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ABSTRACT

In this paper we present an extensive microscopic study of the

collective and single-particle properties of a model Fermi liquid

whose particles interact via a repulsive hard-core potential and an

attractive tail. The model system Is intended to simulate liquid 'He.

The study is based on an approximate scheme of Singwi, Tosi, Land and

Sjolander (STLS) which was devised to treat correlations in Coulomb

Fermi liquids. The primary aim of this study is to learn whether the

model system is capable of reproducing some of the salient features

abserved in normal liquid 3He, and about the role of the repulsive and

attractive parts of the potential. We have calculated the Landau

parameters F* and F* and their variation with pressure, the wave

number and pressure dependence of the spin-symmetric and spin-anti-

symmetric polarization potentials, pressure dependence of the

dispersion of the zero sound, the static structure factors and the

quasiparticle mass. Although we make no quantitative claims when
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comparing our calculations with experiments in real liquid sHe, we do

conclude that our model system within the frame work of the STLS

scheme ;an account qualitatively for the latter. Besides, since the

theory is microscopic in nature and is parameter free, it has enabled

us to understand better the role of the repulsive and the attractive

parts or the bare potential in determining the properties of liquid

*He.



I. Introduction:

A low density Fermi gas whose particles interact via a repulsive

hard-core potential has been a subject1'3 of considerable interest

over the years, since it forms the basis for studies of nuclear matter

and liquid 3He. In this model the physical quantities of interest

such as the ground-state energy are expanded in tents of a small

parameter c - k_a0, *0 being the hard-core radius and hkp the Fermi

momentum. Unfortunately, in real liquid sHe no such small parameter

exists, and, therefore, any perturbation approach is doomed to failure

from the start. On the otherhand, there are no exact mathematical

schemes to treat a dense Fermi liquid. Recourse, has, therefore, to

be taken to approximate schemes even to treat simple model systems.

During recent years, numerical techniques of the correlated-basis-

function approach3 have yielded promising results *s far as ground-

state properties are concerned. Green's function Monte-Carlo method4 -

to treat Fermi systems has just begun to be used, although there arc

some problems. These schemes involve heavy numerical work, and the

role of dynamic correlations is not at all dear. The underlying

physics is somewhat relegated to the background. Of the several

phenomenological theories* of liquid 3He, perhaps the most ambitious

and successful one is the polarization-potential approach of Aldrich

and Pines.' Notwithstanding the fact that the latter involves some

parameters which need to be adjusted by appealing to experiment, it

has some very attractive features. What is now needed is *.

microscopic understanding of these potentials, vhich we have attempted

to provide in this paper.
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The purpose of this paper is to present (i) a detailed microscopic

study of the collective and single particle properties of a model Fermi

liquid whose particles interact via a repulsive hard- core potential;

and (ii) the effect of an attractive tail on these properties. This

model system has the virtue that it incorporates two most essential

physical features of real liquid 3He: (1) the fermion nature of the

atoms and (ii) the hard-core repulsion between the atoms. The

approximate scheme that we use to study this model system is the one

proposed some years ago by Singwi, Tosi, Land and Sjolander7 (STLS) to

study correlations in electron liquids. This scheme has been tested

and found to give very good results for many of the properties of the

electron* and the electron-hole9 liquids. It has, hitherto, not been

applied to the study of a Fermi liquid interacting via a hard-core

potential. Since the model possesses only some resemblance to liquid

*He and since the STLS scheme is only an approximate one, we make no

quantitative claims when comparing theory with experiment. We are only

striving to know whether the model is capable of reproducing some of

the very salient features observed in normal liquid 3He. For example,

one would like to know what are the predictions of the model for the

magnitude of the two most important Landau parameters F~ and F_ and

their variation with pressure. What is the wave number and pressure

dependence of the spin-symmetric and spin-antisymmetric polarization

potentials? What is the nature of the dispersion of the zero sound and

. how does it vary with pressure? How do the density- and spin-

fluctuation static structure factors S(k) and S(k) look like and how do

they vary with pressure? How does the quasiparticle mass vary with

pressure and particle momentum? What is the effect of adding an



5

attractive tail to the hard- core potential on the above mentioned

properties? Questions like these have been studied in this paper

within the frame work of the STLS scheme. The answers we obtain seen

in general to be consistent with experiment. Besides, since the theory

is nonperturbative, it should be possible to compare in the low density

limit (c«l) its results with the exact results based on the

perturbation theory for a hard-core Fermi liquid. The present theory,

albeit approximate, is selfconsistent and parameter free. The only

input is tho bare potential.



II. Theoretical Considerations:

In the STLS scheme8, the density and spin response function are

written in the form of a generalized Random-Phase-Approximation (RPA):

5 ~ (la)
1-

and

5
- Vcff(k)

2 ( l b )

where *. and x u a , respectively, the density and spin

response functions and x0 is the usual Lindhard function. V __ and
a

V _„ are, respectively, the effective spin-symmetric and spin-

antisymmetric particle-hole interactions. /iR is the Bohr magneton.

