9, 10] is called the sample size. Computa-
tion of the model prediction for each m-tuple in the sample provides a

(%) provided, all uncertainties not quantified may be neglected

(5) Note, that the interval for Y is not a "t 2 standard deviation
interval" of Y.



sample of equal size from the subjective probability distribution of the
model prediction Y and thus an empirical cdf of Y. The k-th ordered (as-
cending order of magnitude) value of the model prediction is the k/n-100 %
sample fractile. The sample fractiles may serve as estimates of the corres-
ponding desired fractiles of the subjective probability distribution of the

model prediction.

Since Type 2 uncertainty analyses generally deal with very wide
distributions and since interest usually centers on rather extreme fractile
percentages like 95 or 97.5 etc., these estimates will, however, only be
satisfactory if n is large (say, on the order of a thousand or more).
when model computations are inexpensive n can be arbitrarily large. Fre-
quently, however, models are complex and the computation of the model
prediction to only one m-tuple of parameter values is expensive, thereby
severely limiting the feasible sample size (say, to less than 100). In this
case sample fractiles will often not be good estimates of, for instance, the
95 ¢ fractile. Consequently the sampling(®) error will be a matter of con-
cern. How close an estimate (from a sample of size n) is to the true
fractile value is entirely a matter of chance and is unknown in practice.
The chance, however, depends on the estimation function, the cdf of the
model predictior. and on the sampling technique. If underestimation of the
uncertainty in the mode! prediction is considerably more undesirable than
overestimation, an estimation function that has a sufficiently ilow chance to
underestimate the desired fractile values must be selected. For instance,
there is only a chance of less than 5 % that a statistical tolerance limit
at a confidence level of 95 % will in fact be an underestimate of the de-

sired fractile value.

A simple random sample (SRS) of size n=59 for the model Y = ABC/D
provided the 95 % sample fractile y g = 212 which is a Distribution-free
Estimate of the 95 % fractile y of the subjective probability distri-
bution of the mode! prediction %? However, there is only insufficient
(less than 50 %) confidence that this is not an underestimate.

The Distribution-free Statistical (u=95%, v=95%) Tolerance Limit [11],
obtained from the same SRS of size n = 59, is the 59th ordered prediction
value which is 2080. If this limit is used as the fractile estimate ¥ 5
one can be v% confident that it is not an underestimate of the true %
fractile of Y. The number n of model runs, that is necessary for the n-th
ordered prediction value to be the (u%,v%) limit, depends on u and v only
and not on the number m of uncertain parameters.

The empirical distribution of the corresponding 59 wvalues of inY,
plotted on probability paper, turns out to be reasonably well approxima-
ted by a straight line. Therefore the subjective probability distribution of
Y may be assumed to be lognormal. With InY being an estimate of the mean
value E{InY} and S, y. an estimate of the standard deviation D{InY} one
obtains the Fractile Estimate (assuming a normal distribution of InY)

Vg5 = exp (1.94 + 1.65 - 2.59) = 499 where InY = 1.94 and SlnY = 2.59.
(é) That part of the difference between the true fractile value and

the estimate which is due to the fact that only a sample of values
is observed.



However, there is only insufficient confidence that this is not an under-
estimate.

Assuming & normal distribution of InY, the Statistical (u=95%,v=95%)
Tolerance Limit is provided by 1.94 + 2.026 - 2.59 = 7.19 [12]. If this
limit is used as an estimate of the u% fractile of the assumed normal cdf
of InY one can be v% confident that it is not an underestimate. Consequent-
ly, 99 = exp 7.19 = 1320 serves as a sufficiently safe estimate of the

desir‘eaS 95 % fractile of Y.

A Distribution-free Fractile Estimate from an LHS is the correspon-
ding sample fractile. An LHS of size n = 59 provided the 95 % sample
fractile y = 285. We cannot quantify our confidence that this is not
an underestimate as we do not know, how to obtain a (u%,v%) statistical
tolerance limit from an LHS. However, for model predictions that are mo-
notonic functions in each of the uncertain parameters it has been shown
[9] that LHS compares favourably with SRS with respect to the variance of
estimates of mean value and cumuiative probabilities.

if a lognormal distribution is assumed for the model prediction Y,
with mean value and standard deviation of the normal distribution of InY
estimated from the LHS mentioned above, Y, = exp(1.64 + 1.65 - 2.80)
= 523 is the Fractile Estimate from the Lgl% (assuming a normal distri-
bution of InY). Again, we cannot quantify our confidence that this is
not an underestimate as we do not know how to obtain (u %,v %) statisti-
cal tolerance limits for fractiles of normal distributions with mean
value and variance estimated from an LHS. However, in this particular
case and for the particular sample the estimate happens to be close to

the true 95 % fractile of Y.

