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A VECTOR MODEL FOR ERROR PROPAGATION

by
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ABSTRACT

A simple vector model for error propagation, which is entirely
equivalent to the conventional statistical approach, is discussed. It offers
considerable insight into the nature of error propagation while, at the same
tine, readily demonstrating the significance of uncertainty correlations.
This model is well suited to the analysis of errors for sets of
neutron-induced reaction cross sections.
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I. INTRODUCTION

An investigation of uncertainty, or error as it is commonly known,

involves consideration of the variances and covariances of those random

variables which are employed in providing a mathematical model of the

particular process under consideration. Such processes usually involve

experimental measurements, but the method can also be applied to purely

analytical studies. Error propagation refers to that procedure by which the

errors of derived random variables are deduced from those of more basic

random variables through an examination of the associated random-variable

transformations. The statistical concepts and procedures involved in this

endeavor are well established and widely discussed in the literature (e.g.,

Refs. 1-5). The objective of the present work is to describe a vector model

for error propagation which is not only entirely equivalent to the

statistical approach, but also provides an intuitive geometric view of the

nature of error propagation. Since the law of error propagation is well

established theoretically, we are justified in relaxing our concern with

mathematical rigor in quest of a better conceptual understanding of this

procedure. It is in this spirit that the present model of error is

suggested.

In Section II, the statistical theory of error propagation is reviewed

and the vector model of error is introduced. Attention is paid to the

equivalence of these two error propagation formalisms. General features of

the vector model are discussed in Section III, and an example is provided in

Section IV to demonstrate this model's utility in practical applications.

Emphasis is placed on the relationship between the orientation of the error



vectors and the corresponding error correlations for those randoa variables

used to represent tha physical problem. Finally, Section V offers a few

concluding remarks.

II. FORMALISM

We proceed to review the statistical basis for the law of error

propagation before progressing to a discussion of the vector aodel. Let x be

an array of n randoa variables, i.e., ,

.«" <*i--'xi V\

Tha collection of specific values which x «ay assuae fonts an event space

denoted by X. Associated with X is a joint probability function. For

convenience, it is assumed here to be a continuous density function, p_, with

the usual normalisation condition,

/x Px<x)dx - 1.

Knowledge of the probability peraits coaputation of expectation, indicated by

the notation <...>. For any function Q(x), the expectation is calculated

according to the rule

< Q > - /x Q(x)px(x)dx,

if it exists. Existence is assured If, and only if, the indicated integral

is finite and there is absolute convergence, i.e., -

/ i
x

is also finite. In the present development, existence of the *ean values.

and the syaaetric covariance «atrix, V , is assuaed. The element* of V are

denoted by f/.. (in this paper, the range of both i and j is always 1 t o n ) .



These elements correspond to those specific central aoaents of the joint

probability function which are obtained using the formula

<xJ-xi0)(xj"Xj0) >>

The diagonal elements,

are called the variances, and the corresponding standard deviations are given

by the expression

The associated correlation matrix, C , has elements which are defined in

teras of those of V , according to the relationship

C«iJ •'iilj/(oxioxj)-

Let y denote another array of * randoa variables (a < n), i.e.,

The collection of specific values which y aay assuae foras an event space

denoted by Y. A typical variable, y. , is derived froa x through the

functional relationship

y k - y k ( x ) .

This corresponds to

y - y(x)

in aatrix notation. The transforaation froa X to Y is assuaed to involve

only continuous and differentiable functions. An expression for the eleaents

of the corresponding covariance »*trix,^V;, in teras of those for V , can be

derived using statistical aethodology. They are denoted by v. (in this
KG

paper, the range of both k and t is always 1 to a). First, an application of

Taylor's Theorem produces the expression



y. • y.ft + Z (dy^/dx,)ft(x,-x.rt) * higher-order teras.
K KO iml K 1 u 1 IU

The partial derivatives are coaputed at the aean values and the higher-order

teras are neglected because the values observed in saapling the randoa

variables usually do not deviate widely froa the aean values. Naturally,

this approxiaation should be tested in all practical applications before

utilizing the law of error propagation. If

Xi0 < Xi >

is taken to be the aean value of x., as indicated above, it easily follows,

froa consideration of the rules of expectation, that the aean value of y. is

given by

Siaple algebra and an application of the distributive property of expectation

yield the result,

< <VW(Veo> > ' J j jf1
(dyk/dxi)o< I V V ' V V ' ^ V ^ j V

The quantities

are the elexents of the covariance aatrix V , naaely v. . Utilization of the
y KC

notation

leads to the expression

n n

In aatrix notation, this becoaes

V = f+ V T,
y x



which is the Host general for* of the well-known statistical law of error

propagation. The diagonal elements of V ,

ykk = v a r (V-
are the variances, and the corresponding standard deviations are given by

a . = * " 2 .
yk kk

The Matrix f, called the transfornation Matrix, has the dimension (n x M ) .

