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FUNDAMENTALS—LONGITUDINAL MOTION

W. T. Weng

Brookhaven National Laboratory, Upton, NY 11973

1 INTRODUCTION

There are many ways to accelerate charged particles to high energy for

physics research. Each has served its purpose, but eventually has encountered

fundamental limitations of one kind or another. Looking at the famous Liv-

ingston curve (Fig. 1), we see the initial birth and final level-off of all types

of accelerators. In fact, in the mid-80s we personally witnessed the creation of

a new type of collider—the Stanford Linear Collider. We also witnessed the

resurgence of study into novel methods of acceleration.

You are going to hear a lot of discussion about other methods of accel-

eration in this two-week period. For my pent, I will cover acceleration and

longitudinal motion in a synchrotron.

A synchrotron is a circular accelerator with the following three character-

istics:

1. Magnetic guiding (dipole) and confinement (quadrupole) components

are placed in a small neighborhood around the equilibrium orbit.

2. Particles are kept in resonance with the radio-frequency electric field

indefinitely to achieve acceleration to higher energies.

3. Magnetic fields are varied adiabatically with the energy of the particle.

D. Edwards described the transverse oscillations of particles in a syn-

chrotron. I will talk about the longitudinal oscillations of particles. The phase

stability principle was invented by V. Veksler and E. McMillan independently in

1945. The Phase stability and strong focusing principle, invented by Courant
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and Livingston in 1952, enabled the steady energy gain of accelerators and

storage rings witnessed during the past 30 years.

What I will discuss here is a well-established and well-practiced subject.

Many review papers and research articles have been written about this rich

and interesting field. It is very hard to be original about them. Most of the

material here is drawn from references 4, 9, and 15.

What I hope to add is a unified overview of the related rf subjects in an

accelerator and a close coupling between accelerator physics and engineering

practices, which is essential for the major progress in such areas such as high

intensity synchrotrons, multistage accelerator complex, and anti-proton pro-

duction and cooling, made possible in the past 20 years. I also hope that after

this summer school, you will have the basic knowledge to let you understand

the discussion and to ease the way for you to dip into the field if you so choose.

This talk overlaps with and leads naturally to other lectures in this school,

in particular, those by Humphries, Puglisi, and Gareyte.

2 DYNAMICS OF SYNCHROTRON OSCILLATIONS

The major components of an accelerator are shown in Fig. 2. There

is a closed (equilibrium) orbit which represents the stationary trajectory if a

particle is launched onto it. A particle not exactly on the closed orbit will

execute quasi-periodic oscillations around the closed orbit. These are the so-

called betatron oscillations and they form the subject of Edwards' lectures.

During acceleration, a radio-frequency voltage is generated across the gap

of an accelerating cavity. Again, there is a particle which arrives at the gap at

the proper time to receive a predetermined energy gain to stay on the closed

orbit that is governed by the guide field. Such a particle is called a synchronous

2
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Fig.2.. A proton synchrotron, schematic. The protons are kept
in a closed orbit in the vacuum chamber V by guiding magnets A/.
Between magnets the orbit is straight. Straight sections provide
room for accelerating the protons (r.f.), for injecting them at the
beginning of a cycle (I) jud for ejecting them at the end (E).
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particle (SP). Other particles in the vicinity of the synchronous particle will ex-

ecute synchrotron oscillations in both energy and rf phase deviations. Because

the phase deviation is manifested as a coordinate deviation in the longitudinal

direction, the synchrotron motion is also referred to as longitudinal motion.

2.1 EQUATIONS OF MOTION

Mathematically, the voltage across the gap of the accelerating cavity can

be expressed as

V(i) = Vsiru/>(t). (2.1)

The voltage wave form is shown in Fig. 3. The rf frequency w is an integral mul-

tiple h (harmonic number) of the revolution frequency ilo of the synchronous

particle,

( 2 . 2 )

where Ro is the average radius of the accelerator and /30C is the velocity of the

particle. The average bending field Bo on the synchronous orbit of a particle

with momentum Po is given by

B. = A. (2.3)

The energy gain of the SP in one turn is given by

= eVsin<f>0 = 2xeRlB0. (2.4)

Equation (2.4) specifies the required rate of adiabatic change of the guiding

field to keep the SP on the design closed orbit. During acceleration a feed-

back system is often provided to keep the particles' excursions from the design

3
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orbit to a minimum and another (phase) loop is provided to keep the SP in

phase with the rf voltage at the gap. From now on we will concentrate on the

equations of motion of the non-synchronous particles (NSP).

