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SUMMARY

This report reviews a number of conceptual bases for the interpretation of

atmospheric source-receptor phenomena, including spatial attributes, nonlinearity,
and temporal attributes. Source-receptor properties are commonly expressed and

interpreted in terms of statistical parameters. Definitions of these parameters often

vary from one user to the next, however, and the resulting potential for confusion

suggests the need for a standard and accepted set of terms for applied use.

Time-averaging is an important consideration in describing system

linearity/nonlinearity as well as temporal and spatial variability. Unless expressed in

terms of a conceptual model (such as a steady-state system) where time-averaging is

implied, explicit statement of the averaging time, or period of observation, is necessary

for satisfactory definition of pertinent statistical features. This plus a number of

additional contributing factors tend to complicate the description of source-receptor

Phenomena and underline the need for consistent terminology.

This report provides a description of source-receptor linearity as well as several

statistical measures of spatial and temporal variability in the source-receptor

sequence. These are suggested for use as standard terminology in future source-

receptor studies and in applied emission-control policy analyses.
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indiscriminate application in cases where transients occur can lead to confusing, or

even erroneous, results. The goal of this report is to review several of the most

important of these source-receptor concepts and to provide a group of well-founded

definitions and interpretations, which are suggested for standardized use by both the

scientific and policy-analysis communities. In reflection of the three basic categories of

questions posed above, general classes of these terms include spatial attributes, such

as spatial distributions and influence regions, the concept of linearity, and temporal

attributes, such as temporal distributions and residence times. These categories will

be treated sequentially in the sections immediately, following.

1
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1.0 INTRODUCTION

The expression "source-receptor relationship" is commonly applied to describe

the composite behavior exhibited by a pollutant, from the time that it is emitted to the

atmosphere until the time it arrives at tts ultimate point of reception. The term

"reception" is used here to depict either deposition, or simply observation in the

gaseous phase by some type of real or hypothetical monitoring device, at any specific
location on the Earth's surface. Elements of source,receptor behavior can be

illustrated best in terms of the following questions, which are often posed in the context
of its discussion:

1. Spatial attributes. What is the spatial concentration (or deposition) pattern
associatedwitha specificpollutionsource? What fractionof the pollutant
moleculesarrivingat a specificreceptorhas originated fromthis source?

2. Linearlty. What are the changesat a receptorthat resultfrom extended changes
in sourcestrength,and canthiscause-effect relationshipbe expressed as a linear
function?

3. Temporal attributes. How do pollutantfluctuationsat a receptorrelate to
fluctuationsof the source,and to fluctuations tnthe atmosphere? How longdo
pollutantmoleculesfroma specificsourcereside in the atmosphere before exiting,
either throughdepositionor throughphysicochemicaltransformation?

Each of these source-receptorquestionsis of central importanceto emission-

controlstrategyand policyanalysis. Unfortunately,however,their interpretatic_nis

often cloudedby substantialuncertainty; and at presentthe scientificcommunity is

workingactivelyto elucidateinterpretiveaspectsof these questions,and to reduce

associated uncertaintylevels. As a consequenceof thiscombinationof scientificand

policy-analysisactivity,these questionscan be convenientlyviewed as Interface

points between atmosphericscientistsand policymakers. These interfaces have

, become especially active during the past several years, as regional/global issues such

as ozone transport and acidic deposition have grown in importance.

Several concepts and terms are often encountered when dealing with source-

receptor relationships. As is frequently the case with applied atmospheric analysis,

the published literature contains a variety of definitions for and interpretations of these

terms, which often depend on special conditions and/or modeling assumptions. As a

consequence, substantial caution must be exercised when applying published results

for the interpretation of particular situations. Quite often, for example, definitions

applied tn the literature are based on an assumed steady-state process, and



2.0 _LATTRIBUTES: SPATIAL DISTRIBUTIONS AND

JJ_.FLUENCEREGIONS

In assessing the effects of atmospheric processes, particularly those associated

with pollutant deposition, one is generally concerned with fluxes and concentrations in

the immediate vicinity of the Earth's surface. As a consequence we will confine this

discussion to surface observations and neglect the distribution of pollutants aloft--a

restriction that permits spatial distributions to be viewed simply as two-dimensional
entities.

We begin by considering a single, specific source that is emitting a pollutant to

its surroundings. If one were to measure the exposure of this pollutant (e.g., its

concentration or its deposition flux) at ali surface-level points surrounding 'he source

at some instant in time, the resulting field could be represented by

exposure(x,y) = E(x,y) = Eof(x,y), (2,1)

wh_re x and y are coordinate positions relative to the source, Eo is a normalizing

constant, and f(x,y) is an instantaneous spatial probability-density function for

pollutantr-ncurrence,which obeysthe relationships

1 a2_(x,y)

f(x,y) = E-'O" _ o_y (2.2)
and

o_ o_

where -C(x,y)represents a cumulative exposure across the (x,y) domain. Figure la
provides a pictorial example of an instantaneous probability-density function

corresponding to an arbitrary single source.

Similar density functions can be derived for other receptor attributes, such as

wet- and dry-deposition flux fields, as weil. Ali of these density functions have the

mathematical properties characteristic of the usual density functions encountered in

statistics. In particular the centrold coordinates and standard uevtattons x, y, _x, and

Cy of the spatial concentration (or deposition) pattern can be expressed as follows:



i ix,Ixy) xoy I24/
.w -u

(2.5)

• _ -lo

- i i f(x,y)dxdy, (2.6)

_ = i i(Y" y)2f(x,y)dxdy, (2,7)
.oe -_

Parameters for higher moments of the distributions can be obtained using

straightforward extensions of these forms, lt is important to note the Instantaneous

nature of f(x,y) and to recognize that similar density functions can be defined that

correspond to observations averaged over finite periods of time. in general, one can

denote density functions corresponding to averaging times e as fe(x,y), where fe

conforms to the mathematical properties noted for f in Equations (2.2) and (2.3).

Because Oftemporal variations in pollutant behavior, _ne would expect the field
described by fe to become progressively more smooth with increasing 0, as indicated

by the curve in Figure lb. If the temporal variability of f is free from long-term trends,
then for large e, fe(x, y) will converge to a limiting distribution, which can be taken to be

the long-term average. The moment parameters also will change with averaging time,

in reflection of changes of the density function; thus, tlme-averaged parameters xe, Y-e,

CSxe,and _yemay be derived, which correspond to the instantaneous parameters in
Equations (2.4) through (2.7).

The influence region of a specific pollution source is the geographical

domain where the source's contributions to pollutant concentration and/or deposition

fluxes are considered to be "significant." Obviously this description is flexible,

depending on the direct needs associated with the problem at hand. Typical criteria

for the bounds of an influence region are absolute magnitude, such as the

specification of a lower-limit value for fe(x,y), or relative magnitude, such as

specification of a Iower_limitratio of fe(x,y) to some background contribution. A

moderate SO2 source in the polluted midwestern United States, for example, would

not be expected to make a strong relative contribution to pollution fields at extended
downwind distances and thus could be considered to have a limited relative Influence

region for most practical applications. The Chernobyl plume, on the other hand, could

: rightfully be stated to have an influence region encompassing the total northern

4
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E.LC.a.IaJ_r._,Hypothetical Spatial Probability-Density Functions for
Exposure to a Pollutant Emitted at Center of Grid: a)
Instantaneous Density Function; b) Time-Averaged
Density Function,
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hemisphere, both on a relative and an absolute basis. Consequently, the term

"influence region'" should be consld,: lid as a qualitative descriptor, unless an explicit
quantitative definition has been given to describe some situation of immediate interest,



3.0 LINEARITy

The concept of linearity/nonlinearity represents a juncture between science and
policy analysis that is a particularly impollant feature of the present international

dialogue on acidic precipitation, in policy analysis, this concept is usually considered

from a macroscopic viewpoint, that is, in the context of the total source-receptor

sequence. Scientific analysis is often concerned with macroscopic manifestations of

nonlinearity as weil; in addition, however, scientific evaluations frequently deal

directly with nonlinea_ity'_ causative mechanisms, which tend to be molecular-scale,

or microscopic in nature. Moreover, a variety of observational scales, falling between

these two extremes, is possible. Instead of considering the total source-receptor

sequence, for example, one might choose to examine nonlinearities associated with a

limited segment of this sequence, such as pollutant ingestion and precipitation

scavenging by an isolated storm at some location that is remote from the pollutant's
source.