Table II:

SUMMARY OF QUANTITATIVE UNCERTAINTY STATEMENTS OBTAINED
FOR THE DETERMINISTIC MODEL Y=ABC/D

(cf. Table | for the joint subjective pdf of the
uncertain parameters A, B, C and D)

Quantitative
Uncertainty
Statement for Y

Approach

Analytical Methods

- Variance Propagation:
+ 2 standard deviation interval
for InY: [-4.3, 7.5] => [0.0714, 1808]

truncations of B and C neglected

- Moment Matching:
(1.62, 2.95) normal distribution as an

approximation to the subjective probability
distribution of InY => 995 = 647
truncations of B and C neglected

table continued



Numerical Methods

¢ SRS of size n=59

Distribution-free fractile estimate 995 = 212
- Distribution-free statistical

(95%,95%) tolerance limit )795 = 2080
- Fractile estimate, if the subjective

probability distribution of InY is

assumed to be normal 995 = 499
- Statistical (95%,95%) tolerance limit,

if the subjective probability distribution

of InY is assumed to be normal 995 = 1320

LHS of size n=59
- Distribution-free fractile estimate 995 = 285
- Fractile estimate, if the subjective

probability distribution of InY is

assumed to be normal 995 = 523
Distribution-free fractile estimate from

= 564

an SRS of size n = 50.000 995

Application of the aforementioned practical approaches for Steps 5
and 6 to the simple model Y = ABC/D provided estimates of the 95 % frac-
tile of the subjective probabiiity distribution of Y that range from 200 to
2000. The true 95 % fractile is about 564 (if the truncations of B and C
are neglected the 95 % fractile, obtained frem an SRS of size 50.000, is
about 648). What are the conclusions to be drawn from this comparison for
the more realistic situation of many uncertain parameters of a complex
computational model? Since in most cases the model will not be provided
as an algebraic expression Variance Propagation and Moment Matching will
not be applicable in their analytical form. If the model requires long
CPU-times per run the permissable sample size n of numerical methods will
be severely limited. Consequently, the sampling error will be a matter
of concern. Usually little is known in advance (before the sample is
drawn) about the type of distribution of the model prediction. After the
sample has been drawn a lognormal or normal distribution may quite often
seem to be a reasonable assumption. In a considerable number of instances
the sample may, however, not justify this assumption. In any case, we re-
commend the use of (u%,v%) statistical tolerance limits (possibly assu-
ming a lognormal or normal distribution, if justified) at a sufficiently
high level (v/1C0) as estimates of the desired u % fractiles of the sub-
jective probability distribution of the model prediction. If the affor-
dable sample size is small one can be sufficiently confident (v%) that
this estimate is not an underestimate of the desired u% fractile. The
larger the sample size the smaller the difference to be expected between
the statistical tolerance limit and the true fractile value.



4. PRESENTATION AND INTERPRETATION OF ANALYSIS RESULTS

The results produced by a Type 2 parameter uncertainty analysis are:

- quantitative statements about the effect of parameter uncertainty on
the model prediction

- ranking of the uncertain parameters with respect to their contribution
to the uncertainty in the model prediction.

In the IAEA manuscript [1] a detailed discussion is given on for-
mats for presenting the results of a Type 2 uncertainty analysis and on
their interpretation. This discussion differentiates the two analysis si-

tuations (see Figs. 1b and 1d):

(1) Type 1 uncertainty is negligible (a deterministic model is adequate)

(2) Type 1 uncertainty is not negligible (the prediction model must be
probabilistic).

For the purpose of this paper it suiffices to comment on the situa-
tion where Type 1 uncertainty is negligible. in this case a deterministic
prediction is adequate. The quantitative uncertainty statements of the
Type 2 uncertainty analysis are generally in the form of subjective con-
fidence limits and intervals at a high (2 95 %) subjective confidence level.
The confidence limits and/or the end points of the confidence intervals

are given by corresponding fractiles of the subjective probability distri-
[o)

=z

bution of the prediction value (Fig. 2). For instance, the 5 % and 95 %
fractiles are the end points of a 90 % subjective confidence interval while

the 95 % fractile is an upper 95 % subjective confidence limit.