The parameters of a NSP not too far from the SP can be expressed as

T = v0 + Ar, <f> = (f>o + A</>, P = P o + A P , E = Eo + AJS7, 0 = 0o + Ad,

(2-5)

where 6 is the azimuthal angle around the machine. We have

- i ^ . (2.6)
h at

One quantity that is important in the discussion of longitudinal motion is the

frequency slip factor 77. It is denned as

v - dp/p Hr ,

where ftr is the transition energy of the synchrotron. From Eq. (2.7), 77

is negative below transition, meaning a higher energy particle has a higher

frequency in the ring; and it is positive above transition, meaning a higher

energy particle has a lower frequency. This is due to the balance between

increase in speed and increase in path length, due to dispersion function, of

the higher energy particle.

The equations of motion of a NSP are

() I i ^ i f } , (2.8)

and



Tt J^RT ln7 J ' [ '
These two first-order differential equations can be combined into one second-

order differential equation,

Equation (2.10) is exact for all the acceleration cycle. Often, however, the

acceleration is an adiabatic process. It is then useful to neglect the small

change in momentum and work with small phase deviations. We then get the

simplified linearized equation of small-amplitude synchrotron oscillations,

2.2 PHASE STABILITY

Equation (2.11) has stable oscillatory solutions if the constant coefficient

of the equation is positive, or

rjco3(f>o < 0, (2.12)

which is realizable in a synchrotron in two situations for acceleration:

a) below transition

7 < 7tr, V < 0, 0 < <£0 < | , sin(f>o > 0,

b) above transition

7 > 7<r, V > 0) x < 4>a < Tj ain<j>o > 0.
2



The relation between the rf voltage and the phase ellipse, to be explained

shortly, is shown in Fig. 4. Two other solutions for deceleration exist which

can be worked out by the readers.

Let us look at the mechanism of "phase stability" in more detail by fol-

lowing the motion of a NSP below transition. A lagging particle B will gain

energy at the crossing of the rf cavity and this will cause it to speed up and

overtake the SP. At a certain point, its energy gain will make it arrive at the

gap earlier than the SP and particle B will therefore obtain less energy from the

rf station than the SP. Then, the reverse process starts. This motion up and

down the linear part of the rf wave is the basic mechanism of phase stability

and is reminiscent of simple harmonic motion.

Because the coefficient of the differential equation is positive, the frequency

of the small-amplitude synchrotron oscillations Q, is given by

= 0, (2.13)

where

The ratio of the synchrotron oscillation frequency Q, to the revolution fre-

quency Q.o is often called the tune of the synchrotron oscillations and denoted

by i'.,

which generally lies in the range 0.001 to 0.01 for proton synchrotrons and is

usually much smaller than the tune of the betatron oscillations. In an electron

6
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synchrotron, vt can be as high as 0.2, where the coupling of betatron and

synchrotron oscillations will become more important.

As rf approaches zero transition energy, sc does ilt, and there is no

phase stability. During acceleration through transition energy in a proton

synchrotron, the rf phase must be switched abruptly from cf>o to TT — <f>o in or-

der to maintain phase stability above transition. In a real beam with a finite

energy spread, the timing of the phase switching cannot be accurate for all the

particles, and some blow-up in phase-space area is unavoidable. This effect is

further enhanced in the presence of space-charge forces. Various methods, such

as multiple phase switching and 7 t r jump schemes, have been used to minimize

the ill effects.

2.3 HAMILTONIAN AND PHASE ELLIPSE

All the detailed behavior of particles undergoing synchrotron oscillation

can be analysed by working with Eqs. (2.8) and (2.9). But, for a qualitative

understanding of bunches of particles, it is often more transparent to work

with the TTnTni1f.nnia.Ti formulation of the same problem. In order to do this, we

first have to introduce the "energy" variable W canonically conjugate to the

"position" variable (f>,

which has the dimensions of action (energy times time). The equations of

motion (2.8) and (2.9) can be derived from the Hamiltonian

(2.17)



To show that Eq. (2.17) is the correct Hamiltonian, let us recall Hamilton's

equations of motion,

(2.18)

W><t>~ dt ~ aw~ PORO

which are identical to Eqs. (2.8) and (2.9). The parameters TJ, fio, <f>a, Po,

and V can vary with time, and the Hamiltonian is therefore time dependent.

In most cases, however, the variation is slow enough to be neglected for the

discussion of synchrotron motion over a few periods of oscillations, in which

case

For this to be true, the fractional change in synchrotron frequency during one

radian of oscillation must be small, a condition expressed by the dimensionless

adiabaticity parameter

The motion of the particles is conveniently represented by their trajectories

in the ((/>, W) phase plane. These trajectories are contours of constant Hamil-

tonian (given by Eq. 2.17). Families of such curves are shown in Fig. 5 for

7 > Itr for three values of the synchronous phase angle <f>o.

