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SOME CONSIDERATIONS ON

UV OPTICS FOR SYNCHROTRON RADIATION*

W. R. McKinney

Brookhaven National Laboratory

Upton, New York 11973

Introduction

While synchrotron radiation (SR) has a broad spectrum extend-
ing from the hard x-ray region (tens of keV) throujh the visible
and infrared regions (a rew eV) the main interest is in those wave-
lengths which are not readily available from other sources; that
is those wavelengths shorter than say 20GOA. This region poses
several problems for the optical designer that do not occur in the
visible region of the spectrum.

1. Between about 2A and 2000A wavelength, air (oxygen)
is not transparent, necessitating the evacuation of
the equipment.

2. As wavelength decreases an optical surface generally
redirects an increasing fraction of the incident
light randomly into 2rr solid angle rather than the
direction desired. This "scattering" of the light
is due to the wavelength of the SR becoming more
comparable to the size of irregularities of the
optical surface.

3. The reflectivity of coatings available for furfaces
begins to decrease below 2000A. Below 1200A, where
aluminum overcoated with MgF£ to prevent oxidation
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and enhance reflectivity begins to deteriorate,
there are no good normal incidence reflectors.
(R s 80%)

4. Below *• 1100A, the cutoff wavelength of LiF,
there are no materials suitable for refractive
surfaces or rigid windows.

Problem. 1 can be overcome with effort and money by various
means of construction and vacuum pumps. I will not cover this
technology except to say that they all introduce hydrocarbons onto
the optical surfaces by one route or another. (0-rings, mechanical
pump fluid, diffusion pump fluid, turbine pump fluid, and finger-
prints.) These hydrocarbons interact photochemically with the high
intensity SR forming a layer of contamination which is often assumed
to be polymerized hydrocarbons but which may not be.^ To my knowl-
edge, definitive work on the nature of contamination has not been
done and would be a fruitful line of research. There is the pos-
sibility that fluorinated pump fluids, such as Fomblin, may be
broken into gaseous products by the SR beam which would then be
pumped away and not deposited on the optical surfaces.^

Problem 2 needs investigation in the areas of surface charac-
terization, scattering mechanisms and angular and energy dependence.
Scattering of the SR by optical surfaces may be the most significant
limit to available fluxes at high photon energies.3

Items 3 and 4 determine the nature ofooptics in the UV. Mir-
rors are, in general, necessary below 2000A. Although potential
lens materials exist down to ~ 1200A (BaF2, CaF2, LiF2), their in-
dices of refraction vary significantly near their cutoff wave-
lengths, introducing chromatic aberration. Polishing these mate-
rials for high transmission and low scattered light is often dif-
ficult; although for special applications where the wavelength
region of primary interest is not too great, these materials should
not be overlooked.*

Below 300A, where normal incidence reflectivity J.S very low,
the mirror must be used in grazing incidence geometry. At high
incidence angles (low grazing angles), an electromagnetic effect
occurs which can permit total reflection.

Although there are complications to the following simple pic-
ture, a basic understanding of its application to SR should ensue.
There exists an angle called the critical angle (measured from the
tangent to the mirror, i.e., a grazing angle) defined (approxi-
mately) by the following equation:
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For a given wavelength, total reflection occurs at all angles
smaller than the critical angle. On the other hand, for a fixed
angle, all wavelengths longer than a certain one will be reflected
with very high reflectance. This forms the basis for what is called
the "order sorting" mirror in a synchrotron radiation beam line.
The purpose of a beam line, unless all of the SR spectrum is desired,
is to throw away all of the SR except the wavelength of interest.
The first mirror can be set to absorb heavily all of the wavelengths
below a given one, accomplishing about one half of the required job
of the beam line in the first reflection. The explanation of the
term "order sorting" requires a digression into diffraction gratings.
Figure 1 shows schematically the fundamental relation for a diffrac-
tion grating.

dsinfl - ± n\ . n - 0,1,2, ...

Notice that for a given 6 there are an infinite number of X's which
can satisfy the relation. For example, if we were atoan angle into
which lOOk was diffracted with n (order) * 1, then 50A with order
- 2 would also take the same direction, and 33.33A with n * 3 would
also be there. In practice, we are helped by the fact that the ef-
ficiency of the grating often goes down with increasing order.
Nevertheless, for some experiments, e.g., photochemical ones where
higher energy photons can cause reactions not inducible by the first
order wavelength, even 57, higher order contamination can be in-
tolerable. Now that we know something about orders, we can see that
if the first mirror is a poor reflector below 50A, for example,
second order interference will not become a problem until 100A.
Given enough money, one could have a beam line for each octave of
the spectrum and suffer little second order contamination.