The crucial point in the STLS scheme is that the latter are related to

the pair-distribution functions through

eff(r) • * J 6<r> ̂ - dr (2*)

and *ff (r) - - J i(r) ̂ ^ dr , (2b)

where g(r) - g (r) + g (r) is the ordinary pair-distribution

function, and g(r) - g (r) - g (r). V(r) is the bare potential.

Notice that the effective interaction in the STLS scheme is static. It

is not a parameter of the theory, but arises as a result of an ansatz

made on the two-particle tfigner distribution function in the equation

of motion for one-particle Vigner distribution function, in order to

truncate the heirarchy of equations.*

In the present case, we consider a bare potential of the form:



V(r) - Vfl

° " (3)

- 0 , r>aQ .

where a. is the radius of the hard core and VQ is a positive number.

Clearly, for a hard-core potential VQ -» «>. Using (3) in (2), we

have
»f*^ ' 0

n . < 4 a )

and

V e f f ( r ) " V0 8<ao) r iJa0

- 0 r>aQ

s a
Notice that V __ and V __ differ only by a constant factor. The

s
Fourier transform of V «(r) is

-•• ->

s r i k - r s

eff< 1 C ? J " 1 ' V e f f

4IIV,0 & 3 ° Q sin (kaQ) - (ka0) cos (ka0) , (5)

a
and a similar expression is obtained for V _.(k) with g(afl) replaced

The numbers g(aQ) and g(aQ) are obtained by using the fluctuation-

dissipation theorem according to which

*a

S(k) - - — J dw Im xd(k,w) (6a)

and

S(k) - - g J

Now

Im
o



g(r) - 1 + -\- J kdk sin(kr) [s(k)-l] , (7a)
2kr

and £(r) - -\- f kdk sin(kr) fs(k)-ll <7b)
2k£r

With r - aQ, equations (1), (5), (6) and (7) constitute a set of

equations for the numbers g(a~) and g(«0). which have to be solved

selfconsistently. Let us first consider the equation for g(aQ).

Writing, x - VQ g(aQ), equations (la), (5), (6a) and (7a) can be

written in the form

x/VQ - F (x) , (8a)

where

F(x) - 1 + -2=r- fkdksin(ka) [s(k;x)-l] . (8b)
ZkF*0 o

•o

S(k;x) - - ̂| J la Xd(k.»;x) d« (8c)
o

and

Vftff(k;x) - * f [sin(ka0] - ka0 cos (kaj] (8e)

Equation (8a) is a nonlinear equation which can be solved without

much difficulty. It is worth pointing out here that an iterative

procedure to solve (8a) will diverge for large enough V~ although a

solution of the equation exists. This point is discussed in detail in

Appendix A. In the Unit VQ-*»> (hard-core limit), we expect g(aQ)-»O

and the effective interaction Vs
f- (k) is determined coapletely by the



' equation F(x) - 0. A similar equation can be set up for the case of

the spin response. Writing y - Vog(a_), the spin-antisymmetric

effective interaction is obtained by solving an equation of the form

£- - G(y) , (9a)

V0

where it can be seen easily that

G(y) - F(y)-1 (9b)

We have solved equation (8a) and (9b) in the limit VQ-*»

numerically using Newton's method for various densities. We find that

solutions exist only at densities below a certain critical value. In

the density-response case, the critical density is given approximately

by aok^ « 2*0; and in the spin case by aQkp * 2-6- Values of

x - V-g(a_) and y - V-g(a-) are given in Table 1 for various values of

The absence of a solution beyond a certain critical value of the

density suggests that something drastic may be happening in the

vicinity of the critical density. In fact, an earlier study of a Bose

liquid interacting via a hard-core potential by Hansen etal10 suggests

that the system may solidify at roughly the density *ok-, « 1*9.

The Landau parameters F* - N(0) V^ff (k-0) and F* - N(0) V*ff (k-0),

where N(0) is the density of states are shown in Figs, (la) and

(lb) as a function of density. We have expressed the density in terms

-l 4JT 3
of a fixed density nQ given by n. - -r aQ. Notice that nQ is just a

mathematically convenient quantity which has no particular physical

meaning. It is clear from a comparison of Figs, (la) and (lb)

that F? changes much more rapidly with density as compared to Fn in the
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region of high density, c>l. In fact in the density region

0 • 3Sn/nfl£0 • 7, F~ changes by almost a factor of 10; whereas F* changes

by only 30%. This result is in general agreement with what is observed

in liquid 3He under pressure. Absolute values of F~ and F_ of the

model do not compare well with those observed in 3He. Moreover, we

find that F? becomes less than -1 at c - 1-74, so that the model

predicts a ferromagnetic transition at this density. Such a transition

is not observed in liquid *He. At this stage, it is not clear whether

the ferromagnetic instability we observe is an artifact of the model

itself or an actual artifact of the theory we use.
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II. Dilute Hard-core Fermi gas (c<l)

This is the region of density where perturbation theory is valid

id has been extensively studied. The perturbation theory results for

C<1 can be considered almost exact, and this makes it possible to

smpare some of our results with the previously known results. The

ilculated Landau parameters F* and -F* are shown in Fig. 2b as a

mction of c(cil). Notice that -F* •* FQ as c-*0. This result is a

jnsequence of the fact that as c-K), the interaction becomes

;sentially point like thus rendering the Paul! exclusion principle

;ry effective. The compressibility ratio K/K- in our theory is given

7

5_ 1 /lm
Kf 1 + FO

nee m*/i» - 1. This ratio is shown in Fig. (2a) (curve 1 as a

mction of c and compared with the corresponding ratio obtair d from

e exact small c expansion of the ground-state energy (curve 2)).11'12

e agreement between our result and the exact result is only fair, a

suit which is not totally unexpected, since similar quality of

reement is also obtained in the case of an electron liquid.* In a

ter refinement of the STLS theory, Vashishta and Singwi13 were able

get a very good agreement with the exact result in the electron gas

se. We have not attempted here at present such a refinement of the

eory.