Particles move in time along the trajectories, in the direction of the ar-

rows, according to Eqs. (2.18) and (2.19). In each interval of 2ir are two

fixed points where 6 = W = 0. The stable fixed point fSFP) at <b = <£„. W = 0.

8
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corresponding to the synchronous particle, lies inside the stable region (or

bucket) bounded by the separatrix. The unstable fixed point (UFP) is at

<t>u = 7T - (f>o,W = 0 at the extreme limit of the separatrix. The motion

of the particles becomes infinitely slow as they approach this point.

The case of <(>o = TT corresponds to zero acceleration, Po = 0, or

"stationary bucket." The separatrix extends between adjacent UFPs, and tra-

jectories outside the stable region do not cross the line dividing the upper and

lower half-planes. The situation is illustrated in Fig. 6.

At small amplitudes, the Hamiltonian can be further reduced to

hvao , eV (A4>)
H = 2Kirw - 2^°~2— (2-22)

The constant Hamiltonian curve is hence an ellipse in (A<f>, W) phase space.

2.4 OSCILLATION AMPLITUDES AND LIMITS OF STABLE REGION

For a particle inside the stable region, the limits of oscillation in W are

given by W = 0, for which Eq. (2.18) gives two solutions,

4> = 4>c, (2.23)

and

<£ = 7T - <f>o = <Au, ( 2 . 2 4 )

this second solution corresponding to the UFP. The first solution substituted

into Eq. (2.17) gives the value of the Hamiltonian for the trajectory having

extremum W in amplitude, and we can write
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(From Symon and Sessler's paper)
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}. (2.25)

From Eq. (2.19), the extrema in phase are given by W = 0. Let us look at two

interesting special cases.

Case 1: For stationary buckets ( TJ < 0, <f>0 — 0), putting W — 0 into Eq.

(2.25) yields

which in turn gives the limits of oscillation amplitudes in phase

<f>t = ±23in-1[irh{~T>)iloW2]1^. (2.27)
2 V r P R

Case 2: For a non-stationary bucket in the small-amplitude approximation

and putting

A<f> = <j> - <j>o < 1 ,

Eq. (2.25) at W = 0 yields

l2eFPRc£M£

The ratio W/A<f> is an important parameter in matching bunches of particles

into RF buckets, for example when transferring a be im from one accelerator

to another.

We have already seen that the separatrix limiting the phase stable region

terminates at the UFP W = 0, <j>u = TT — <£<>• We can, therefore, substitute

10



these values into Eq. (2.25) in order to determine the extreme amplitudes in

W of the separatrix. In other words, these extrema (W) jep are given by

]. (2-29)

The other extremum of phase <f>e, is obtained by using Eq. (2.29) in Eq. (2.25)

with W = 0. Then,

coa<f>e — <j>esin<f>0 = (71- — <f>o)sin<j>o — cos<j>o. (2.30)

This transcendental equation in <f>a reduces to cos<po = —1, -}-l for <£o = 0, TT

and thus yields the adjacent UFP, as expected for stationary buckets. (See

Figs. 6 and 7.)

Another useful quantity to be derived from Eq. (2.25) is the concept of

emittance, or phase-space area of a bunch of particles. In the small-amplitude

approximation, Eq. (2.25) reduces to

In terms of the bunch length (A</>), Eq. (2.31) becomes

• W - l , (2.32)
l)2

which is the standard equation of an ellipse, and the area of the phase-space

ellipse is given by

(2.33)

This parameter, the longitudinal emittance of the beam, stays constant

during the acceleration cycle and is an important parameter govermng beam

11



quality in a synchrotron or storage ring. In terms of W and A<f>, the area

becomes A, = irWA<j>. Since A, is an invariant quantity during acceleration,

to be proved in the next section, it is often convenient to express W or A(f> in

terms of A,.

2.5 ADIABATIC DAMPING

We have so far assumed a constant Hamiltonian which satisfies the adia-

baticity condition (2.21). In a synchrotron, however, the particles do receive

acceleration, and, therefore we must study the long-term evolution of the syn-

chrotron motion under adiabatic changes of parameters. Since (<j>, W) is a

pair of canonically conjugate variables, Liouville's theorem holds, and there-

fore arbitrary areas in the (<j>, W) phase plane are conserved in a canonical

transformation. With changing parameters however, the stable trajectories in

the phase plane do not exactly close over one cycle of synchrotron oscillations

and it is not then obvious that area conservation is true.