This feature of the first mirror has a disadvantage because
most of the power in the SR spectrum is in the short wavelengths.
Thus, the order sorting mirror which passes only wavelengths on the
long X side of the critical \ » \c must absorb the major fraction
of the unwanted SR. In the case of the storage rings under con-
struction at Brookhaven, this can be many watts of energy, partic-
ularly for the 2.5 GeV x-ray ring. With I in amperes, E in GeV and
B in kilogauss, the power of the photon beam in kilowatts is

P • 2.65 E3IB kw (for a circular ring of
constant bending field strength) .

Let us assume 10KG, 1 ampere and 0.7 GeV for the UV ring and
2.5 GeV for the large ring. This gives about 9100 watts for the
UV ring and 414,000 watts for the x-ray ring. Let's specialize on
the UV ring. Assume we will collect 100 milliradians (mr). This
could be done by a mirror of 20 cm projected length at 2 meters from
the source.
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§ x 9100 watts - 1.44 2g£S

0.144 w a t t s x 100 mr - 144 watts .
tnr

This is a non-negligible power load which must be considered as a
source of changes in mirror figure caused by temperature differ-
ences. In addition, the narrow vertical divergence of the hardest
photons, £ 10 mr, will place for some geometries most of the radia-
tion on a narrow strip (~ 1 mr) down the center of the mirror. The
cooling problem becomes severe for the x-ray ring as you can see
from the numbers above.

So far, we have realized that we are limited to mirrors and
often high incidence (low grazing) angles in order to achieve good
reflectivity. Because a major goal in SR beam lines is to place as
much radiation at the experimenter's disposal as possible, the ra-
diation must be focused or rendered parallel. If we take the pre-
vious case of the collection of 100 mr in the horizontal direction,
the divergence of the beam must be altered close to the SR source
or the beam will become so wide that one can not afford a mirror
big enough to reflect it. Remember, also, that at grazing angles
mirrors must be much longer than at normal incidence.

The spherical concave mirror is the first and obvious choice
for focusing. It has major advantages in being a simple surface to
grind, and is routinely made for many other applications. Its major
disadvantage is that it is stigmatic only near normal incidence.
That is, it images a point source into a point image only near 0
incidence angle. Figure 2 shows this effect. In part (a), if we
place the object at the center of curvature of the sphere, it is
easy to see that the image will coincide with the object because
rays from the object will be perpendicular to the mirror by defi-
nition and the ray will reflect back on itself. If we move away
from the center of curvature along the optic axis, the image re-
mains a point and remains on the axis of symmetry. Keep in mind
that we are talking about a point and not a finite source.

Part (b) shows the effect of moving the object point off the
axis. The primary aberration of spherical mirrors has arisen,
astigmatism. (Literally, astigmatism means not spotlike, but its
use is reserved to only one class of aberration.) Let's pick a
spherical mirror of radius 2000 cm and square shape 5 cm on a side
with Incidence angle > 10 . If we trace the path of four rays from
the object point to the points 1 through 4, and see where they re-
flect, we find not a point focus but the following. The rays first
come together in a vertical line at the horizontal focus; and then,
farther from the mirror, they converge into a horizontal line at
the vertical focus. Between these two foci, we find what is called



Fig. 2a Spherical Mirror On Axi9

Fig 2b Astigmatism of Spherical Mirror
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the "circle of least confusion". For our case, the line of horizon-
tal focus will be 2.97 mm in height, the line of vertical focus
3.11 mm in width, and the diameter of the "spot" in between about
1.50 mm. As the incidence angle grows, the situation gets worse.
For our case, holding the object distance of 2000 cm and increasing
the incidence angle moves the horizontal and vertical foci farther
apart. Indeed, at 60 incidence angle the vertical focus disappears,
and the rays do not converge vertically at all. The table in Fig. 2
gives the horizontal and vertical focal lengths and the height of
the image at the horizontal focus for several incidence angles,
Negative focal lengths indicate that the rays diverge and would
cross if their direction were extended behind the mirror. Realize
that positive vertical foci could have been retained by moving the
object point closer to tha mirror.