The static structure factor S(k) is shown in Fig. 3 for values of

-0-4 and 0-6. It is quite structureless at these low densities.

'. spin-structure factor S(k) is shown in Fig. 4 for the same two

.ues of the density. Notice the shift of the peak position of S(k)

:h increasing density. The corresponding pair correlation functions
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g(r) and g(r) are shown in Figs. (5) and (6). Notice that g(r) is

nonzero inside the hard-core, although g(aQ) *" 0. This unphysical

feature is found throughout the whole range of density we have studied

and should be considered as the defect of the theory. This is a

manifestation of the bad behaviour of S(k) for large values of k. This

bad behaviour may be slight and may even be not perceptible in a plot

of S(k), but it can lead to unphysical behaviour of g(r) for small

value of r. The same is true for g(r).

The effective mass m*/m on the Fermi surface is calculated as a

function of density by calculating the self energy. The latter is

calculated by using an approximate formula derived14 by us earlier. A

brief summary of the underlying theory is given in Appendix B. *n

exact result1 for m*/m based on small c expansion is given below:

m*/n - 1 + -£-x (7 log 2-l)c2 + 0(c3) : (13)
15*

In Fig. 7 our calculated values of n*/m as a function of c are

compared with those given by eqn. (13). The agreement is quite

good in the small c region where eqn. (13) is valid.
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IV. High density Hard-Core Fermi liquid (c>l)

The high density region c>l is of considerable interest, since

liquid 3He in a first approximation can be considered as a Fermi

liquid interacting via a hard-core potential. Taking aQ =» 2-56 A and

kj, ~ 0*78 A"1, corresponding to the normal liquid 3He density, one

finds that c-2. Notice, however, that real liquid 3He interacts via a

softer potential with an attractive tail"(6-12 L-J potential); and,

therefore, the effective c for liquid *He should be smaller than 2.

We shall see in what follows that an appropriate value of c for liquid

sHs is c-1-5-1-7.

(i) Zero-Sound Dispersion:

The dispersion of the collective mode of the density fluctuation

is obtained in our model by solving the equation:

A sharp collective mode exists only for a density greater than a

certain critical density when it lies outside the particle-hole

continuum. In the present model this critical density is c-0-9. The

calculated dispersion for the collective mode for several different

values of the density is shown in Fig. 8. There is a remarkable

similarity, although qualitative, between the dispersion curve for

c-1-7 and the one observed by Skold et al.ls from inelastic neutron

scattering experiments. What is more interesting is the dependence of

the dispersion curves on the density of the liquid or the pressure.

With the increase in density, there is the flattening of the

dispersion curve. Such a flattening has been observed

experimentally15 and was indeed predicted by Pines et al.lc on the basis



14

of their phenomenological theory. When the density is high enough, a

peak in the dispersion curve builds up at around kaQ~3. A similar

prediction has also been made by Glyde and Khanna17 based on their

phenomenological theory. The question what happens to the dispersion

curve when a small attractive potential is added to the hard-core will

be examined in Section VI.

(ii) The Static-Structure Factors:

The static structure factor S(k) for three different densities is

shown in Fig. 9. As expected, the peak in the structure factor

increases in height with the increase in density, but the position of

the peak remains unchanged at around kaQ -5.0. Notice also that a

small plateau that is abserved18'19 in S(k) at small k-O-SA"1 in

liquid 3He is absent here. A more detailed discussion on this point

will be given in Section VI, where the effect of adding an attractive

part to the hard-core potential will be discussed. The pair-

correlation functions g(r) obtained by Fourier transforming the S(k)'s

of Fig. 9 for two different densities are shown in Fig. 10. For r<a.t

the unphysical nature of g(r) is obvious, when the density becomes

high, the oscillations in g(r) persist for large values of r/aQ.

The magnetic structure factor S(k) is shown in Fig. 11 for two

different densities. The appearance of a sharp spike in S(k) for c-2-0

is an indication that the normal state is no longer the stable state in

the present model. In fact for c-2-0, F? <-l, so that the system

should be already ferromagnetic. In contrast to the behaviour of S(k),

we find that the overall shape of S(k) in the normal state is quite

insensitive to the density change except that the position of the tiny

peak in S(k) shifts towards larger values of k as the density
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increases. The corresponding pair-correlation function g(r) is shown

in Fig. 12. Notice that despite the unphysical nature of g(r) for

r<aQ, it is less than zero for all values of r>aQ - a result which is

in agreement with the conclusion drawn from a simple argument based on

Pauli principle.