Some of the uncertainty propagation methods (Step 5) provide a ran-
dom sample from the subjective probability distribution of the prediction
value. There the fractiles must be estimated from the sample. For large
sample sizes (in the order of thousand and more) the sample fractiles may
serve as fractile estimates. They are easily read from the empirical
distribution function. In the case of small sample sizes, however, sta-
tistical tolerance limits are to be used as fractile estimates to properiy
provide against underestimation of the uncertainty in the mode! predic-
tion. ’

like: The subjective confidence limits and intervals permit statements(?)
"At a subjective confidence level of 95 %, the value to be predicted is
below ygs"

"At a subjective confidence level of 90 % the value to be predicted is
between Yg and ygs".

and y. are the 95 % and 5 % fractiles of the subjective pro-

where Ygg: @ )
asistrubutlo of the prediction value Y.

babiiity

(M provided all uncertainties not quantified may be neglected
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Figure 2:

The results of a Type 2 parameter uncertainty analysis determine a
subjective level of confidence (degree of belief) that the value to be pre-
dicted is within a specified range or, that it is in compliance with speci-
fied limiting values. This level of confidence is of course highly depen-
dent upon the uncertainty quantifications for the parameters and the sub-
jective probability distributions given by the experts. It also assumes,
that all uncertainties not quantified may be neglected. These caveats
always need to accompany the analysis results in order to permit a proper
interpretation of the results.

Once subjective confidence limits have been established the results
should lead to one of three basic conclusions:




(1) At a high subjective level of confidence the value to be
predicted is in compliance with the limiting value (e.g. dose

limit)
or
(2) At a high subjective level of confidence the wvalue to be
predicted is not in compliance with the limiting value.
or

(3) The subjective levels of confidence for violation of and for
compliance with the limiting value are of the same order of
magnitude.Additional studies are necessary to improve the
knowledge base for the most important parameters in the
model prior to making decisions about compliance with the

limiting value.

The ranking of the uncertain parameters provides direction for fur-
ther research efforts in case (3) to improve the knowledge base and thus
to efficiently reduce uncertainty in the deterministic model prediction. A

practical example is provided in [1].

The situation where Type 1 uncertainty is not negligible is discus- |
sed in detail in the |IAEA manuscript [1]. This document presents some of
the numerous results that were obtained from a Type 2 uncertainty analy-
sis of the probabilistic atmospheric dispersion module of an accident
consequence code [13]. A Type 2 parameter uncertainty analysis of a pro-
babiiistic foodchain model prediction has also been presented in [13]
Results from an uncertamty analysis of a probabilistic consequence as

sessment may be found in [14].

In the interpretation of the quantitative statements of uncertainty
obtained in Step 6 and the rankings of uncertain parameters in Step 7, it
is important to note that these results will be affected by each modifi-
cation of the question asked of the mode! and account for only those un-
certainties that have been quantified in the analysis. Different quanti-
tative uncertainty statements and parameter rankings should therefore be
expected for model applications to critical group dose assessment than for
applications to questions involving exposures of large populations. Diffe-
rent quantitative uncertainty statements and parameter rankings should
also be expected for generic assessment questions than for assessment

questions that are site-specific.

The results of a parameter uncertainty analysis will also be highly
dependent on the subjective information obtained in Steps 1 to 4. For ex-
ample, the subjective distributions quantifying parameter uncertainties
may undergo changes over time even if the question asked of the model
and the members of the group of experts remain unchanged. This is because
the knowledge base will change over time.

When subjective confidence limits approach a decision-making crite-
rion, such as a dose limit, this should be incentive to improve the know-
ledge base available on the uncertain parameters. Again, this activity



should be guided by the ranking of uncertain parameters provided in Step 7.

5. CONCLUSIONS

Two fundamentally different types of uncertainty are to be discri-
minated in an uncertainty analysis of a model prediction. Type 1 uncer-
tainty is due to stochastic variability within the system to be modelled
while Type 2 uncertainty is due to a lack of knowledge.

Type 2 uncertainty analyses provide quantitative statements about
the effect of parameter uncertainty on the modef prediction in form of
fractiles of its subjective probability distribution. Additionally a ranking
of the uncertain parameters with respect to their contribution to the un-
certainty in the model prediction is obtained. So-called numerical methods,
based on random samples, are preferred for Type 2 uncertainty analyses
of complex models. The affordable sample size will be limited by the CPU-
time required per mode! run. Consequently, the sampling error in estima-
tes of fractiies of the subjective probability distribution will generally be
a matter of concern. If a statistical (u%,v%) tolerance limit is used as an
estimate of the desired u$% fractile, one can be v% confident that it is not
an underestimate. For the customary values of v these limits are therefore
to be preferred over the sample fractiles in the frequently encountered
situation where the affordable sample size is small. The minimum sample
size required to obtain a distribution-free statistical (u%,v%) tolerance
limit [11] is independent of the number of uncertain parameters and is
determined by u and v only. For u=v=95 59 model runs are sufficient.

N The results from a Type 2 uncertainty analysis permit a comparison of
mode! predictions with limiting values (and/or limit lines [15]) in the
situation where lack of knowledge prevails. Where the subjective levels of
confidence for compliance with and for violation of the limiting value are
of the same order of magnitude the ranking of the uncertain parameters
- provides direction for further research efforts to improve the knowledge
base and thus to reduce the Type 2 uncertainty in the model prediction.
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