Because of this wide range of analysis scales and als(_because of diverse

terminology applied in associated scientific fields such as mathematics, engineering,

and systems research, a variety of interpretations of linearity/nonlinearity have

appeared in the atmospheric-sciences literature. In view of the possible confusion

associated with these interpretations, there is a need for a standard characterization of

linearity/nonlinearity that

• is sufficiently concise to be of practical use fc_rstrategic planning by the policy-.
analysis community

• is sufficiently well-posed to preclude any ambiguity of interpretation

• provides a consistent interpretation over ali scales of application, ranging from
microscopic systems to the macroscopic source-receptor sequence

• is consistent with (or at least reconcilable with) standard mathematical terminology.

The purpose of this section is to provide such a characterization. We approach this

goal in the following subsections by first examining macroscopic aspects of

nonlinearity, then scrutinizing microscopic features, and finally discussing the

relationships between these two limiting situations.

7



3.1 MACROSCOPIC SYSTEMS

Linearity/nonlinearity in the total source-receptor sequence can be described

superficially in relatively simple terms. 5asically, if a percentage emissic_nchange of a

particular pollutant from a specific source results in the same percentage change in

exposure of that pollutant from that source--at ali receptor points over the source's

influence region--theri the macroscopic source,receptor process is said to be "linear."

That is, the source-receptor relationship can be represented by some equation of the
form

• Ee,i,j(x,y)= Ae(x,y)Se,i,j, (3,1)

where Ee,i,j(x,y)is the exposure (e.g., the concentration or deposition flux)of pollutant i

at location (x,y) that is attributable to source-array j, Se,i,jrepresents the aggregate
emission rate of the associated pollution source, and Ae(x,y) is a proportionality

function. As indicated by the subscript e, a finite averaging time for the observations of

Ee,i,jand Se,i,jis implied. Sej,j can characterize a single point-source at some fixed
position, or it can depict the combined strength of any chosen array of sources. The

latter case is best visualized in terms of a spatial den._i_yfLJnctionse,i,j(x,y,z) of pollutant

emissions, where the source strength at any location, Z,e,i,j(x,y,z),is given by the

product of Se,i,jand se,i,j(x,y,z).

, The property characterized by Equation (3.1) implies that the spatial probability-

density function fe,i,j(x,Y)for pollutant deposition (or concentration)is insensitive to

changes in the aggregate source strength Se,i,j; in fact, a somewhat more revealing
statement of the source-recepTorlinearity condition can be given as

=

Ee,i,j(x,y)=Eo fe,i,jix,y) = Ae(x,y)Se,i,j • (3.2)

As wi;I be indicated below, these equations do not constitute a complete

definition of macroscopic linearity. They dr) suffice, however, to indicate this concept's
: importance in policy analysis. If the source-receptor behavior is indeed linear, then an

acceptable control strategy can be designed in a relatively simple and straightforward

manner. Furthermore, confidence in the strategy's ultimate success will be greatly

enhanced, because one is assured that any incremental rollback in emissions will be

directly reflected by a proportionate drop in exposure to the associated pollutants at
' i

the receptor. Several hypothetical examples of linear and nonlineal_systems, as
characterized in the context of this report, are shown in Figure 2.

: 8
,'
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EJ.Ca..U.BE,_.Examples of (a) Linear and (b) Nonlinear Source-Receptor Behavior for a
, Single Receptor Located at Point (x,y). The density function sij(x,y,z)

characterizing the source distribution is stipulated to remain constant
under these conditions, although the composite source strength Sij is
allowed to vary.

Equations (3.1) and (3.2) are potentially useful for evaluating the presence or

absence of macroscopic linearity. One could, for example, observe a source-receptor
system for two different time periods (say el and 82), each of which involves a different
source strength (Sel,i,j and Se2,i,j). Subsequent comparison of the resulting exposures

Ee2,i,jand Ee2,i,jwould allow direct evaluation of System conformance to Equation (3.1),

and thus to linearity. Although this appears superficially to be a simple and

straightforward process, a number of conditions must be satisfied for valid application
of Equations (3.1) and (3.2). Explicit recognition of these conditions, summarized

below, is essential for interpretation of system iinearity.

1. Explicit designation of the source array (characterized by index j in Equations (3.1)
and (3.2)), and distinction between pollutant that has originated from this array and
that which has not, is critically important. Ignoring this requirement can lead to a
serious misinterpretation of system linearity/nonlinearity. Definitive source

. attribution is a major problem in field measurements of source-receptor
nonlinearity, because usually no convenient way exists to determine explicitly the
sources responsible for specific contributions to the pollutant levels observed at a
receptor site.

2. Equations (3.1) and (3.2) are valid characterizations of linearity only if the source
density-function Se,i,j(x,y,z)is invariant in time, or represents a stable time-average
of a fluctuating source array. Because emission patterns are usually subject to
change, se,i,j(x,y,z) is difficult to control in practice and often presents a substantial
impediment to interpreting linearity/nonlinearity from field observations. Although
temporal changes in se,i,j(x,y,z) may invalidate the application of Equations (3.1)

9



and (3.2) for linearity/nonlinearity analysis, this lack of applicability dogs not imply
that the source-receptor system is nonlinear under transient conditions.

3. Application of Equations (3.1) or (3.2) for evaluating linearity/nonlinearity is valid
only after sufficient time has elapsed to allow completion of transient responses to
changes in Se,i,j. Oile woula not, for example, attempt to asSess nonlinear
behavior by doubling S_);i,jat some instant in time, and then measuring Ee,i,j in the
following few seconds at some (x,y)location several hundred kilometers
downwind. This point is of limited practical concern for field assessments of
nonlinearity but poses a potential basis for misinterpretation of modeling
calculations.

4. The receptor density function fe,i,j(x,y) depends on meteorology and thus will vary
with time, even fora constant source strength and source configuration. The best
one can hope for is that, 'for sufficiently large averaging time e, this function will
converge to a stable state, which will be replicated by obsewations for subsequent
sampling periods. Experimental determination of source-receptor
linearity/nonlinearity by measuring Ee,i,jfor some fixed Se,i,j,andsubsequently
modifying Se,i,jand measuring the corresponding change in Ee,i,l,depends on this
ability to replicate fe,i,l(x,y). '

5, Application of Equations (3.1) and (3.2) for linearity/nonlinearity analysis is based
on the assumption that either a) the source-receptor relationship is not affected by
other, co-existing pollutants or b) the emissions of these co-existing pollutants
remain unchanged during the total period of observation.

Conditions 1 through 5 complicate the description and testing of macroscopic

linearity appreciably. Moreover, they suggest a distinction between the properties of
a linear system and the conditions that are necessary to test for its existence. Insofar

as necessary test conditions are concerned, it is instructive to view such attributes in

terms of conceptual experiments, which one might propose to evaluate linearity using

either modeling or field-measurement techniques. Two possible conceptual

experiments of this type are'

Conceptual Experiment 1. This experiment is essentially a formalization of the

= approach outlined at the beginning of this discussion. Select a source-receptor

system of interest and observe this System for two different periods, el and 02.

Assume that the meteorological conditions, averaged for each of the two periods, •

are identical. Assume also that the source density functions are identical but that
the aggregate source strengths Sel,i,j and Se2,i,ldiffer. Measure Se,i,jand Ee,i,j(x,y)

for each period, and assess deviations from iinearity by plotting as Shown in
Figure 3. _,

Conceptual Experiment 2. Select a source-receptor system of interest, which

exists in some well-defined initial state. Observe the system as a function of time

for some defined, but not necessarily constant, values of Si,jand si,j. Note values of

10
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I,LI

Se,i,j

.F__, Hypothetical Plot of Measured Source Strength Versus
Deposition Rate, Illustrating Conceptual Experiments

, for Linearity Assessment

Ei,j(x,y)ll at some elapsed time during this process. Repeat the observation,
applying the same source density-function and the same meteorology, but for an

amplified aggregate source strength Si,l. Note the corresponding values of

Ei,j(x,y)12at the same elapsed time• Assess iinearity by plotting in 'the same manner
as for Conceptual Experiment 1.