(iii)Effective Mass

The effective mass on the Fermi surface is defined by

_ „ _ _ _

«-0F

Figure (13) shows the results of our effective mass calculation on the

Fermi surface over a range of densities when F. >-l ie the normal

state is the stable paramagnetic state. Notice that a rather large

mass renormalization coming from spin fluctuations is found over the

entire density range. A divergence in the effective mass is found for

c=*l-74 which is the result of the paramagnon effect.

We have also calculated the quasiparticle spectrum in the "on-

shell" approximation.

Ep - *p + Re l(p,ep) , (16)

where ep is measured from the Fermi energy and Re £ is the real part

of the selfenergy. The results for two different densities are shown

in Fig. 14. These curves for quasiparticle spectrum exhibit

qualitative similarity to the corresponding curve calculated by

Padharipande et_al.20 The momentum dependent effective mass

is shown in Fig. 15 for the same two values of density. The shape of
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these curves is similar to the shape calculated by Friman and

Krotscheck.21 The second peak around k/kp - 1-65 is due to the zero-

sound contribution. Notice that the "on-shellM value ** 7-3 of m*(k)/
m

on the Fermi surface is much larger than the corresponding value of

1*22 as read from curve 1 of Fig. 13. The latter is based on the

definition of the effective mass as given by formula (15). This large
difference is an artifact of the "on-shell" approximation, which cannot

3«
be trusted when -r- Re £(k,w) is large and negative.
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V. Effect of an Attractive Tail:

In real liquid 3He, the interatomic potential is not a hard-core

potential but a potential of the Lennard-Jones kind with an attractive

tail. The latter plays an important role in determining the

properties of liquid 3He. In fact the stability of the system depends

entirely on the existence of such a tail. Hitherto, in the absence of

any microscopic theory of liquid 3He, it has not been possible to say

even qualitatively what is the effect of the attractive tail of the

potential on physical quantities such as the structure factors

S(k) and S(k), the zero-sound dispersion and the Landau parameters F?

and F.. In this section we shall examine the effect of such an

attractive tail with an approximated model. Ve shall see that some

very interesting results emerge.

For simplicity, we consider a model interaction which can be

solved easily:

V(r) - VQ r<aQ "

- -c a-<r<a. (18)
0 1

- 0 Hj<r

The parameters a., and e of the attractive tail are fixed by requiring

that

J VL-J ( r ) r2(lr ' J (*£) (19a>

a0

and
to su

r*dr <19b)J r \ j(r) r*dr - j r(-e)
a0

where V is the Lennard-Jones potential for 3He
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Furthermore, we take aQ=<0-9ff to account roughly for the fact that "L-J

potential has a weaker repulsive core compared with the hard-core

potential. With the requirements (19), we find that

a. « 2-05 a- 1
1 0 i (20)

£ « 0-46 £ i

From eqns. (2) and (18), it follows that

Veff<r> " °

- - £

- - £ g(a1) + (V0+£)g(a0) r<aQ

and

* p(r) - 0 r>a,

r<aQ

The Fourier transform of the effective potential Vs__(r) is

veff(k) - ̂ KvO« W [sinK)- ̂ o «»

( 2 1 b )

- ̂| £ gfajfsinfkaj- kax cosfkaj] , (22)

and a similar expression for V £f(k) with g(r) replaced by g(r).

As in section II, a set of selfconsistent equations for the

variables xx - (vo+*)g(a0) , x2 - - c gfaj and yx - (ao+£]l(ao) and

y_ — - c g[a-i] c a n be set up. However, the computation is some what

more involved here because one has now to solve two coupled, nonlinear
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equations of two variables. Proceeding as before, we can write these

equations in the form:

and

X2

;x1,x2],

rxrx2)J

bi u i »y2j Biaoiyi'y2J]

'Z I AT IT I ^ w I « *YT V I J

In the limit VQ-»«>, we have as before

F1(x1,x2) - 0

and F2^X1'X2J •

and a similar set of equations for the spin response.

where

F1(x1,x2) -
I

(24)

(25b)

where

,;yry2>

(26)

(27)
X2 «
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VI. Results and Discussion:

We have solved the above set of equations numerically, using the

generalized Newton's method, for different densities {c-values), and

the results are given in Table II.

(a) Landau parameters:

The resulting Landau parameters FJ! and F* are shown in Figs. 16

and 17, respectively, where for comparison sake hard-core potential

values are also shown. There are several interesting features tc

note. The attractive part has the effect of reducing F~ and

increasing FQ compared to their values in the pure hard-core case.