A more general principle is the adiabatic theorem, which states that, if g

and p are canonically conjugate variables of an oscillator with slowly changing

parameters, then the action integral

I = <h p.,dq
J

is an invariant. The integral is taken over one period of oscillations. Applying

this to the small-amplitude synchrotron oscillations we have

^ (2.34)

which leads to the time dependence of W and A(j> under adiabatic changes of

parameters as

12



and

(2-35)

^ Y (2.36)
PoRoVcos<j>o

From Eq. (2.33) we see that, during acceleration, Po increases and the

other parameters remain more or less constant, and the phase excursion A<j>

is reduced as the one-fourth power of the momentum. This is loosely called

"adiabatic damping" of phase oscillations. However, the product WA<j> is an

invariant, Liouville's theorem holds, and there is no damping of the area in the

phase plane. Figure 8 shows the behavior of AE and A<j> through a typical

acceleration cycle, including that near transition energy.

So far we have treated the synchrotron oscillations by setting up a differen-

tial equation which implicitly implies a continuous process. This is justifiable

because the synchrotron oscillation frequency is much smaller than the particle

revolution frequency. However, since the acceleration process in an accelerator

is intrinsically a discrete process, a difference equation is natural for describing

such an event. Then the energy and phase increments from one cycle to the

next are

En - £ n _ i = eVsin<t>n, (2.37)

4>n - ^ = 2-Kh "nfn) (2.38)

We can solve the synchrotron oscillation problem by solving the difference

equations (2.37) and (2.38). Lately, people who worry about the long-term

13
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stability of synchrotron oscillations in a storage ring, where the number of

revolutions can easily exceed the life of the solar system, use Eqs. (2.37) and

(2.38) as a mapping irom one point in the phase plane to another and use the

techniques developed for dynamical systems to ascertain the stability of the

oscillations.

Perfectionists consider differential or difference equations not good enough.

They set up a computer tracking program to include everything conceivable in

a big package.

For what we have talked about, a tracking program is overkill. But, by the

time we include multiparticle effects, beam-cavity interactions, and synchro-

betatron coupling, we are in the realm of a multiparticle-multidimensional

time-dependent problem which no human mind can comprehend in its entirety,

and we have to defer to the all-powerful computer. One example of a tracking

package for longitudinal motion is ESME12, created at FNAL, mainly by J.

Maclachlan and collaborators, which we will use to demonstrate the capture

process in a later chapter.

3 ACCELERATION CAVITY

To provide acceleration fields to particles in an accelerator, accelerating

stations are required. In general, each accelerating station comprises

(a) a resonator with an accelerating gap,

(b) a power amplifier, and

(c) a frequency tuning device.

Here, we will describe the resonator part of the system to show, in a

simple way, how the electrical field is produced and how its performance affects

the beam. A more complete description will be given by Puglisi. Computer

14



codes used to calculate field distributions and relevant design parameters of an

accelerating structure will be covered by Cooper and Jones.

For electron synchrotrons, where the required resonance frequency is in

the hundred-MHz region and there is no need for frequency variation, a hollow

pill-box cavity is often used, as shown in Fig. 9a. But for a low energy proton

synchrotron, the resonance frequency is typically in the range of a few MHz to

to a few tens of MHz. If an unloaded resonator is used, the physical dimensions

will be too large and furthermore the required frequency change to follow the

particles' energy increase will be hard to implement. To achieve both goals, a

resonator loaded with ferromagnetic materials is often adopted.

The length of the cavity follows the law

(3.1)
Uly/jH

where fi and e are respectively the permeability and the dielectric constant of

the material loading the cavity. Since the space available between the magnet

units is restricted, it is advisable to use a material with a rather high perme-

ability (ferrite). For example, if the permeability of the ferrite is y. = 100,

the length of the resonator is reduced by a factor of 10. To control the res-

onance frequency, a dc bias current is supplied to adjust the permeability of

the ferrite. To illustrate, schematic diagrams of the AGS rf cavity are shown

in Figs. 10 and 11.

Such an accelerating unit has a close resemblance to a resonant cavity

consisting of two A/4 coaxial resonators connected face-to-face and operating

in the push-pull mode. The cavity resonant frequency is also controlled by an

external capacitor. The two halves of the accelerating unit may be referred to

as foreshortened A/4 coaxial resonators. One additional advantage of the cavity

15
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loaded with ferrite is the large value of the shunt impedance resulting from the

increased inductance L, which makes the lower exciting current possible.

Assuming that the inner and outer radii of the ferrite rings are r\ and 7-2,

the inductance of the structure is

The capacitance is

Neglecting the attenuation due to the small line resistance, we have a real

characteristic impedance of the line

:£)• (3.4)

At resonance, the quality factor Q is

« - T- <3-s>

and the shunt impedance, for a zero gap capacitor, is

R.h = -y = ^RcQ, (3.6)

where iZ.ji is the resistance presented by the structure to the beam current in

the accelerator.