Consideration of these experiments provides insight regarding the importance of

Conditions 1 thiough 5, and gives some indication of the difficulties involved in

measuring linearity/nonlinearity in practice. Both experiments can be performed

conveniently using model simulations, since in such cases the investigator has explicit

control over both the source configuration and the meteorology. Under relatively ideal

conditions one might expect to conduct Experiment 1 as a field study; because of the

impossibility of repeating the instantaneous meteorological conditions in field

experiments, Experiment 2 is practical only in a modeling context.

These experiments, in conjunction with Equations (3.1) and (3.2), also suggest

the following quantitative measure of nonlinearity:

11



L* = S-_-I'Ja--_El'= (E,,jj2- E,,j ,,ii2+ E,,jI1). (3.3)
El,j OS,,j (S,.jl2 - St,II1)//

+ S,,jl,)

L* is essentially a normalized sensitivity coefficient and has been suggested as

an appcapriate measure of linearity/nonlinearity by previous authors (e.g., Easter and
Luecken 1988). While L* is certainly not the only measurement index that could be

suggested, this parameter will suffice for the purposes of this report. As can be
determined by inspection of Equation (3.3), an L*value of 1 corresponds to linear

behavior, as described by Equations (3.1) and (3,2). L* values exceeding and less

than 1 depict positive and negative deviations from linearity, as exemplified by curves

and T1,respectively, in Figure 2.

Additional interpretive features of macroscopic lineartty are not directly related

to observational validity, but are nevertheless worthy of mention at this point1.

Equations (3.1) and (3.2), for example, can be applied directly for the

linearity/nonlJneadty analysis of reaction products as well as primary emitted species.

Se,i,jcould be used to describe a source array of SO2 emissions, for example, with

Ee,i,j(x,y)being applied to characterize the associated deposition flux of the SO4=
reaction product. Moreover, Equations (3.1) and (3.2) can be generalized to describe

linearity for sub-elements of the total source-receptor sequence, by allowing Se,i,jand

Ee,i,j to depict pollutant inflow and outflow, respectively, for the chosen sub-element.

. Se,i,jcould be used, for example, to depict the chemical input to a cloud system from

the surrounding clear air, rather than the direct emission of a pollutant to the
atmosphpre.

"Global" linearity, that is, Iinearity of gross behavior across the total (x,y) domain,

is implied by Equations (3.1) and (3.2). Integration of Equation (3.2) over the total (x,y)
domain leads to the obviously linear form

E0 = A Se,i,j, (3.4)

where the constant A is defined by

12[]
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Equations (3.4) and (3.5)demonstrate that the "normalization constant" E0is
equivalent to the area-integrated exposure.

As a final point in this review of macroscopic phenomena we note theft linearity,

• as described by Equations (3.1) and (3.2), is at variance with some of the

interpretations appearing elsewhere in the literature. This point is illustrated by curve
in Figure 2b, which may be represented by the equation

Ee,i,j(x,y) = Ae(x,y)Se,i,j + b (3.6)

where b is some non-zero intercept, a form that is usually considered to be "linear" in

an algebraic context. A more restrictive characterization of ltnearity (i.e., zero

intercept) has been chosen for the purposes of this report for three major reasons.

First, emission-control strategy is greatly simplified under conditions where curves

such as those in Figure 2a prevail, a situation that definitely does not exist in the case

of curve _. Second, it is difficult to conceive of a situation where curve _ would be

exhibited in nature, because its implication of non-zero pollutant deposition associated

with sources that are emitting no pollut"ionwhatsoever is obviously absurd. Any

indication of a source-receptor relationship similar to curve _ would immediately be
suspected of either 1) having a radical but unmeasured downturn toward zero in the

vicinity of the origin (and thus being highly nonlinear by both criteria (3.1) and (3.6)) or

:2)being an artifact arising from background contributions from unaccounted sources.

Third, as will be demonstrated below, Equation (3.6)is inconsistent with the

mathematical definition of a "linear operator," a concept that will be used in relating

macroscopic linearity to its microscopic origins. For these reasons we will continue

with our more restrictive characterization of linearity for the I' Jrposesof this report and

will refrain from using terms such as "proportional" and "linear-proportional," which

have been applied elsewhere to distinguish between behavior exhibited by Equation
(3.1) and Equation (3.6). In so doing we caution the reader to remember that the terms

"linearity" and "nonlinearity" are defined in a variety of ways in the literature, andthat

due caution is mandatory to avoid confusion and erroneous interpretation of the

source-receptor sequence.

13



3.2 ]Y_SCOPIC SYSTEMS AND THEIR INFLUENCE ON MACRQ_
.SOURCE-BECEPTOR....BEHAVlQR

As we have noted above, mlcroscoplc phenomena are Important practical

considerations because nonlinear molecular-scale processes generally form the

mechanlstic basis for macroscopic nonlinearity, The following equations, for

example,(a) t,._presentthe rates of chemical reactions:

rateof lossofspecies A = - o_:_A/_lreaction= kA(X,y,z,t) CA (3,7) .

rate of loss of species B = - ;)CB/_lreaction = kB(X,y,z,t)CB2 (3.8)

rate of loss of species C = - _C/_lreamlon = kc(x,y,z,t) co CD (3.9)
,,

The first of these is considered to be linear (because lt depends on the first power of

the concentration of A), and the second nonlinear (because lt depends on something

other than the first power of the concentration of B). ]'he third reaction is also

considered to be nonlinear in general because, although the rate appears superficially

to be dependent on cc to the first power, lt also depends on the concentration of

species D, which is presumed to vary with reaction progress in some manner that

depends on cc. If reactions represented by Equations (3.8) and (3.9) play large roles

: In affecting source-receptor behavior, then the total macroscopic manifestation can be

expected to exhibit nonlinearity in the sense of Section 3.1.

Microscopic linearity is Important from a modeling standpoint as weil. If linear'

conditions are assumed to prevail, one frequently can obtain analytical solutions to

model equations (or components of these equations), whereas with nonlinear systems

numerical approximations are almost always mandatory. Moreover, under linear

conditions it is possible to perform relatively simple calculations for individual source-

receptor elements of a multiple-source composite and then derive the total

cornposlte's depiction by adding these contributions using linear superposltlon.

Simple superposition is not permissible with nonlinear systems. Finally, linear

systems allow greater model-application economy, in the sense that a single model

execution can be applied to describe a variety of source-receptor scenarios. Quite

often this multiple type of scenario analysis has been accomplished by subdividing the

(a)Wewillusereactionkineticsasourprimarylllustrationof microscopicIinearity/nonllnearityInthisreport.
Thereadershouldnote,however,thatnumerousadditionalmicroscopicInteractions,suchassolubility
phenomenaandcloud-physicsinteractions,arepotentialcontributorsto systemnonlinearity.

14



source regions and receptor regions into grids, and allocating the emission-density

and receptor magnitudes to corresponding two-dimensional matrices, A single

execution of a linear model can be applied to create, in addition to a matrix of receptor
values correspondir _gto the source matrix, a general transformation that permits direct

evaluation of receptor patterns corresponding to any arbitrary emission array. This

transformation, which is often referred to as a transfer matrix, thus can be applied for

multiple scenario analyses without subsequent execution of the model's code. Again,

the application of such techniques is not permlsslble under nonlinear conditions,

Any acceptable depiction of Iinearity must be sufficiently general to describe

both its microscopic and macroscopic aspects, and to conform to the conditions noted

above for model applications, In formulating such a description it is helpful to apply b

the mathematical concept of a linear operator, L, (of, Sokolnikoff and Redneffer 1966)
which satisfies the fornrl

L(C lu +C 2v) = C1L(u)+C 2L(v), (3.10)

where u and v are any two functions of the independent variables and the Cs are

constants. Differentiation and integration are linear operations under this deflnitlon.