Also the curve for F* in the region of low density is much steeper

than it is for the hard-core. In fact, it clearly shows the tendency

of becoming negative for c<l*3. It is, therefore, no surprise that

for nuclear matter where c<l, FQ is negative. The effect of an

attractive tail on F* is very large as can be seen in Fig. 17 so much

so that in the region of densities where hard-core F? <-l (ie

ferromagnetic), the inclusion of an attractive tail has resulted in

F»>-1. Under the circumstances, it is natural to ask whether our

results are sensitively dependent on the shape of the attractive part

of the bare potential. To answer this question, we have solved the

selfconsistent equations also for two other choices of the parameters

c and a. for c-1-6. The latter satisfy the requirement imposed by

eqn.(19a). The resulting effective interactions V £f(&)

and Vaf-(k) for three different choices of the parameters a^ and *

are shown in Fig. 18 and Fig. 19, respectively. Notice that V*ff(k) is

qualitatively quite stable against variation of a, except in the small

k-region, where the Landau parameter F* (v*ff(k-0)N<0)] for three
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different situations does not differ by more than 20%. The situation

is entirely different for Va _(k) as can be seen in Fig. 19. The

value of FQ (v
a
f_(k-O)N(O)j depends very sensitively on the shape of

the potential. In fact F^ changes from 0-27 to -0-44 for three

different shapes of the attractive potential chosen. The main reason

for this being the change in the values of i(a.,) for different values

of a..; the latter being always close to zero and as such can differ

easily by one hundred precent although the actual numerical difference

may be small. As a result, we conclude that the spin-antisymmetric

effective interaction depends very sensitively on the shape of the

bare potential. In particular, our results for FQ can not be trusted

as reasonable approximations for liquid 3He. On the contrary, our

results for the symmetric case can be considered as reasonable first

approximations for liquid 3He. Notwithstanding that, our N(0)Va (k)

for aj-2-2a_ (see Fig. 19) is qualitatively very similar to the

corresponding polarization potential of Aldrich and Fines (3He at

SVP).

In Fig. 20, we have compared N(0) Va__(k) in the two cases one

with a pure-hard core potential and the other a hard-core plus an

attractive potential for a given density c-1-7. Notice that in the

small k region, inclusion of an attractive tail in the potential

brings about a drastic change in the shape of the effective potential.

Fa increases by more than a factor of 2 from its hard-core value thus

shifting the magnetic instability to higher densities. Curve B of

Fig. 20 has indeed a shape very much like that of f (k) of Aldrich and

Pines.* The minimum in the effective potential is around k-O-SA"1 and

depends on the shape of the attractive part of the potential.
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The spin-symmetric effective interactions V*ff(k)N(O) for c-1-5

and c-l*9 are plotted in Fig. 21 and Fig. 22, respectively. The

corresponding effective interaction for the pure hard-core potential is

also shown for comparison. Notice that N(O)Vs__(k) for c-1-5 is

qualitatively quite similar to the polarization potential fS(k) of

Aldrich and Fines.8 It starts with a value 10 and has a maximum around

kao«l-5 (k/k_->l). This maximum is not so pronounced as in the fS<k) of

Aldrich and Fines. It first attains a value zero around kaQo«4*5

(k/k~3), whereas fs(k) does so at k/k_«2-2. This difference could

easily arise from the difference in the hard-core part of the

potential. Notice (Fig. 21) that the inclusion of an attractive tail

brings about a considerable reduction in the value of N(0)V ff;(k) for

small values of k from its hard-core value and a change in the shape.

Actually, it can be shown easily by expanding (22) for small values of

k that the dip in N(0)VSff(k) is the result of the attractive part of

the potential and is present only when the ratio r - eg(a. )/(VQ+£)g(a_)

exceeds a certain critical value. Similar structure is not present in

N(0)V*ff(k) (Fig. 22) for c-1-9. In fact it can be seen from Table II

that the ratio r decreases as the density increases resulting in a

gradual disappearance of the structure. This is understandable since

at high densities one expects the effect of the hard-core to be the

dominating one.

(b). The Structure Factors:

The selfconsistent static structure factors S(k) for three

different densities are shown in Fig. 23. The peak height increases

with density as expected, whereas the peak position remains

unaffected. At a first glance, the curves of Fig. 23 appear to be the
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same as those of Fig. 9 for a pure hard-core potential. However, on

closer examination an interesting difference is discerned when one

compares the inserts of Figs. (9) and (23), where S(k) for small

values of kaQ is shown on an expanded scale. Notice that for c-1-5,

S(k) for the hard-core (Fig. 9) is convex to the wave number axis;

whereas the S(k) of Fig. 23 for a hard-core plus an attractive

potential is concave, leading to a plateau-like structure in S(k).

Such a structure has indeed been seen experimentally in S(k) of liquid

3He through x-ray and neutron scattering experiments.1*'19 Putting

a -2-5A, we see that the position of the plateau is also in rough

agreement with what is observed. The occurrence of this plateau can

be traced to the structure in the low k region of N(0)VSff(k) for

c-1-5. This structure disappears with increasing density. Based on

this observation, we conclude that the observed plateau-like structure
a

in S(k) in the small k reg'on in liquid 3He is a result of an

A

attractive part of the potential between the helium atoms; and that

the structure would weaken and ultimately vanish as the density of the

system increases when the repulsive part of the potential dominates.

Since this effect is quite independent of statistics, a similar

behaviour is also expected to be found in the structure factor of

liquid «He.

The pair-correlation functions g(r) for c—1*5 and 1*7 are shown

in Fig. 24. These curves are very similar to the corresponding ones

for the pure hard-core potential Fig. 10. The difference is almost

negligible over the entire range of r. The behaviour of g(r> for r<aQ

is obviously, unphysical. As expected, with the increase in density

the oscillations in g(r) become more pronounced.
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The structure factors S(k) for spin fluctuations for three

different densities are shown in Fig. 25. The shape of these curves

is quite different from that in the pure hard-core case, Fig. 11.