These focal distances have been obtained by a geometrical ray
trace calculation which will be described below. They can also be
calculated by the following relations.

1 . _!. 2 cosai
0 ly " R

0 * incidence angle 0 = object distance

!„» distance to horizontal focus i * distance to vertical
" V „

focus.

This dismal picture of high angle focusing is addressed in the
following manner. Let us rewrite the above equations in the form
of the on axis equation where iH = iv> and f = focal length.

I + I - i
0 f i f

We can then identify

" fv

as the horizontal and vertical foci. If we now allow ourselves to
think of two different mirror radii in the two planes, we can solve
these for fH • fv or point focus.

RHcos0 m R,,
2 2 cos0

Rv



This mirror is the toroidal mirror. Geometrically, the surface
may be formed by rotating a circular arc of radius Rv about a second
point which is farther away. See Fig. 3.

We can now solve for the Rv which will cause the horizontal and
vertical foci to coincide. This is a tremendous increase in focal
properties at 10° incidence, from about 1500 |i to 1 M>. As we ap-
proach a demagnification of 1 to 2 at around 45 incidence, however,
the size of the image spot goes up to around 30 u. This behavior
supports the rule of thumb for toroidal mirrors which says that they
should be used at no higher magnifications than 2 to 1. If we move
the object closer to the mirror at the higher incidence angles, and
hence move the magnification back to 1 to 1, the point focus returns.
This is shown in the table in Fig. 3. In this case, the image and
object distances were set equal: i • 0; and obtained from the condi-
tion for a horizontal focus.

i fH RJJ cos0 0

•. IL, cos0 • i (by definition).

This we can recognize as the representation of a circle expressed
in polar form. This is an important fact for grating monochro-
mators; spherical and toroidal reflection gratings form their
spectra along this "Rowland" circle, named after the inventor of
the concave reflection grating.

We have seen the limits to which our simple formulae may be
pushed in describing focal properties of mirrors at very high angles.
A hint for the explanation of the defocusing which the 5 cm x 5 cm
toroid gave above 70° incidence may be seen by looking at the last
entry in the table in Fig. 3. The size of the toroid was decreased
in this case in the direction perpendicular to the plane of inci-
dence. The defocusing drops from 120 U to 6 (i. Remember the mir-
ror's minor radius is now very short, ~ 15.2 cm; and the 5 cm x 5 cm
mirror subtends a large angle at this distance. In shortening the
mirror to 5 x I/cm, we have eliminated that portion of the toroid
which deviates most from the ideal mirror shape which will focus our
point object to an exact point. This shape is the ellipsoid. It
has not been greatly used because of difficulty in manufacture. If
you will recall the definition of the ellipse and ellipsoid, you will
see that it can provide point to point focusing at magnifications
other than 1 to 1. The sphere and the toroid perform well in those
regions where they are a good approximation to it. At unity magni-
fication and 0 incidence angle, the sphere gives an exact focus
because it is a degenerate ellipsoid. Near unity magnification,
the toroid provides a simple, effective substitute even at relatively
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high incidence angler.

Ray Tracing Mirrors and Gratings

Up to now, we have been investigating the limits of optical
formulae using an exact ray trace. He now will describe it in some
detail. Let us choose cartesian coordinates with the x axis per-
pendicular to the center of the mirror and the y axis to be in the
horizontal or principle plane. The angle of incidence, a, will be
chosen positive implying the angle of reflection, @, to be negative.
Directions in space will be specified by direction numbers which are
defined by c«{,, cm, and en; where c is any constant and £, m, and n
are the cosines of the angles between the direction and the axes.
For example, the x direction has direction numbers 1,0,0, or 2,0,0,
or 3,0,0, etc.

Our object point will be given as (Xa>Ya,Za) and mirror point
will be given aa (Xp,Yp,Z_). The direction cosine set for the in-
coming ray is:

* z K r 9 i 9-i%D L(Xa V C a V « V -: '

A direction number set is then (Xa-Xp), (Ya-Y_), (Za-Zp). (Xa,Ya,
Za) is given by the problem at hand, as is a. Y_ and 2_ are known
by the assumed size of the mirror. In the case of the sphere, one
easily solvable quadratic equation gives X as a function of Y and Z.

2 2 2 2
(X-R) + Y + Z - IT

In the case J£ the toroid, however, the defining equation is not
readily solvable for X.