For example, if one sets L(y) = dy/dx, then Equation (3,10) becomes

_x du dvu+c v)= c, x +
If, on the other hand, one attempts to define L in terms of a nonlinear operation, say

L(y) = y2, then slmilar Introduction into Equation (3.10) results in

(C_u + C_v)2 = C_u2+ C_v2 + C,uC2v
,_C_u_ + C_v"_.

The operations (3.1), (3.2), (3.4) and (3,7) are linear according to the criterion

(3,10), whereas (3.6), (3.8) and (3.9) are not; thus both microscopic and macroscopic

characterizations of linear systems, as given in this report, conform with this

description. Accordingly, we stipulate that a necessary condition for ltnearlty is that

both the macroscopic source-response equations and their microscopic root

expressions satisfy the criterion stated by Equation (3.10).

Differential equations of the form

t
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L

L( c )- q(x,y,z,t) = 0 (3,11)

where q Is any (possibly) spatially and temporally variant function that is Independent

of the dependent variable c, are considered to be linear differential equations In a

mathematical context. Although L(c)is by definition a linear operator, the left-hand

side of Equation (3,11) does not In general satisfy condition (3,10), Furthermore,

solutions to differential equations of the form (3.11) do not, tn general, lead to linear

algebraic expressions of the form (3,1),

More reGtrlctedforms of Equation (3.11), which do lead to algebraic solutions

that are linear in the sense of Equation (3,1), can be stated, in particular, the pollutant-

species conservation equatton

C)Cll ,.
' +V.(vl, 1cl,j) - rl,1 = _lj(x,y,z,t) = SI,jsl,l(x,Y,z,t) (3,12)' L,'t

ts considered to be a linear differential equation as long as the divergence and

reaction terms [V. ( vi ci,j ) and ri,j, respectively], satisfy condition (3.10), This

requirement will be fulfilled if the pollutant velocity vector vi,j is Independent of cl,j, and

the reaction rate ri,j depends on ci,j to the first power only, if the problem's boundary
conditions satisfy certain restrictions to be discussed below, solutiOnsto this equation

can be expressed In terms of Equation (3,1).

Because macroscopic Ilnearity is usually assessed by time-averaged

observations, lt Is often convenient to consider a time-smoothed form of Equation

(3.12). Such an equation can be derived In principle by separating the Instantaneous

variables tnto time-smoothed and fluctuating terms; i,e.,

cl,t = c0,i,j+ c'1,1, (3,13)

=

ri,j = ro,l,i+ r'l,j, (3,14)

Y._,j= }.7,,,_,j+ 7.'_,j, (3,15)
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Vi,j = vo,,,l+ v' (3,16)I,l,

and time,averaging on a term-by-term basis with the formula

i.o

_o = 1 f_ ('Jt (3,17)
i

to obtain the result

+ V • (vl,l c.,l)lo " rou= Y-,0,u(x,y,z). (3,18)at

We wlll not dwell on this time-smoothing procedure here except to note that

several rather subtle features are associated with this process, which have been

treated at length in the field of general fluid mechanics. These include the turbulent-

transport "closure'I problem associated with the second term In Equation (3.18) and the

question of nonlinear reaction phenomena in fluctuating concentration fields (cf,, Bird,

Stewart, and Lightfoot 1960, Donaldson and Hllst 1972),(a) If e ts sufficiently large,

then the time derivative will become negligible compared to other terrns. This behavior

Is directly associated with the condition demanded by Condition 3 above, regarding

tile absence of transients Induced by changes in source strength.

Equations (3,12) and (3.18) provide the mathematical link between microscopic

and macroscopic Ilnearity/nonlinea,rity, and their representation ls useful for

elaborating on Conditions 1 through 5 as well as the additional conditions noted at the

conclusion of Section 3,1. First, Equation (3,12) represents only one pollutant, and

(a)Time-smoothing of the source term can lead to cross-products between the Instantaneous aggregate
source strength and the Instantaneous source density function, tf dependences exist In the time-
variability of these terms, As a consequence the source strength and density function associated with a
tlme.,srnoothedY.,are not necessarily the same as the source strength and density function obtained from

time-smoothing 'S ands _rectly, This distinction !s reflected tn the mathematical notation by the tildes
above the Instantaneous S and ,_In Equation (3,12), The reader can verify this by,performing a simple
time-smoothing of the relevant terms using the procedure de8orlbed above,
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similar, simultaneous equationscan be set forth for other atmospheric constituents,

Because these multiplepollutantsreactwith each ,otherin numerousways, the

equationsare oftencoupled [usuallythroughreactionterms such as Equation (3,9)],

possibly creattngsecondarysourcesof nonlinearity, As a consequence,any realistic
investigationof linear/nonlinearbehavior must considerthese possible interactions,

and observations,ofone species (say sulfurdeposition)must be examined and

reported iri the contextof its concurrently existing pollutants, Such microscopic
behavior leads to Condition 5, regarding assumptions pertaining to co-existing

pollutants In the context of macroscopic linearity.
i

lt is also important to re-examine the constraints placed on the source density

function se,l,j(x,y,z,t)by Conceptual Experiments 1 and 2, Experiment 1 demands that

se,l,jremain constant, or at least that its average value remain stable from one

observation period to the next. Experiment 2 allowsSe,l,jto vary with time, but
demands that this time-history be replicated between observation periods, Attempts to

apply these experiments for other types of si,jbehavior will result in modtflcatlon,3to the

spatial distribution pattern fo,l,j(x,y), which have little to do with nonlinearity, and thus
defeat any possibility of examining linear/nonlinear effects. If the behavior of some

particular source or source area Is in question, lt is possible in principle to tag this

source with a unique tracer, vary the Se,l,jcorresponding to just this source, and
ascertain the extent of its nonlinear behavior.(a) Radioactive isotopes such as 35S

have been suggested as experimental tracers for this purpose, and models can

conveniently simulate virtual tracers simply by incorporating an additional equation of

the form (3.12) with the original equation set, lt is extremely important to note,

however, that any modeling or experimental Investigation of nonlinearity must exercise

care to eliminate the possible confusion of spatial/temporal distortions in se,i,jwith true
nonlinearity.

4

A final point relates to the variability of the meteorological field, which is

reflected in Equation (3.12) by the velocity vector vi,j(x,y,z,t ) and has dlrect bearing on
" Condition 4 of our characterization of macroscopic Ilnearity. Straightforward model

realizations of Conceptual Experiment 1 can be conducted, where an initial code

execution is performed for some value of Se,t,j,using a prescribed vi,j(x,y,z,t ) (in
addition to other meteorological features). The code is then re-executed for some

_

(a)ThereIs,however,adangerofmtsinterpretlngtheresultsofsuchstudiesandarrivingatInappropriate
measuresofnonlinearity,ThisIssueanditsundedylngcauseswillbe illustratedbyExample2,
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other value of Se,l,j,using a m6teorotoglcal description that Is Identical to that for the
first execution. Unfortunately one cannot mimic this type of experiment tn the real

world. At best one can observe fe,i,j(x,Y)fields experimentally for some value of _,l,j,
for the meteorology that ocours during this experiment period (of length e).

Subsequently, one can repeat the experiment, accepting whatever meteorology that

occurs during this second period, with the hope that the two meteorological records

will be sufficiently similar so as to contribute insignificantly to observed differences tn

• fe,l,j(x,Y).Based on observed natural variability In annual wet-deposition patterns

(Finkelsteln and Seilkop 1986), such an assumption requtres substantial evaluation

• before any conclusions regarding Iinearity from experiments of this type can be made.

Some additional important features of Itnearity/nonllnearttY are most

conveniently der_crlbedusing reduced forms of Equations (3.12) and (3.18), which are

sufficiently simple for clear illustration but can be extended to the more general cases

encompassed by the complete equations. We present here two simple case examples

to illustrate the significance of boundary conditions and the application of tracer
techniques for nonlinearity analysis.