This difference is a consequence of the very different behaviour of

Va__(k) in the region of a small k in the two cases. As the

density increases, the effect of the hard core becomes more dominant

and the peak in S(k) weakens and ultimately disappears. We expect, at

least qualitatively, a similar behaviour in liquid 3He.

In Fig. 26, we have shown g(r) for two different densities.

Although the general shape of these curves is very similar to the shape

of the corresponding curves in the hard-core case, Fig. 10, the

magnitude of g(r) is different,

(c). Zero-Sound Dispersion:

The zero-sound dispersion for four different densities is shown

in Fig. 27. On comparing these curves with the corresponding curves

in Fig. 8 for the pure hard-core case, one notices two important

differences: (i) The velocity of the zero-sound mode given by the

slope of these curves for kaQ-*0, is reduced from its hard-core value,

since F. is reduced, (ii) A more pronounced flattening of the

dispersion curves in the large k-region is seen for say c-1-7 compared

to that seen in Fig. 8. Also for higher densities <c>l-7), the peak

in the dispersion curves is more pronounced than what it is in Fig. 8.

It seems that the addition of an attractive part to the bare hard-core

inter- particle potential does bring the zero-sound dispersion more in

agreement with experiment in liquid sHe (c-1-7-1-6), although the

present agreement remains qualitative. For c-1-7, the flattening is

around kan«3•2 i.e. k«l-2k'
1.
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II. Concluding Remarks:

In the introduction we asked ourselves a number of questions the

ain thrust of which was whether it is possible to understand from

icroscopic considerations, at least qualitatively, some of the

triking features seen experimentally in the properties of normal

iquid 3He. Using a model of the Fermi liquid, whose particles

nteraet via a repulsive hard-core and an attractive tail, we have

alculated a number of properties of our model system within the frame

ork of the STLS theory and have provided an answer in the affirmative,

ince the theory is microscopic, it has enabled us to study separately

he effect of the pure hard-core and attractive parts of the potential

aich has, hitherto, not been possible. Our calculations have provided

ome support to the form of the phenomenological polarization

stentials of Aldrich and Pines in liquid 3He. Remarkably enough, it

-irns out that the theory also has some predictive power. For

'.ample, it predicts the flattening of the dispersion curve of the zero-

jund and the development of a peak in it with increasing density. It

.so predicts, unexpectedly, one very subtle feature that of the

:currence of a plateau in the static structure factor S(k) in the

jgion of small wave number and its gradual disappearance with

icreasing density. It appears that this is a common property of both

quid 3He and *He, and is a consequence of the attractive tail of the

tential. Above all, the present study has provided us with some

yslcal insight into the nature of normal liquid sHe. A comparison of

r results with the exact results for a low density <c«l) hard-core

rmi liquid shows that the agreement between the two is a

^quantitative one.
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We would now like to make some comments on the course of future

work. An obvious question which comes to ones mind is what changes

would ensue if one were to repeat the present calculation using a

more realistic Lennard-Jones kind of potential. In principle there is

no difficulty in doing so, but in practice one is faced with a

gigantic numerical task of solving selfconsistently a nonlinear

integral equation. For a soft coulomb potential, a straight forward

iteration procedure has been used successfully, but for a Lennard

Jones potential this does not seem to work. And so far we have been

unable to find a fast converging numerical procedure. We, however,

believe that it is purely a technical matter since in this paper we

have been able to demonstrate that the theory gives a convergent

answer even for a hard-core potential. In Appendix A we have

explicitly shown that a straight forward iteration procedure under

certain conditions fails to find a solution even though the latter

exists.

A more difficult and fundamental problem which still remains with

the STLS approximation is of incorporating in a consistent manner

frequency and wavenumber dependent selfenergy effects such that in

the static long wave length limit one arrives at the Landau form for

the compressibility and susceptibility expressions. So far we have

used the effective dynamic interaction to calculate the effective mass

of the quasiparticle - a procedure analogous to that of Ref. 21.

Extension of the present calculation to polarized Fermi systems

is interesting and is at present under investigation.
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Table I Solution of the STLS equation for various densities for a
pure hard-core potential

n/ng Vog(ao)

0.
0,
0.
0.
0.
0.
0.
0.
0.
1.
1.
1.
1.l-i

1.
1.
1.
1.
1.
2.

.1
,2
,3
4
,5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0

0.
0.
0.
0.
0.
0.
1.