From the expression for the resonance frequency of the system,

w = 1/s/LC, it follows that the bias current has to be capable of reduc-

ing the permeability of the ferrite by a factor of

16



(£)», (3.7)
Ji

where fi and / / are the initial and final frequency respectively. For example,

for the AGS, fi = 2.4 MHz and / / = 4.45 MHz, implying that the permeabil-

ity tuning range is 3.4. This is the frequency range for accelerating protons.

Last year the AGS started to accelerate heavy ions, which have a much lower

injection energy, hence oscillation frequency. The original AGS rf cavity was

incapable of tuning to accommodate such a wide range of frequency swing.

Therefore, a second set of rf stations had to be built to preaccelerate the heavy

ions to higher energy and then switch to the original rf station for further

acceleration.

Now let us look at the relation between the voltage at the gap and the

magnetic field in the ferrite. If the cavity is short and the ferrite permeability

pi » 1, the voltage is given by

V=^=u£'B{r)£dr. (3.8)

If fi is constant at constant radius, then the flux density varies as r - 1 in a

coaxial structure. In the absence of dc bias,

- = * i - , (3.9)
V T

and

V = wlBmlnC-2-). (3.10)

For a given structure and power amplifier, one way to get higher voltage at the

gap is to increase the outer radius of the ferrite. Any cavity-like discontinuity

17



in the vacuum environment represents a source of impedance to the particle

beam. The frequency of the impedance is determined by the length of the

structure, and the amplitude is related to the depth, as shown in Eq. (3.10).

At the frequency applicable to low energy proton synchrotrons, a lumped

RLC circuit is sufficient to represent the accelerating cavity. The equivalent

circuit driven by both generator and beam current is shown in Fig. 12. We will

refer to this equivalent circuit later in the discussion of beam-loading effects.

For a given cavity design, there are other, higher-order, resonant modes.

A spectral analysis of the impedance shows that the rf cavity seen by the

beam consists mainly of sharp peaks at frequencies corresponding to the cav-

ity modes. Besides being driven at the fundamental longitudinal accelerating

mode, the cavities will also be driven by the beam at their higher-order lon-

gitudinal and transverse parasitic-modes which lie at higher frequencies (up

to the cutoff frequency determined by the beampipe radius at the rf cavity

nose). These narrow band, high-Q resonance peaks correspond to wakefields

that ring in the cavity for a large number of rf cycles, thus coupling each

bunch to the other in the string of bunches in the accelerator. The result-

ing coupled-bunch motion may be linearly unstable if the beam intensity is

high enough. Impedances presented to the beam by these parasitic modes of

the cavity can be suitably represented by the frequency-dependent impedance

of slightly damped, high-Q resonators. The impedance of each longitudinal

parasitic mode is given by

and that of each transverse parasitic mode by

18
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where u># is the resonance frequency, Q is the quality factor, and Rs (RT) is

the shunt impedance of the longitudinal (transverse) parasitic mode, expressed

in ohms (ohms/meter). In order to avoid coupled bunch instabilities, those

higher-order modes have to be measured and properly damped.

4 BEAM MANIPULATION AND BEAM CONTROL

So far we have described the generation of radio-frequency voltage in the

accelerating cavity and the ideal particle behavior in a synchrotron. To make

a synchrotron useful, more rf manipulations are needed besides simple acceler-

ation. For example, the synchrotron usually receives the beam from the linac

which has a much higher radio-frequency, typically 200 MHz. For all practical

purposes, the injected beam has a continuous longitudinal distribution. To

accelerate such a beam, a process to create a bunched distribution compati-

ble with the bucket structure of the rf system has to be found. One adopted

method is adiabatic rf capture.

4.1 RF CAPTURE, BUNCHING, AND DEBUNCHING

Ideally, the synchronous phase is set to zero to create a stationary bucket,

because then all phases are stable and any particle within the bucket will be

trapped. The acceleration voltage is increased slowly, the bucket height grows,

and more and more of the particles with larger energy spread are trapped, as

illustrated in Fig. 13.

Assuming that the energy spread of the injected linac beam is Wi, the

phase-space area of the ribbon beam in one rf period is given by
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As = 4WLK. (4.1)

From Eq. (33) it can be shown that the phase-space area of a stationary bucket

with bucket height Wj, is

Ab = 8Wb. (4.2)

Exercise: Prove Eq. (4.2).

Usually, one figure of merit in judging how much rf voltage is needed for adi-

abatic capture is given by the condition that area (4.2) equals area (4.1), in

other words

Wb = ^WL. (4.3)

According to this criterion, the maximum capture efficiency is about 74%,

which is just the overlap integral of the stationary bucket with the linac beam.

To get better capture efficiency, larger voltage must be used.