Example 1: One-Dimensional Linear Systems: Illustration of the Importance of
Boundary Conditions.

Figure 4 is a ._chematicof an idealized atmosphere, which exhibits a one-

dimensional, constant flow in the x-direction. A constant source strength Sp is
distributed evenly throughout the system's domain, and advection in the x-dlrectlon is

the sole mechanism for pollutant transport. A first-order chemical reaction of pollutant
P proceeds kineticatly as

P _ P,,_u= (3.19)

with a reaction rate described by

_P/_lreactlon =" k cp. (3.20)

Under these conditions Equation (3.12) reduces to

U acp----+ k Cp = Sp. (3.21)ax
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_, Schematic of an Idealized, One-Dimensional Linear System

where U Is the x-component of the velocity vector v, With the boundary-condition

stipulation that CpIs equal to some concentrationcoat the system's Inflow region, this
linear differential equation has the solution

cp(x) = S--_P[1- exp(-k/Ux)] + co exp(-k/Ux). (3.22)k

Comparison of this expression with Equation (3.1) suggests that this simple

system adheres to our expression for macroscopic linearity only if the Inflow

concentration is zero, that Is, If ali of the pollutant is introduced to the system through
the source term Sp. In cases where'co ts not zero, one ,candefine an effective source

term as the sum of internal and boundary-condition inputs, allowing the system to
conform tO our description of Itnearity so long as co and Sp are varied in direct
proportion to one another.(a)

This result, which can be extended to more complex and higher-dimensional

systems, demonstrates the simple but important point that fundamentally linear

systems can be interpreted in a nonlinear sense, If boundary-condition changes are

not coordinated with changes in internal source strength. This seemingly trivtal point

is particularly important for regional-model investigations of Ilnearity/nonlinearity. In
such studies the pollutant's inflow boundary conditions must either be zero or must be

incremented in direct proportion to changes of the internal sources to prevent

Inappropriate Interpretation of linear features of system behavior. Failure to recognize

(a)EasterandLuecken(1988),forexample,performa Iinearity/nonlinearityanalysisonasystemhavtngno
internalsourceswhatsoever,withwiththetotalpollutionburdenenteringthroughtheboundaries,
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this point by the modeler or policy analyst will invariably lead to misinterpretation of the

linearity/nonlinearity analysis.

Example 2: Zero-Dimensional Nonlinear Systems: Tracer Applications to

Linearity/Nonlinearity Assessments.

We present this example to illustrate a potential pitfall involved with performing
physical or computational analyses of nonlinearity, through interpretation of a defined

component of pollutant emissions that interact within a larger total emission field. This

Situation can be interpreted either as an experiment involving a tracer that is injected
into an existing emission field, or the specific analysis of a minor existing emission

component that somehow can be distinguished from its surroundings. The simple

example that we consider here is a hypothetical steady'state atmosphere contained in

the well-mixed volume V, shown in Figure 5. Three pollutants are emitted
continuously 1tothis atmosphere at the rates Sp, So, and ST, and are removed by

chemical reaction and flow through the boundaries. The mean dwell time of air

passing through volume V is constant and is denoted by the symbol t*. Since the

volume is well mixed, the concentrations of these pollutants are uniform in space as

well as being constant in time. The time..derivative of Equation (3.12) is zero and the

divergence term can be expressed in terms of its boundary fluxes, leading to simple

aigebraic expressions of the relevant conservation equations. Chemical reactions of

these pollutants have the mechanisms

P + O _ P_,_, (3.23)

T + O---) Tp,_=, (3.24)
,.

with rates described by the following equations

aCp/_lreaction=- k Cp cO, (3.25)

aC.o/_lreaction =- k co (cp + CT), (3.26)

aC'l'/_lreaction= - k CTCO. (3.27)

Although this is obviously a highly simplified situation, it strongly resembles a

number of pollution phenomena of interest. This reaction sequence, for example, is

quite similar to the aqueous-phase atmospheric reaction between S(IV) and H202.

[
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pollutant sources:

Sp S O S T

pollutant dwell time t*

Flow in Flow out

volume V

P + 0 _Product

T + 0 _Tracer Product

FIGURE 5. Schematic of a Continuous Stirred-Atmosphere Reaction System

Here species P would represent SO2 [or S(IV)], species O would depict H202, and

species T some tagged version of SO2 added as a tracer.

By application of the divergence theorem to Equation (3.12) (or simply by

performing a material balance over the system depicted in Figure 4) one can set up

the following steady-state material-balance equations for the three species:

SpA/- cp/t* = k cp cO, (3.28)

So/V- co/t* = k (cp + CT)CO, (3.29)

STN- CT/t*= kCT cO. (3.30)

Furthermore, concentrations of the products resulting from reactions (3.23) and (3.24)

can be expressed as

t* Sp
Cp_odu== V Cp, (3.31 )

t* S T (3.32)
' CTpr°duct = V CT"

=-_ ,,

_

With some algebraic manipulation these equations can be rearranged to obtain

" explicit expressions for the concentrations cp, CO, CT, Cpproduct, and CTproduct, and for
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.the linearity parameters L*Pproduct and L*Tproduct. Although easy to derive, these
explicit formsare somewhat cumbersome. Rather than show the mathematical

expressions here, we simply present some illustrative results obtained from

computations for a single case e,,ample.

Shown in Figure 6, this cOmputed output illustrates a case example whose

parameters have been chosen to simulate P and O as dominant species and T as a
minor constituent acting as a tracer for P. As can be observed for the S - concentration

curves as well as the corresponding L* curves, the concentration of species Pproduct is
related to Sp in a moderately nonlinear manner, whereas the corresponding

relationship for the tracer's product compound approximates linearity very closely. We

._. ii , iiiii iiii i ii ii i _llllm

I Primary Pollutant ProductConcentration vs.
Primary Pollutant Source Strength

• Tracer ProductConcentration X 2000 vs.
Tracer SourceStrength
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" Ee_
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0,0 0.2 0.4 0.6 0.8 1,0

Source Strength, S or S X 2000
p T
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assert that this simple result has profound implications to physical and numerical

experiments that propose to apply tagged species as measures of nonlinearity. If the

microscopic origin of the nonlinearity derives from titration of a limiting species, then

addition of tracer for Conceptual Experiments 1 or 2 can be expected to grossly
underestimate the degree of global nonlinearity in most cases.(a) Furthermore,

numerical tagging of a particular source or source array that is imbedded in a complex
of other pollution sources can be expected in general to underestimate nonlinear
behavior of the total system.

3.3 SUMMARY COMMENTS ON LiNEARITY

Two general conclusions can be made to this discussion of linearlty. First, lt is

obvious that the term "linearity" must be defined precisely, in order to avoid ambiguous

conclusions in any associated analysis. Second, several competing factors may

masquerade as false indications of nonlinearity or Iinearity in experimental and

modeling investigations, and proper care to m_nimizeor prevent such effects is

imperative.

For the practical purposes of this report, we can characterize a linear

macroscopic system as one whose source-receptor relationship complies with the

definition of a linear operator as given in Equation (3.10) [cf., Equation (3.1)], and in

addition conforms with conditions 1 through 5 in Section 3.1. A linear microscopic
_,ystemis simply one whose mathematical statement can be characterized in terms of

a linear operator.

This characterization satisfies the last three of the four objectives listed in the

introduction to this Section. lt is sufficiently well-posed to prevent ambiguity in

interpretation, it is consistent over ali scales of application, and it is reconcilable with

standard mathematical terminology. Because the description given in this section is

not particularly concise, we feel less satisfied with our ability to achieve the first

objective in this list. Based on this analysis, however, we conclude that, owing to the

involved and complex nature of the linearity/nonlinearity issue, a highly concise

depiction is not possible without violating the remaining three requirements. Because

it is naturally tempting to characterize linearity in simple terms for ad hoc purposes,

(a) This result does not apply to ali classes of nonlinear systems. For example, application of a tracer in
Conceptual Experiment 2 to determine L* for a system which derives its nonJinearitysolely from a
microscopicsource such as Equation (3.8), will result In a direct measurement of global nonlinearity.
Unfortunately, most systems of practical interest involve a complex of microscopic nonlinearity sources,
and the observer is seldom totally aware of their exact nature,
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there will continue to be a danger of misinterpretations in applied analyses. The

material in this section has been presented with the hope of reducing tills danger as

much as possible.
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4.0 _F,JYtP__ORALATTRIBUTES: TEMPORAL,DISTRIBUTIONS

AND RESIDENCE TIMES.