39
48
58
69
82
97
13

159.31
42.98
20.94
13.12
9.51
7.62
6.59
6.06
5.91
6.10
6.69
7.86
10.14
15.31
26.55
37.27
38.96
36.45
31.81
26.88

157.88
41.56
19.44
11.50
7.73
5.64
4.34
3.48
2.87
2.42
2.07
1.80
1.57
1.38
1.22
1.07
0.94
0.82
0.72
0.64

Table II Solution of the STLS equation
hard-core plus a rectangular

C (aQkF) Vog(ao) £g(a1)

for various
attractive

densities
potential

for a

1.4
1.5
1.6
1.7
1.8
1.9
2.0

16.19
24.91
35.09
37.63
35.88
31.48
29.40

1.60
1.32
1.07
0.88
0.73
0.62
0.56

2.11
1.73
1.44
1.21
1.02
0.85
-

0.305
0.211
0.144
0.095
0.060
0.034

-
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APPENDIX A

Here we make some comments on the solution of the STLS equation

for a strong repulsive potential. For an arbitary potential, the STLS

equations (1), (2), (6) and (7) can be written as an integral equation

for the pair-correlation function g(r) in the form

g(r) - F(r,g(r)) A(l)

where F is a functional of g(r). To solve the integral equation, the

most common procedure is first to write the integral equation in the

form of non-linear matrix equations on discrete sites, (r. i-1,...,N)

so that the continuous limit is recovered as N-*».

The matrix equation can be written schematically in the form

i-l,...,N A(2)

where in the case of STLS equation, x, - g(r.). This equation is

usually solved by iteration where

x<n> - P± (xf
1-" ,^*-l>,.. .xf'U) i-1 N A<3>

until convergence is attained. However, in the STLS equation, it is

often found that the iteration procedure diverges for a strong

repulsive potential. For a general N-variable equation like A(l), it

is very hard to understand the origin of the divergence; whether it is

an artifact of the iteration procedure, or whether it is an indication

that the equation has actually no solution. However, in our present

situation the STLS equation is an equation of one variable (or two in

Section V) for which the above questions can be answered

unambigiously.

To show this, we examine oar STLS equation for a pure hard-core

potential (Eq. (8a) of the text)
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|- - F(x) A{3)

In Fig. (28), we show the function F(x) as a function of x for c - 1-4

and we have also shown the straight line y - x/V_ for two arbitrary

values of Vfl. The solution of A(3) is given by the intersection of

the two curves, y - F(x) and y - x/VQ. It is obvious from Fig. (28)

that the solution of A(3) exists for all values of positive V. for the

particular form of F(x) we have.

An iterative solution of A<3) is built up by putting

The iterative procedure can be indicated schematically in Fig.

(28) by the dashed arrows. Notice that although for both values of V_

we take, solution undoublty exists; the iterative procedure converges

only in the case of a weaker VQ. A more careful analysis shows that

the convergence of the iteration procedure depends very strongly on

the relative slopes of the two intercepting curves near the

intercepting point. Thus we find that although solution for A(3)

exists, an iterative procedure is not going to converge when the

number 1/V- is too small.

In the simple one-variable (and two variable) case we have

considered here, the solution can be attained by other well-developed

methods like Newton's Method where convergence is good over the whole

range of V_. In the N variable case, a generalization of Newton's
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method exists which relies on the heavy computation of the inverse of

a NxN matrix. With modern super computers such a computation becomes

possible and calculations should be done to test the theory on a wider

range of problems.
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APPENDIX B

In a study of single-particle properties in electron-hole liquid,

we derived an expression for the one-particle self energy for a

multi-component-paramagnetic Fermi liquid. The method is based on an

approximate scheme of classification and summation of diagrams

introduced by Vignale and Singwi22. Here we summarize briefly our

results for a one - component paramagnetic Fermi liquid.14

An expression for the derivative of self-energy is derived which

has the form

where p,p' are 4 - momenta. ^ ff(pfp') consists of three terms coming

from three different physical process: (i) a generalized T-matrix

T(p.p') which describes the scattering of two particles, (ii) induced

interaction via density fluctations and (iii) induced interaction via

spin-fluctations.

In a 'local' approximation

*eff(p.P') «*eff<P-P'), B(2)

We get

) " T(q) + (Veff
S(q)]2xs(q) + 3(Veff

a<q)]%a<q) B(3)

where V __ (q) and V „ (q) can be identified as our spin-symmetric

and spin-antisymmetric interaction introduced in the main text, x

and x a r e the density and spin response functions, respectively. The

factor 3 is coming from spin-degeneracy. T(q) should be considered as

a 'local' approximated T-matrix. A previous study of Lowy and

Brown23 on electron gas shows that T(q) can be identified roughly as

V __s(q). We have adopted this approximation in our calculation. It
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is worth pointing out that 0 ff(q)
 o f eq- (B3) h a s the same form as

the effective interacton which is used by Friman and Krotscheck21 for

a self-energy calculation for liquid 3He.

Within the local approximation, equation (B-l) can be solved to

give

- f ~^
J (2*)

(q) S°<P-q)

Notice that the absolute value of self-energy (i.e. the chemical

potential) is inacessible using this effective interaction.

The self-energy (B-4) is evaluated by first dividing it into two

parts, S(res>and S <
l i n e > 2 \ where

(Res)es) r A3
J (2sr)

B{5)

and

(line) I p+qj

LC p+q.

B(6)

andS-S<R e s>+ S< l i n e>.

It is easy to show that

fRes)
C ' )

(Res
(P
dc

l ine)

a

- 0
£ - 0

P
e-0 8ir
-1-73J ^ 1

«fc

B(7a)

B{7b)

B(7c)

2±q
2+{2+q)2

<q-2)

« +(q-2)

1
2/
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line)
T)

3 c 32*
B(7d)

(H-q)(q+2) m U

'•+(q-2)'J L «2+(q+2)2 w2+(q-2)21

where we have expressed momentum in units of k_ and e in units of E_,

p-» p/k- c-* £/E_. Using the above equation, the effective mass on the

fermi surface can be evaluated numerically.