But how slow is slow? What constitutes an adiabatic variation of rf volt-

age? One way to quantify this concept is due to Lilliequist and Symon. They

assume the condition that the fractional increment dA/A in bucket area within

a time interval dt is always proportional to the fractional time increment dt/rp,

where rp is the phase oscillation period at that instant, i.e.

dA

A

dt
= a —. (4.4)

•n. ip

We know that

TP = C2V-^2, (4.5)
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so that Eq. (4.4) becomes

i

' (4"7)

where <i and V\ are the initial time and voltage and V2 and rp2 are the final

voltage and the corresponding phase oscillation period. The degree of adia-

baticity is specified by a. If a <C 1, the process is adiabatic. For a >̂ 1, the

process corresponds to a fast turn-on.

Actual practice for highest efficiency of rf capture does not necessarily

favor the adiabatic capture process. There are many reasons. One is that the

real adiabatic process takes a long time and therefore the magnetic imperfec-

tion resonances can destroy the beam. Another reason is that, in the early

stage, the voltage is purposely kept low. For a high intensity proton beam, the

space charge created by neighboring particles will blow the beam outside the

bucket. Therefore, for a high intensity beam, we have to start capture at mod-

erate voltage. Sometimes the best capture efficiency comes from off-momentum

capture, as shown in Fig. 14.

Another interesting phenomenon is the process that is the reverse of bunch-

ing, i.e. debunching. The easiest way to debunch a beam is to turn off the rf

voltage and let the beam drift. The height of the bucket will stay constant, ana

the particles just drift along lines parallel to the <f> axis at a rate such that they

come into contact with adjacent buckets and finally smear into a continuum

after a given time t, as shown in Fig. 15.

It is quite straightforward to estimate the debunching time. By definition,

the time in which the front of one bunch reaches the tail of an adjacent bunch
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is the debunching time. We know that the distance between the boundaries of

two bunches is

AS = !^M2*R. (4.8)

The difference in revolution period between the fastest and the slowest particles

(top and bottom) is given by

j P

and the corresponding difference in velocity is

Av = 2irRAf = 2irRfrnri—. (4.10)
P

Therefore

db Av 2irfrevhriAp/p'

Debunching is usually used for slow extraction in fixed-target experiments

where the event rates have to be limited, or for changing harmonic number

during the acceleration process. Ideal debunching should result in a beam

with a uniform distribution, but, seen in from Fig. 15, it takes a long time

to produce a uniform beam since the beam is denser in the center than at

the boundary. Worse yet, reality is more complicated than the simple model

suggests. One instance is that the beam-induced voltage at the gap of the

acceleration cavity tends to (self) bunch the beam. A shorting switch is usually

provided to prevent that from happening. Results produced by the ESME

tracking program on bunching and debunching are shown in Figs. 17, 18, and

19 for comparison.
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In the design study of the AGS booster project13, it has been found that

under intense space charge effects, the beam tends to blow up in the first

few turns after injection. It is therefore important in the simulation study to

build up the charge in the ring turn by turn from the linac, like in the actual

process, instead of having the full intensity appear at once. Another important

phenomenon is the fact that those beam particles that are close to the unstable

fixed points are lost at the end of the capture process. To minimize this effect,

a chopped beam from the linac can be used as suggested in Ref. 13.

4.2 SYNCHRONOUS TRANSFER AND PHASE-SPACE MATCHING

In transferring a beam of particles from one synchrotron to another, the

most important considerations are efnciency and phase-space dilution. To pre-

serve the longitudinal emittance of the beam, the phase-space ellipses of the

two synchrotrons should have the same shape and orientation, in other other

words, be matched. One way to do this is to make the ratio W/A<j> identical

for the two accelerators,

w w
( -)Boo*ter = ( — ^ ) A G S - (4-1 2)

Alp (\<p

Since

W (32Eahalecoa<f>o 1 /a

therefore,

hnoco3<l>o
)Boo,ter = ( )AGS-

V
( ) B o o , t e r (

V V

If in addition (cos<f>0)Booster = {CO3(J>O)AGS, the trajectories have identical
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shapes in the two accelerators even for large amplitudes, and therefore a perfect

match can be obtained for bunches of any length.

The matched condition is often achieved by adiabatically varying the volt-

age in the first, lower energy accelerator. But, the beam loading instability may

make it difficult to control the phase and the amplitude of the rf voltage when

it is low. With bunch rotation, matched bunches can be crep.ted in the first

machine at a much higher voltage and in a shorter period, as illustrated in Fig.

20.

4.3 PERTURBED SYNCHROTRON OSCILLATIONS

We have shown that, in ideal acceleration, the phase of a non-synchronous

particle behaves like a SHO, satisfying

(4.15)

In the presence of errors in the magnetic guiding field, the revolution frequency,

and the voltage amplitude, however the equation of motion becomes

= /(*). (4.16)

This shows that SB/B is important for an accelerator with a large a (weak

focusing) and that a field ripple can be compensated by a corresponding fre-

quency swing.