0 - -X2 -Y2 -Z2 + 2RX - 2R(R-p) + 2(R-p)[(R-X)2+Y2]

One may find X numerically to the degree of precision of a digital
computer by Newton's method. This method iterates rapidly to an
approximation for Xp good to eight decimal places, and uses the
following formula:

where f(X) • 0 is the defining equation for the toroid and

f'<x> " 8 R '~ 2 rk
(R-X)Z+Y2 "

10



Zero is used as the initial X .
n

We need now the normal to the surface at (Xp,Yo,Z ) in order
to apply the law of reflection. The direction numbers of the normal
to the optical surface are readily available from our defining
functions:^

sphere Fs(X,Y,Z) » 0 ^ = || = -(Xp-R)

6F 6F
a • TT • -Y n = -r—• = -Z
n OY p n OZ p

6F
toroid F,(X,Y,Z) - 0 JL = 77 = • see above

%L
6F
5Z

P-'

We have enough information to find the direction of the outgoing
reflected ray from point P. Let a' be the angle between in in-
coming ray and the normal to the mirror at P, and let &' be the
angle between the outgoing ray and the normal.

We may write down from solid geometry,

-t 4, + m m + n n
cos a' - ap ^n ap n ap n

ap n

r 2 2 2 ̂
where D 3 iI + nt + n . and £,m, and n are direction numbers,

A L. X 3C XJ

a n d c o s ? - P £ n P f n a L n
pf n

where pf denotes the outgoing ray. By the law of reflection these
three lines specified by the two rays and the normal all lie in a
plane and |a j»|j3 |. We can therefore write

cos[|a'| + | |3 | j - coss[|a'|
I - + m. m . + n n .
pf ap pf ap pf

D . D .ap pf

I!



Equations (1) and (2) provide us with two equations in the three
unknown direction numbers tnf, ra_f and n_f. We only need these two
because the three direction numbers are not all independent. The
cosine of Che sum of two angles is expanded by the identity.

cos (a + P) « cosa cosfi - sina sing

This can now be repeated for a grid of points on the mirror surface.
In addition, since the object is usually not a point but a circular
or rectangular aperture through which light is passing, a grid of
object points must also be calculated. In general, then, we have
k x I sets of direction numbers where k and £ are the number of
mirror and entrance aperture (slit) points, respectively.

In order to display this information in a usable form, we now
take the outgoing principal ray from the center of the mirror, and
choose the point along it which is of interest. This may be any-
where we wish, but is generally the point of horizontal or vertical
focus. For example, we may find (Xf,Yf,Zf) the coordinates of this
point from the reflection law and the condition for horizontal focus.
The focal plane is then the plane perpendicular to the outgoing
central ray at this point.

Xf<X-Xf) + Yf(Y-Yf) - 0

A spot diagram may be produced by finding the points of inter-
section of all of the lines defined by the k x /, direction number
sets. Remembering that F denotes the mirror points, any point on
any of the outgoing rays may be described by a single parameter \
where the coordinates are:

\t, Yp + \m, Zp + Xn)

If we put these values for X and Y into the equation for the focal .
plane, we may solve for \ and find the coordinates of intersection.

V W + Tf (Yf-Yp)
U f + mYf

We are now one step from plotting our spot diagram. We now must
rotate our original coordinates around the Z axis so that the new
X* axis is along the central outgoing ray. This will allow us to
then plot the values Y' and z' for our focal spot, x' will now be
the same for all of the intersection points and will be equal to
the distance along the central ray which we chose to observe the
focal properties. The rotation is accomplished with the following
matrix multiplication.



x' \ /costf sin0 0

-sin0 cos0 O

where 0 is the angle of reflection (taken positive).

We have now covered the simpler case of ray tracing a mirror.
For the case of the grating we will present the concepts that are
necessary, but not treat them in such analytical detail. Let's
look at the ruled grating case where grooves are equidistant along
the chord of the circular arc. This is more precisely stated that
the grooves are located by the intersection of a set of equally
spaced parallel planes and the spherical or toroidal surface. The
places are spaced a distance Do apart and have equations:

Y. - ± nDo n - 0,1,2

The law of reflection is replaced by the grating equation which
allows a f p;

± •=— • sina + sinP (a sign convention must
° be adhered to for a,3)

The condition for horizontal focus (if we use it) must be general-
ized to:

2 2
cos (X cosd cos |3 _ cosg _ 0

t K p tv

where r and r are the entrance and exit slit distances. This re-
duces to the previous for when a - 3.