Scientific analysis of temporal source-receptor features has been In progress

for an extended period, and as a consequence terminology In this area Is somewhat

more well-established than is the case for nonlinearity analysis, Bolln and Rodhe

(1973), for example, have presented a well-defined set of terms for thls subject, which

have been applied and extended by subsequent authors, The currently established

terms and definitions have a number of shortcomings, however, and thus we Introduce

some additional concepts and terms, whose usefulness should become apparent to

the reader upon consideration of the following text.

In introducing this section, we note that Bolin and Rodhe based their analysis

on the idea of the atmosphere as a steady-state reservoir wherein pollutants are

continuously emitted and removed, maintaining a constant resident mass of pollutant,

We consider the Bolin-Rodhe Idealization in our present analysis as weil; but, first we

develop a somewhat less restricted conceptual model involving the transient behavior

of an instantaneous "puff" of pollutant. Besides having the advantage of greater

generality, the transient-puff approach allows a somewhat easier visualization of key

Issues of the development. Subsequently, we compare this treatment directly with the

Bolin-Rodhe approach to arrive at the final conclusions to this section.

4.1 ATMOSPHERIC.RESIDENCE TIMES AND TRANSIENTRESPONSE

4.1.1 Isolated Mechanisms

We begin this development by considering a pollutant molecule (or aerosol

particle) that is emitted to the atmosphere from some source at time 0. Ultimately that
molecule will either:

• be removed by some sort of chemical (or possibly physical) transformation

• be.removed by dry deposition

• be removed by wet deposition.

If a puff of several (say No)molecules of the same type were released from this

source at time 0, one would expect individual molecules to exit the atmosphere via the

above pathways at different times, which depend on the individual experiences of

separate molecules. If the function N(t)is defined as the number of molecules removed

at times up to and including time t following the release, then an instantaneous
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, temporal probability-density function g(t) for pollutant removal can be defined

such that the probabilityof an emitted moleculebeing removed In an element of time
betweent and t + dt Is equal to g(t) dt:

1 dN
' g(t) =

NOdt ' (4.1)

which can be rearranged to give

' t

a(t) = No j'.g(t')dt'. (4,2) .
0

Ali of the molecules wtll have been removed at t.= oo, at which time N(t) equals

the total number (No) of molecules released in the Instantaneous puff.

As was the case for' spatial distributions, the temporal probability-density

function g(t) can be treated using conventional statlstlcal approaches. In particular, the
mean residence time and variance of the ensemble of molecules released at time 0

carl be expressed as

'c = it g(t)dt (4,3)
o

and

2 = i(t - I:)2g(t)dt (4 4)O"t ,
0

with higher moments of the distribution obtainable using direct extensions of

Equations (4.3) and (4.4). ,_,which is usually referred to as the "atmospheric residence=

time," (cf. Junge 1963) has been applied extensively in the source..receptor literature, .

especially tn European contributions to the field.

We r_w consider a hypothetical system almost identical to that just described,
but which differs tn the sense that tt contains "switches," which can activate or

deactivate specific removal mechanisms. With this hypothetical system one can

perform repeated experiments with single mechanisms operative and thus measure

=
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the effectivenessof each mechanism In Isolation, We use the term gr,l(t) to denote the

"isolated"probability-densityfunction describingthe situationwhen ali mechanisms

save chemical conversionare inoperative, Similarly,gd,l(t) denotes the density

function when ali mechanismsare "toggledoff," except for dry deposition,and gw,l(t)

denotes the correspondingdensity functionfor wet deposition. This leads directlyto

t

Nx,_(t) = No fgx,=(t')dr' (4,5)
0

X,. r, d,W

with expressionsfor the correspondingstatisticalparameters1;r,t,1;d,l,and '_w,I

obtainableusingdirectextensionsof Equation(4.3):

_x,_= i t gx,_(t)dt (4,6)
0

x.r,d,w

4.1.2 _j.Et._J.taneousMechanisms

The terminology of Section 4.1 envisioned N(t) to be the number of molecules

removed from the atmosphere by ali active mechanisms, unless special conditions

existed Irl our hypothetical system where specific mechanisms were toggled off. Nx,l(t),

on the other hand, denoted the molecules removed by specific mechanism x acting in

isolation from competing mechanisms. Under the isolated-mechanism s 'uatlons,

N(t) = Nr,l(t) (reaction only) (4,7)

N(t) Nd,l(t) (dry removalonly) (4.8)

N(t) = Nw,l(t) (wet removal only). (4.9)

Because, under conditions where simultaneous mechanisms are operative, the

total number of molecules removed must equal the sum of contributions from the

individual mechanlsrns, it Is of some interest to define a corresponding set of terms that

describes individual contributions under simultaneous circumstances, Specifically, we
define
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t

N,,,(t) = N,,,,0 fg,,,(t')dr' (4.10)
and o

X= r, d, W

_;,,, = ft gx,,(t)cit (4.11)
0

x ,,hd, w

where the various termstake their obviousslgnifloance,the subscripts has been

addedto emphasize that thesestatisticsare for simultaneouslyooourrlngpathways,

and Nx,s,odenotesthetotal numberof molecules removedby mechanism x at t = oo0

Simple materlal-balanoe oonslderatlonslead to the relationships

N(t) = Nr,s(t)+ Nd,s(t)+ Nw,s(t) (4,12)

and

Nog(t) = Nr,s,ogr,s(t)+ Nd,s,0gd,s(t) + Nw,s,ogw,s(t). (4,13)

Applicationof Equation(4,11) to the componentsof Equation (4.13)leads to the
relationship

No I: = Nr,s,0 ,tr,s + Nd,s,01;d,s + Nw,s,0 '_w,s, (4.14)

AlthoughI; conformsto the definitionof the "residence time" described in

Section 4.1, the terms _x,sare not the same as their Isolatedcounterparts. While '_x,s
is indeedthe true residencetime experiencedby an ensemble of molecules being

removed by pathway x in competition with other pathways, _x,l is more of a conceptual
standard and is only indirectly related to actual residence-tlme behavior tn true, multi-

pathway systems. This will be illustrated in more detail below, where a special case

example is considered.
=

4.1.3 Soeclal Cases

" Having distinguished between I_.olatedand simultaneous characterizations, we

next illustrate how to oonvert from one set of statistics to the other. Possession of just

one set of statistics does not describe a system in sufficient detail to derive the second

set unambiguously and additional constraints are required for this purpose. We

illustrate this point by Imposing one of the posslble sets of constraints on a puff.release

system, wherein statistics corresponding to the isolated characterization are known.
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This constraint is simply one of system Ilnearlty; that is, removal rates corresponding

to Individualmechanisms are dependent on the remainingquantity of airborne

material, For removalmechanism x, thisconstraintIs equivalentto statingthat, forthe
Isolatedmechanism case,

= kx(t) (No " Nx,.) = NOgx,.(t) (4,15)dt

and for the simultaneous mechanism case

• dNx,'
dt = kx(t) (No - N) = Nx,,,og,,s(t) (4,16)

where kx(t)Is a (possibly) time-dependent rate parameter and Nx,s,oIs the total

amount of emitted material that will ultimately be deposited by mechanism x, In the

special sltuatlon where kx Is a time-independent constant, the corresponding Isolated
density function is exponential In form,

Since the total removal rate in a simultaneously operative system Is equal to the
sum of Itscomponents, one carl write

dN
d-"_ = [k,(t)+ kd(t)+ kw(t)] (No- N) = Nog(t) (4,17)

where the subscripts r, d, and w denote removal by reactive, dry, and wet processes,

respectlvely, Integrating1Equations (4.15) and (4.17) to obtain gx,Iand g as functions
of time and Inserting Into Equation (4,3) gives