Now we turn to a description of the corresponding vector Model of error

propagation. Let E . be a vector defined in an abstract space which, for

lack of a better expression, will be referred to here as "error space." This

vector represents the error in the rando* variable x., and it has the

property that its Magnitude, |E . J, equals the standard deviation,

a .. Likewise, let E . play the corresponding role for y. . It is proposed
xi yK K

that E . be generated as a linear superposition of n distinct component
yK

vectors, with the i one being proportional to E ,. The appropriate

constant of proportionality is suggested by an exaMination of the

transformation which Maps values from X to Y. In particular, since

y k " y k ( i ) >

the variation in y. , (4y ),, which results froM a saall deviation, Ax . of x.

relative to its Mean value, x. , with the regaining randoa variables held

constant, can be deduced froM the differential sens'.civity expression,

Therefore, it is reasonable to conclude that the contribution to E which

can be attributed to E . should siaply be

This proposition leads to the expression



V - .f/aVi
or, in terms of the elements of T, to

Eyk * ̂ V x i '

The collection of vector inner products,

forms a syMietric matrix of dimension (n x n). It is completely equivalent

to the covariance Matrix, V , if the following line of reasoning is pursued:

The elements of V , (i. ., satisfy the relationship

Furthermore, standard vector algebra yields the result

x A j l ^ i l l x j l ^ -°xi°xjCO8aij'
where a. . signifies the angle between the vectors 1 . and E , in "error

space." Complete equivalence between the statistical and the vector models

of error for the random-variable set x is obtained if it is assumed that

This assumption is a reasonable one, since it is mathematically consistent

with the fundamental requirements

-1 < C < 1 and -1 < cos a < 1.

XIJ 1 j

Continuing this line of reasoning leads us to suspect that the (m x m) matrix

formed by considering all the derived-variable error-vector inner products.

Eyk+Eyt'

is equivalent to V . This contention is easily proved by straightforward

vector algebra, i.e..



n n _ n n
E,*E . = Z Z T.. (E .TE .)T., = Z Z T ..(0 .O .coscc.JT
yk y£ i = 1 . j ik' xi xj' je 1 = 1 lk* xi xj ij' j

By analogy with the treatment for the primary random variables, x, we observe

that for the derived-variable errors.

where C . . represents the elements of the correlation matrix C . This
yk* y

preserves notational symmetry between the primary and derived random

variables. The symbol fi, is used here to denote the angle between the error

vectors E y R and E y e >

III. DISCUSSION

It should be stressed again that no attempt has been made to rigorously

substantiate the vector model of error which is described in the preceding

section. It is apparent that the basic assumptions of this model are

minimal. Furthermore, the analysis involved in providing an alternate

derivation of the law of error propagation is consistent with the well-known

laws of vector algebra. Let us focus now on examining the main properties of

this model from a geometrical point of view.

The principal feature of this model is the assumption that the standard

deviations of the primary random variables can be represented by vectors in

an "error space," and that these errors are propagated to generate

corresponding error vectors for the derived variables through the process of

vector addition, in accordance with the fundamental principle of linear

superposition. It is evident, from an examination of the conventional



statistical treatment of errors, that errors add as sealer quantities only

for the special case of full correlation. It is also well known thai at the

other extreme, namely, in the absence of correlation (e.g., for independent

random variables), errors add in quadrature. Both of these fundamental

properties of error propagation are clearly reproduced in the vector model.