Now let us look at the possible sources of errors and their effect on the

synchrotron oscillations.

(a) General perturbation f(t), then
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1 /*
A<f>{t) = — / »nfl.(t - X)d\. (4.17)

This is a solution through Green's function and can be verified by substi-

tution into Eq. (4.16).

(b) Sinusoidal perturbation fit) — aainut. then

sinut. (4.18)
Si* — lil*

This is a forced oscillation when away from resonance. If at resonance,

u> = fi, and the solution becomes

(4.19)

The phase then increases linearly with time without limit.

Exercise: Prove Eqs. (4.18) and (4.19).

(c) Passage through a resonance:

/(<) = asin j u(\)d\, (4.20)

and

«(Ao) = n«. (4.21)

We can expand the perturbing frequency around the synchrotron oscillation

frequency tt, such that

a; = fi# + <jt + ...

then
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f(t) = asin j ud\ = asin(Slst + -Cat2), (4.22)

and again the general solution (4.17) gives

This is the additional oscillation induced by passage through a resonance. Any

external perturbation with a frequency equal to a multiple of ft, should also

be avoided.

In addition to eliminating the sources of perturbations, feedback loops

are usually provided in an rf system to keep the orbit, frequency, and voltage

deviations within tolerances. The principles of rf control will not be discussed

here; those interested should consult Refs. 14, 15, and 16.

4.4 BEAM LOADING AND ROBINSON INSTABILITY

The behavior of an rf cavity can be approximated by an equivalent circuit,

as shown in Fig. 21a, which shows a parallel resonant RLC circuit driven by

the rf power source and the beam image current. If the beam intensity is small

(ii <S i3), the phasor diagram of the cavity is shown in Fig. 21b, where

il,= beam current (reference),

ii— induced current = — ij,,

ig= generator current,

Vg— gap voltage excited by ig, and

6= equivalent lead of ig with respect to it.

In the presence of beam current, the induced current will produce an

induced voltage at the gap (Vfc) making the total voltage across the cavity

deviate from a design amplitude and phase,
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Vc = Vg + Vb. (4.24)

This phenomenon is called beam loading, and there are two possible solutions

to alleviate the problem:

1. Feedforward by providing additional current through the power amplifier to

cancel the induced current, such that if = — i{ = if,-

2. Detune the cavity, in which case the detuning angle is given by

* = i a n - ^ Q — ) . (4.25)

The resulting impedance is

Z = R,hcos(*)e->*. (4.26)

If the resonance frequency is detuned to below the excitation frequency,

the impedance will be partially capacitive. Then, the voltage developed will

lag behind the exciting current in time. The detuning angle and the generator

current are now adjusted so that the resultant capacity voltage has correct

magnitude and angle. When this is done, the rf voltage appearing across the

generator is in phase with the generator current and the load appears real to

the generator.

Let i0 = ioe?° « generator current required to develop the acceleratio

voltage in (real) R,h in the absence of beam. Then the condition that detuning

of the cavity giving identical voltage across the cavity is

Vc = ioR.he
j* = Vg + Vi = igei0R.hcos(*)e-** -iie>eR.hcos(9)e-i*. (4.27)
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Equating the real and imaginary parts of Eq. (4.27) separately, we get explicit

expressions for the required detuning angle and generator current in terms of

the beam current

ig = io + iicosO, (4.28a)

(4.286)
to

This detuning will restore the cavity voltage to proper amplitude and angle for

beam acceleration. The limit on the detuning angle is set by the constraint

* < 7r/2, as shown in Fig. 21c.

Now let us examine the stability condition of the synchrotron oscillations

of the beam centroid under the detuned condition. Assuming that the initial

phase offset of the bunch is 77, as shown in Fig. 22, the voltage seen by the

beam will be

Vaec = Vgcos($ -T})& VgCosO +• rjVgsinO = Vgsin<f>o + r)Vgcoa<j)o. (4.29)

Another source of voltage change is the displacement of the beam phasor result-

ing in an additional small excitation current id, which generates an additional

voltage Vd,

id = JVU = -j-qii, (4.30)

Vd = -jviiZ = tjZ{?-)cos(9)e-**+*'2\ (4.31)

Hence, the corresponding additional voltage for acceleration is

28



Additional beam induced
voltage due to
displacement

Fig. 2.2.. (-a) Beam and image current displaced from equilibri
position by small angle n resulting in degrada:
of accelerating voltage.