I

gx,.(t) = kx(t)exp[-[kx(t')dt'], (4,18)
0

t

g(t) = [kr(t) + k,,(t)+ k.(t)] exp{-f[k,(t')+ kd(t') + k.(t')] dt'}, (4.19)
0

,,o t

'_x,,= fexp['fkx(t')dt'] dt, (4.20)
0 0

and
t t

I; = Iexp{-j'[k.(t')+ k,_(t') + kr(t')] cit'}dt. (4 21)0 0
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Although under the speetal circumstances where the rate coefficients are time-

IndependentconstantsIntegrationof (4,20) and (4,21) leads to the relationship

1 1 1 1
- = -- + --" +--" , (4,22)

_t,I _d,l '1;w,i

this equationdoes not hold in general for variablekx, This findingis of some

slgnificanoein view of the widespreadapplicationof Equation (4,22) In the

atmospherlo-salenoes literature and will be examined in more detail below when

steady-statesystemsare considered.
J

Equations (4.15) and (4.16) can be applied directly to derive Isolated statistics
from their simultaneouscounterparts,and viceversa. An example is shown in Figure

7, From thisone can observethat the residencetimes of pollutantsassociated with

simultaneouslyoperative systemsare, in general, shorter than their Isolated

counterparts. This ts not difficult to rationalizeon an Intuitive basis, since several

mechanismscompetingto remove materialshould reduce tts Ilfetlrnecompared to a
|

situation wherein only one of these mechanisms la operative.

4.1.4 Extensionto Cor_tlnuousSystems

Equations(4.1) through (4.22), which correspondto a single, Instantaneous

puff-releaseof pollutantat time 0, can be extended to longer-periodreleases by

consideringa sequential releaseof puffs oversome time-period 0. Thus a

correspondingset of time-averaged statisticalparameters (e.g,, _:e,_;e,r,s,'_e,d,I,go,w,s,.

. , ) can be defined in a manner similar to that employedpreviouslyfor spatial

statistics. To Illustratethis process,we consider a reservoirwherein a sequential

: series of puffsoccurs,which are spaced evenly in time. Let gx,l(t)and Nx,j,o,
respectively,representa densityfunctionandthe numberof moleculesultimately

deposited,correspondingto the moleculesin a puff emitted at time tj, for some single
removalpathwayx that occursin the reservoir. Becausemeteorologicalconditions

change with time, each of the puffs will differ from their predecessors, exhibiting forms

, similar to the examples shown in Figure 8a, Their shapes can be averaged, however,

by time-shlfting so that the origins of ali puffs coincide, weighting according to Nx,j,o

and summing, If some particular puff, denoted by Index J,Is emitted at time tj and

displays the probability-density function gx,j(t),then tts form, translated to the origin at t

= 0 ts given by gx,l(t + tj), Accordingly, a time-_verage of ali density functions In the
series, as translated to the origin can be expressed as
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N,,l,ogx,l(t + t1) ' (4,23)
_lo,x(t)= _---j--_---..,

_Nx,l,o'
I-1

where J is the Index of the last puff emitted prior to ttme 0. if ge,x,j(t)Is defined as the

unshlfted density function that corresponds to go,x(t),then ali ge,x,jwill have the same

shape but wlll be displaced In time, as shown In Figure8b, From this , ,

u

%,, = J"tgo,,(t)dt (4,24) '
0

Is the average residence time experienced by the total ensemble of molecules, emitted
during the ttme 0, to be removed by pathway x,

4,2 AFMOSPHERIC RESIDENCE TIMES AND STEADY-,STATE SYST.E.M.S

In Section 4,1 we followed the transient behavior of an Instantaneously emitted

puff of pollutant, derived a number of statistical relationships describing this process,

and finally examined the associated statistics fora release of several puffs In serleso

We now briefly examine the more traditional approach to this general problem, which

is based on the concept of a steady-state reservoir, As noted earlier this general

approach has been described most concisely by Bolln and Rodhe (1973), Accordingly

we begin by summarizing their derivation and then extend lt somewhat beyond their

original treatment, Following this we present a comparative linkage between the two

types of analysis and examine some practical aspects of conventional usage in the
field,

4,2,1 Overview of Bolln-RodheDerivatlorl.

In the steady-state atmospheric reservoir visualized by Bolin and Rodhe, some

(undefined) source continuously emits pollution, which Is removed at rate Fo to result

Irl the steady-state quantity Moof material In the system. If one defines F(t) as the

removal rate of molecules that have been resident for periods of ttme less than 't,then

the density function associated with F(t)is

_(t) = 1 dF(t). (4,25)
Fodt
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Similarly, if M(t) represents the number of molecules existing in the reservoir

with lifetimes less than t, then the associated density function is

1 dM(t) (4.26)
q)(t) = Mo dt "

Now Fo - F(t*) is the exit rate of molecules older than t*. At steady state this exit

rate must equalthe rate of production of molecules older than t* in the system; that is,

dM(t)l = MO£o(t)_,=,.= Fo - F(t){,,. (4.27)I,=,. =

which, upon differentiation, gives

_(t) = - M° d___
Fo dt (4.28)

Bolin and Rodhe define three different time constants that have been applied to

characterize steady-state systems of this type"

• th= turnover time,

Mo (4.29)
: _O I ,

Fo

• the average age,
m

" _, - .ft £0(t)dt, (4.30)
0

• and the residence time,

_, = t$(t) dt. (4.31)=

0

Substituting Equation (4.28) into (4.31) and integrating formally gives

Mo
_:t = _ , (4.32)Fo

demonstrating that, for composite removal in a steady-state system, the residence time
and the turnover time are eq,Ja!_
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Bolin and Rodhe also refer to 'ctas a transit time, but suggest that the term

"residence time" is preferable, because species transformed by chemical reaction do

not exit by transit through the boundaries of the system. While the definition of _t given

in Equation (4.31)is consistent with that given for the residence time in transient-puff

systems (cf. Equation (4.3)), we note that the turnover-time concept has no counterpart

in systems not involving steady-state conditions.

4.2.2 Extension of Bolin-Rodhe Derivation to Describe Individual Remoye.IPathways

Although Bolin and Rodhe did not consider individual mechanisms irl their

. original paper, their results can be extended directly to describe component removal

pathways, in so-doing we note that Standard past practice has been to define

individual-mechanism turnover times (cf. Rodhe 1978) as

%,,o- Mo
Fx.,,o' (4.33)

X ',, r, d, w

where Fx,s,odenotes the contribution to the overall removal rate by pathway x, but Mo
still pertains to the tg.t_ amount of material in the reservoir. The distinction between

isolated and simultaneous pathway behavior does not appear to have been dealt with

explicitly in the past literature, and we have included the subscript s to emphasize our

intention here to represent a system where ali possible pathways occur

. simultaneously. Comparison of Equations (4.29) and (4.33)leads to the relationship

1 1 1 1
R = ____ + + . (4.34)
'I;0 '_r,s,O '_d,s,O _w,s,O

If one were tOmaintain the emission rate in the reservoir, and toggle off ali but

removal pathway x, Mowould increase and approach a new steady state Mx,i,o. One
could proceed to use Mx,i,oto calculate an "isolated-mechanism" turnover time; it is

obvious, however, that this turnovertime will, in general, be larger than its

simultaneous counterpart, _x,s,O.

Turning our attention to component residence times, we note that application of

the procedure described in Section 4.2.1 to individual removal pathways in
simultaneously operative systems_leads to the result
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Mx,_o

where "o_.s,t- F_,,,o' (4.35)

X _. r,d_w

Mx,s,ois the amount of material currently in the reservoir that will be removed

ultimatelybymechanism x. By comparison of Equations (4.33) and (4.35) it is obvious
that the residence time for an individual mechanism differs from the corresponding

turnover time; this contrasts to the composite system, where turnover time and

residence time can be used interchangeably.