The application of the grating equation becomes complicated at
all points, except the center of the grating. Note that the grating
grooves are not equally spaced on the mirror surface. This re-
quires that Do be adjusted by the following equation, producing an
effective grating constant as a function of position on the grating.7

D(/[l-(Yp/R)
:

This expression may be confirmed somewhat by visualizing what hap-
pens at Yp * R (a hemisphere for the spherical case). In addition,
one must be quite careful about defining the a and @ of the grating
equation. The grating equation applies to cases where <x and S are
measured in a plane perpendicular to the grooves and containing the
surface normal. This is, in general, not the same plane as the



plane of reflection. To ray trace properly, the grating equation
becomes7

± ~ - (si*.' + sing') cos5

where primes indicate that a and (3' are not necessarily the inci-
dence angle and diffraction angle, either at the mirror center or
at the point in question. 6 is the angle between the plane of re-
flection and the plane defined abcve in which a and @ are mea-
sured .

Application of the Ray Trace Program to a
Hypothetical Toroidal Grating Monochromator

The usual method of concave monochroraator design follows the
application of Fennat's Principle and the diffraction condition to
the optical path function. The optical path is merely the geomet-
rical path in this case because in a vacuum the index of refraction
is unity. If F is the optical path from object point to grating
point to the intersection with the gaussian image plane, the re-
quirement that F be stationary with respect to displacements along
the grooves requires (1), and the diffraction condition requires (2).*

<« S - ° <2> I - f ™ = 0'1'2

F is expanded in a power series, and the different terms are as-
sociated with the various aberrations in the image. My colleague,
Dr. Malcolm Howe11s of the National Synchrotron Light Source Staff,
has provided me with the parameters of a hypothetical monochromator
designed in this fashion.

Figure 4 shows the toroidal grazing incidence monochromator
design. It is intended for the 5A to 50l region of the spectrum.
The entrance and exit directions are fixed. The incidence and dif-
fraction angles are varied by rotation of the grating around the Z
axis. The AX's were computed by adding the image blur from the
various aberration terms in the following manner:

AX » cA. + AX AX ,

where n is the number of terms considered to be significant. In
this case up to and including terms of 4th power in Y and Z. a +
174 was chosen to achieve high reflectivity at these short wave-
lengths. The toroidal shape and short height of the rulings con-
form to our previously covered ideas about grazing incidence focus-
ing.

This may equal zero, also depending on the
definition of F.



Fig. 4 Toroidal Grating Monochromator
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In order to compare the AX's from the aberration theory with
the ray trara diagrams, we must calculate the dispersion of the
monochromator.

For the central ray, the simpler grating equation holds:

~ - sitfX + sin9
a

Holding a constant and differentiating with respect to 0, we
obtain:

dX m dcosg
dp n

Now, in the usual physicist's manner of playing fast and loose with
the calculus, we write where I is the horizontal coordinate in the
focal (exit slit) plane,

dX dX d0 ... i.a .. _a.dX dX

H " d? dT but r dg • dl =>Ti = T 7 ^

dX rtcosp
<H r n

These values are tabulated in the figure and allow us to convert
between AX and distance in the focal plane.

Figure 5 shows the results of the ray trace for the 30A case.
The points are the intersections with the focal plane of the rays
from a grid of points spaced around the edge and inside of the
grating surface. As a first approximation we can take the total
distance between extreme rays of 141.5 M- as the defocus. Multi-
plying this by O.OO155A/H, reciprocal linear dispersion gives
0.220A of blur. At first glance, this compares well with the
0.233A from the optical path theory. A better ray trace would be
obtained by using a denser grid of grating points, and considering
the density of dots in the image spot diagram. Most of the energy
is likely in a smaller width than 141.5 H. Figure 6 demonstrates
the power of the ray trace method. Four object points were added
at Z - ± 250 ti, ± 500 p. to evaluate the effects of a finite entrance
image size. It is seen that the spot distribution changes as the
object point moves out of the principal plane.

We plan to generalize our ray trace program in the future to
include deviations from the ideal figure of the mirror surface. We
also plan to include other cases, such as holographically recorded
gratingo, to supplement the straightforward approximation used here
of treating the grating as a set of small plane gratings located at



Fig. 5 Focal Plane Ray Trace Diagram for Single Object Point
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Fig. 6 Focal Plane Ray Trace Diagram for a Grid of Object Points
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each mirror point.
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