The on-shell effective mass is evaluated by evaluating 2(p,£ )

first and then differentiating it numerically with respect to p to get

m*/m(p).

From (B-5), it can be shown after some algebra that for p>l

(Res)

and for p<l

Res)

V

i r f
2~ J qdq J
P o max(l-p2,q2-2pq)

T J qdq J
o o

p+1

-\- J qdq J
s* P 2p q2-2pq

min(i-p2,q2+2pq)

Also, from (B-6), we have

(line) I r r

P i t A J J
16* P o o

The above integrals are evaluated numerically.

*eff<q,x)

B < 8 a >

B(8b)

B(9)
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FIGURE CAPTIONS:

Fig. la. Landau parameter F? versus n/nQ for a hard-core potential.

Fig. lb. Landau parameter F. versus n/n- for a hard-core potential.

Fig. 2a. Ratio K/Kf of the interacting to the free particle

compressibility as a function of c. Curve 1 our result;

curve 2, exact result.

Fig. 2b. Calculated Landau parameters FQ and -FQ versus c for small

values of c.

Fig. 3. Static structure factor S(k) versus ka_ for c - 0-4 and

0-6.

Fig. 4. Spin-fluctuation static structure factor S(k) versus ka_

for c - 0-4 and 0*6.

Fig. 5. Pair-correlation function g(r) versus r/a_ for c - 0-4 and

0-6.

Fig. 6. Pair-correlation function g{r) versus r/aQ for c - 0-4 and

0.6.

Fig. 7. Effective mass m*/m on the Fermi surface versus c. Curve 1,

exact result of the perturbation theory; and Curve 2,

present calculation.

Fig. 8. Dispersion of the zero-sound mode w(k)/EF(nQ> versus ka.

for four different values of the density.

Fig. 9. Static structure factor S(k) versus kaQ for densities

c - 1-5, 1-7 and 1-9. The insert is the magnified version

of S(k) for small values of kaQ.



The dashed line represents the slope of S(k) for kaQ-M).

Fig. 10. Pair-correlation function g(r) versus r/aQ for c - 1-5 and

1-7.

Fig. 11. Structure factor S(k) versus kaQ for c - 1-6 and 2-0.

Fig. 12. Pair correlation function g(r) versus r/a. for c - 1-6 and

20.

Fig. 13. Effective mass m*/m on the Fermi surface versus n/nQ.

Curve 1, combined contribution of density and spin

fluctuations; Curve 2, contribution of density

fluctuations only.

Fig. 14. "On-shell" Quasiparticle energy E(k)/E_, versus k/k_ for

c — 1'2 and 1*3. c. is the free particle energy measured

from the Fermi energy.

Fig. 15. "On-shell" effective mass m m as a function of k/kp for

c - 1-2 and 1-3.

Fig. 16. Landau Parameter F? versus jjr. Solid curve, hard-core

potential only; dashed curve, hard-core + attractive tail.

Fig. 17. Landau Parameter F? versus n/n^-Solid curve hard-core

potential only; dashed curve, hard-core + attractive tail.

Fig. 18. Spin-symmetric dimensionless effective interaction N(0)

Vs
ff(k) versus ka_ for c - 1-6 and for three different

choices of the p?:..ameter a^ (and c) for the attractive

tail.

Fig. 19. Spin-antisymmetric dimensionless effective interaction

N(0)Vaff(k) versus kaQ for c - 1-6 and for three different

choices of the parameter a. (and c) for the attractive tail.
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Fig. 20. Spin-antisymmetric dimensionless effective interaction

N(0)Va__(k) versus ka_ for c - 1-7. Curve A is for a

pure hard-core potential; and curve B for a hard-core plus

an attractive potential.

Fig. 21. Spin-symmetric dimensionless effective interaction

N(0)Vs__(k) versus ka_ for c - 1-5. Curve A is for a pure

hard-core potential and Curve B is for a hard-core plus an

attractive potential.

Fig. 22. Spin-symmetric dimensionless effective interaction

N(0)Vs__(k) versus kaQ for c - 1-9. Curve A is for a pure

hard-core potential and Curve fi is for a hard-core plus an

attractive potential.

Fig. 23. Structure factor S(k) versus kaQ for c - 1-5, 1-7 and 1-9.

The insert is a magnified version of S(k) for small values

of ka_. The dashed line represents the slope of S(k) for

kao-O.

Fig. 24. Pair-correlation function g(r) versus r/aQ for c - 1*5 and

1*7 for a hard-core potential plus an attractive tail.

Fig. 25. Static-structure factor S(k) versus kaQ for c - 1-5, 1-7

and 1-9.

Fig. 26. Pair-correlation function g(r) versus r/a_ for c - 1*5

and 1-7.

Fig. 27. Zero-sound dispersion w<k)/EF(n..) versus kaQ for c - 1-5,

1-7, 1-9 and 2-0.

Fig. 28. "F(x)w for c — 1*4. The dashed arrows indicate a straight

forward iteration procedure.
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