Representation of errors by vectors quite naturally leads to the

interpretation of an error correlation as the cosine of the angle between the

corresponding vectors. For example, the combination of two independent

errors is achieved by the addition of two orthogonal vectors (i.e., a » n/2,

so cos a - 0). In purely geometrical terms, this amounts to determination of

the length of the hypotenuse of a right triangle from the other two legs via

addition in quadrature. While these aspects of the vector model are

intuitively quite familiar, the notion of equating the collection of inner

products of these error vectors to the covariance matrix is relatively novel.

The other important feature of this model is the notion that primary-

variable error vectors ought to be scaled by appropriate transformation

matrix elements before they are added to form error vectors for the derived

variables. A plausible argument for this is presented above, but the

principal motivation for this assumption is a pragmatic one: It is a

necessity in order to be able to interpret the elements of V as inner

products of the derived-variable error vectors, consistent with the procedure

employed for V , while at the same time yielding results in agreement with

those obtained from the statistical treatment of error propagation.



IV. AN EXAMPLE

A simple example is provided here to demonstrate how the vector model of

error can be used in a practical situation. Let space X represent a

collection of pairs of random variables,

x - (x1>x2).

Assume that the corresponding mean values and standard deviations are as

follows:

*10 " < Xl > " 2"

a = 0.1 (5* error),

X20 * < X2 > = 1 •

a » 0.07 (7* error).
X£

Furthermore, assume that a transformation from space X to a space Y of pairs

of random variables,

y - (y ry 2).

is effected by the linear expressions

yx = Xj + 2x2 and yg = 3Xj - 4xg

The transformation need not be linear, but it is taken as such in this

example for the sake of simplicity. It is evident that the mean values for

the derived variables are given by

yl0 = < yl > = 4 a n d y20 = < y2 > * 2l

and the elements of the transformation matrix, f, have the following values:

T l l = 1 ' T 1 2 = 3 ' T2I " 2 a n d T22 ' -4-

Finally, it is assumed ttiat. the errors in x. and x_ are uncorrelated. Thus,

Cxl2 = CO8Ct12

which implies that



These primary-variable errors can therefore be represented by the vectors

Kl = °xl"l = °llIl and E"x2 = °x2a2 = 0 0 7 V

where u. and u. are orthogonal unit vectors in a two-dimensional "error

space," i.e.,

It then follows fro* the formalism presented above that

V - TUixl + T21ix2 = TllOxl5l + Tai°x2S2 " °'lSl + ° 1 4 V

gy2 ' T
12

§xl + T22§x2 = T12°xl"l T T22Ox2a2 = °-3"l ~ 0' 2 8"2-

The variances in y} and y, can then be computed fro* a knowledge of these

error vectors, i.e., to three significant figures,

o = 0.172 (4.3* error) and a = 0.410 (20.5* error).

Furthermore, the derived correlation parameter is given, to three significant

figures, by

-0.130.

This corresponds to an angle of 97.5 degrees between the error vectors E

and E , indicating graphically that these errors are rather weakly anti-

correlated. The results of this simple exercise are illustrated in Fig. 1.

V. CONCLUDING REMARKS

It is apparent that the vector model of error described in this report

is well suited to the analysis of errors for experimentally determined

neutron-induced reaction cross sections (e.g., Refs. 6 and 7). In practice,

cross-section values for a particular neutron-induced reaction are often

measured for a range of experimental conditions, e.g., at several different

10



Axis 2
Each scale division equals 0.02

E

E

I I I J»l I 1 I I t— Axis 1

Angle between E 1 and I o i s 97.5 degreei

Angle between E , and E „ is 90 degrees

Fie. 1- Error vectors for the example provided in Section IV.
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neutron energies. These cross sections are derived parameters, in the sense

that they are functions of such measured primary variables as neutron

fluence, standard-cross-section values, detector efficiencies, radioactive-

decay half-lives, branching factors, etc. Other practical uses for the

vector model of error are currently being explored as part of this

laboratory'8 on-going investigation into the nature of nuclear data

uncertainties and their applications (e.g., Ref. 7).

In conclusion, we find that the vector model of error provides a

convenient method for visualizing the process of propagating errors fro*

primary random variables to derived random variables. In particular, error

propagation is conveniently represented in terms of the addition of primary

random-variable error vectors that are scaled by the sensitivity parameters

which constitute the elements of a transformation matrix, f. Error

correlations between random variables (both primary and derived) are seen to

be equivalent to the cosines of angles between the corresponding error

vectors in "error space".
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