4.2.3 Comoarisonof Transient-Puff,and Stea_y-St_te Analyses

At this point we demonstrate closure between the transient-puff and steady-

state reservoir analyses by reconsidering a time series of sequential puff releases

somewhat similar to that described in Section 4.1.4. Here, however, we impose the

additional constraint that each puff must contain an equal number of molecules No.
We also stipulate that the progression of puffs has continued for an extended time so

that a steady state has been reached where, on the average, the pollutant's input rate

is balanced by its removal processes.

Following the general approach of Section 4.114 and the Bolin-Rodhe

terminology, we describe the combined-mechanism pollutant removal rates as

Js.

and Fo = No_,gl(tss). (4.36)
j..1

J_
F(t) = No _z_,gj(tss) . (4.37)

j,.j,

wl_ere tss denotes some large value of time where steady-state conditions are

attained, jss is the index of the corresponding puff, and jt is the index of a puff

occurring at any time t:

Based on the discussion in Section 4.1.4 we assume that, in the mean,

_, gl(t) = _ go,j(t) (4.38)

-- then
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iS8 _ '

F(t) = NO_ ge.l(tss) (4.39)

SS

= NO_,ge(tss "t I)
J=h

,_ __No'_itl'&t go(t)dto

tss -til

' = Fo j'go(t) dt,
o

• where &t is the time interval between puffs. Direct comparison of Equation (4.39) with

Equation (4.25) demonstrates the equivalency, for steady-state conditions, between

our _le(t)(which was formulated on the _asis of transient puffs)and the _(t) of Bolin

and Rodhe (which is based on the concept of a steady-state reservoir). With reference

to Equations (4.25) and (4.31), the Bolin-Rodhe residence time _t is seen to be equal

to that formulated on the basis of time-averaged puffs, This essentially provides the

bridge between transient and steady-state analyses necessary to justify application of

the relationships between the aggregate and component residence times, described

above, to both types of situations.

4.2.4 Summsry Comments on Temporal Distributions and Residence Times

The discussion in the preceding subsections is essentially an extension of

selected earlier work on pollutant lifetimes, particularly that by Bolin and Rodhe. This

has led to several findings, many of which seem not to have been recognized in the

previous literature; the more significant of these are itemized as follows:

• The steady-state analysis of pollutant residence times published by Bolin and
Rodhe can be extended to describe transient systems as weil. We have chosen to
demonstrate this by working in the reverse direction, starting with a development
describing transient systems, and then applying this to the special situation of a
steady-state reservoir. Most statistical parameters, such as density functions for
pollutant lifetimes and their associated residence times, have a common basis for
both transient and steady-state systems. Parameters such as the turnover time,
however, depend on a steady-state conceptual model and have no meaning for
transient systems.

• When a system contains multiple removal pathways, temporal behavior of one
pathway is usually affected by the behavior of others. Temporal statistics
coi'responding to an isolated remov_'lprocess are not, in general, equal to those for
this process when it takes place in competition with other removal pathways.
Because of this one must use caution in applying statistics, such as residence
times and turnover times, from one situation to the next.
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• Bolin and Rodhe have demonstrated that the residence time and turnover time are
equal when used to describe composite removal in multiple-pathway systems, A
similar equivalency does not hold, however, for the description of individual
pathways within the composite.

• Composite and individual turnover times, by definition, satisfy the relationship

1 1 1 1
-- = ------- + _ + -----. (4.34)
I;0 '_r,s,O '_d,s,0 1;w,_,0

A similar relationship for residence times is obeyed only under highly specialized
conditions.
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' 5,0 CONCLUSIONS

Concepts and terminology associated with the description of atmospheric

source-receptor phenomena contain a number of Important and sometimes rather

subtle elements. This report has examined a number of these elements, which are
summarized in the following conclusions:

• Averaging time is Important in specifying ali measures of source-receptor
, phenomena. Any characterization of spatial characteristics, temporal features, or

linearity should be accompanied by an explicit statement of the associated
averaging time or observation period.

q

• Source-receptor linearity has been Interpreted in a variety of ways In past
evaluations, and a well-posed, standardized description is needed. We have
presented such a description and suggest that lt be used as a standard by future
investigeIors In this field.

• Owing to a variety of complications, source-receptor Ilnearity is difficult to document
on the basis of field measurements, Modeling analyses, with their acknowledged
shortcomings, are much more amenable to such evaluations. Even model
analyses, however, can be subject to conceptual pitfalls. Model (or field) tests of
linearity involving the application of tracer species, for example, have been
demonstrated capable of leading to erroneous results unless interpreted with
caution.

• A transient analysis has been applied to the description of temporal variability. The
relationship between statistics for transient systems and those of their steady-state
counterparts has been examined to demonstrate that most relationships linking
composite-mechanism statistics with thei, individual components apply in both
transient and steady-state situations. Som_ of these linking relationships apply
only for certain classes of density functions, however, and caution is mandato.ryto
ensure valid usage.

• The statistical characterization of temporal source-receptor behavior can be carried
out in a variety of ways. Some ambiguity is apparent in the past literature dealing
with the temporal behavior of systems containing multiple removal pathways, and
in this report we have attempted to resolve this problem by presenting two types of
statistical characterizations: one based on the behavior of the component
pathways "in isolation" from their counterparts, and the other based on
simultaneous interaction of these mechanisms. Application of both types of
statistics to a source-receptor evaluation, rather than just one or the other, will
usually provide substantially greater insight to the analysis.
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APPENDIX
J

A normallzatton constant, til3 or 1/12

A proportionality constant, t/I or dimensionless

c pollutant concentration, m/13

' E exposure to pollutant, m/13or m/(12t)

EO normalization coefficient, (area-Integrated exposure) m/I or m/t

F(t) removal rate of molecules resident tn a steady-state reservoir having
lifetimes less than t, m/t

FO total removal rate of molecules from a steady-state reservoir, m/t

f spatial probability-density function, 1/12

g temporal probability-density fur_ction, l/t

_lo average density function for puffs emitted during time-interval q, and
shifted to the odgin, 1/t

k reaction-rate coefficient, 1/tor 13/(mt)

L linear operator

L* Ilnearity parameter, dimensionless
,p

M(t) number of molecules In a steady-state reservoir having lifetimes less
than t, m

MO total number of molecules tn a steady-state reservoir, m

N(t) number of molecules removed from an instantaneous puff at time t, m

NO total number of molecules in Instantaneous puff, m

q arbitrary function in equation (3.11)

r reaction rate, m/(13t)

A°I



S aggregate emission rate, m/t

Instantaneous aggregate emlsston rate, m/t

s spatial density function for pollutant emissions, 1/13

spatial density function for Instantaneous pollutant emissions, t/13

t time, t

tj ._ release time of puff J, t

t' dummy Integration variable, t

t* dwell time in hypothetical flow reactor, t

U x-component of wind-velocity vector, l/t

V volume of hypothetical reactor, t3

v wind velocity vector, I/t

x spatial coordinate, /

y spatial coordinate, /

_ x centroid of spatial distribution, I

y y centrotd of spatial distribution,/

F., cumulative pollutant exposure for Influence region, m/I3

e. averaging time, t

_(t) probability-density function for molecules of age t removed from steady-
state reservoir, l/t

q_(t) probability-density function for the number of age-t molecules existing In
' a steady-state reservoir, 1/t

T, point emission rate, m/(13t)

,2
- ax x variance of spatial distribution, I2

A.2



i,

_ y varlanoe of spattal distribution, 12 I

2
_, 'temporal vartanoe assoolated with molecules }n Instantaneous puff, t2

I: resldenoe time assoolated with moleoules in Instantaneous puff, t

'_a average age of molecules In a steady-state reservoir, t
i

"ct resldenoe time of moleoules In a steady-state reservoir, t

, t 0 turnover time In a steady-state reservoir, t

V dlvergenoe operator, 1/12

Subscripts

I , potlutant-speoles Index; alternatively Isolated pathway

j source Index; alternatively, puff index

d dry removal

r reaction

S S steady state

s simultaneously operating pathways

t t dimension; also denotes residence time In the Bolln-Rodhe term tt

e time-averaged quantity

w wet removal
I

x arbitrary pathway Index, or x dimension

y y dimension

A,3

-I