28a



) ( l ) ( + * + ^ ) = -VgT}{ ^-
to 2 to

making the total voltage

i' sith^cos $
= Vgsin<j>Q + vVgCOS<j>0(l - 4 7 )• (4.32)

lo COS(po

The second term determines the synchrotron oscillations under beam loading

with detuning. It can be seen that i, reduces the available voltage for damping

the initial phase error. The limiting condition for stability is

i > 0, (4.33)

which the is well-known Robinson criterion and is consistent with our previous

condition that the detuning angle should satisfy

5 HIGH INTENSITY EFFECTS

If the charge density in a bunch becomes large, the Coulomb repulsive force

between the particles can no longer be neglected. The space-charge force will

cause a tune shift of the betatron oscillations in both horizontal and vertical

planes. Longitudinally, it will modify the focusing effect of the external rf

forces. In the following, we will discuss the effect of space charge on the

longitudinal motion of the particles in a synchrotron18.

5.1 SPACE-CHARGE FORCE
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To estimate the importance of the space charge-force, we will make a

comparison between the force constant associated with the longitudinal space-

charge forces and that due to the rf voltage. The rf system accelerates the

particles by Vsin<j>o volts per turn; the corresponding field is

E =

The focusing force is given by the azimuthal variation of the field:

(^L) _ h d E e k V COJ6 (5 2)

To simplify the calculation, we assume a longitudinal charge distribution in

the bunch that will make the space-charge force linear, i.e.

where a is the distance along the circumference. This expression represents a

parabolic shape of half length 6 rf radians. Assuming the bunch is of circular

extent a within a circular vacuum chamber of radius b, the voltage seen by the

beam is given by

where

So = 1 + 2ln(b/a). (5.5)

Hence, the longitudinal space-charge field is
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and the focusing force becomes

dE _ 3 go h>Ne

The rat io between (dE/da)tc and (dE/ds)rf is a measure of the s t rength of

space charge. Let us define the ratio between these two forces as r),c, then

_,dE dE 3 h 2TT go Ne
VMC ~ { da >'cR da )rf ~ 2 BA2 e V ( c c w * ) 47re B* ' ( 5 J

7],c ss 1.3 for the AGS at N = 1013. This reduction in longitudinal focusing can

actually cause beam blowup or beam loss. With the booster addition, the AGS

intensity will increase to N = 6 x 1013 and r\tc will be about 10. Something

has to be done to save the beam.

5.2 7tr-JUMP AT TRANSITION

It is convenient to view particle behavior at transition in terms of mass.

Below 7tr, as a particle is accelerated, its angular velocity increases: the harder

it is pushed, the faster it goes. Above 7<r, the situation is reversed: pushing

decelerates; the particle behaves as if it had a negative mass. In this case, the

apparent mass of a particle as a function of energy behaves as shown in Fig.

23.

Now, recall that the bunch length is given by

( P P f A
PoRoVcoa<f>o

where now the focusing force should be replaced by an equivalent quantity
including space-charge force such that

IB

Vcoa<f>o - (-7-) , c < Vcoa(f>o, 7 < jtr (5.8a)
da
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1 p

+ ( — ) t c > VcO3(f>o, 7>7tr - (5-86)
as

The positive sign in Eq. (5.86) represents the attractive force due to the nega-

tive mass effect. The net result is that the bunch length is different before and

after transition, hence phase-space mismatch, as shown in Fig. 24.

Furthermore, at transition, the frequency spread of the synchrotron oscil-

lations is small. Thus, just above transition, a situation exists in which growing

oscillations can be excited; this is usually called the negative mass instability.

The size of these oscillations, and the resulting emittance blowup, depends on

the beam intensity and the time spent in the regime with little damping. Two

approaches can be taken to reduce these transition losses:

1. Artificial enlargement of the bunch area before transition to reduce the

space-charge force.

2. Minimization of the time spent in the unstable region by varying jtr

near transition.

The second method is called 7tr-jump and was first proposed by Teng and

Hardt.

A quadrupole pair separated by 1/2 betatron wavelength and configured

as doublets can alter the 7<r of a synchrotron without affecting its tune. By

pulsing such quadrupoles, the time spent in the unstable region during transi-

tion can be reduced as shown in Fig. 25.

One figure of merit is the crossing-speed enhancement factor, / ' . The

relationship between / ' , the bunch area, and the intensity limit for the AGS19

is shown in Fig. 26. Without 7tr-jump, the AGS can pass through transition

without visible beam blowup at N — 2 x 1012 if the bunch area is 1 eV-sec.

With a 7tP-jump system having enhancement factor / ' = 30, with the same
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bunch area, the tolerable intensity now is about 2 x 1013. This should be

compared with the empirical observation that, at 1.5 x 1013, the AGS typically

loses 5% of beam and suffers 50% blowup in passing through transition without

7tr-jump.

With the addition of a booster, to run the AGS at 6 X 1013 ppp, we

need both a 7tr-jump with / ' as 30 and controlled blowup to 2 eV-sec before

transition.
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