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I. INTRODUCTION _pom.-

The understanding of radiobiological effects and mechanisms necessitates knowledge

on (i) the basic phenomena and processes involved in the interaction of ionizing radiation

with matter, and. (ii) the effects of the density, nature, and state of matter on these basic

phenomena and processes. Our knowledge in this area----especially on gases at or below

atmospheric pressures-- advanced phenomenally in the last two decades, and has

illuminated the fields of radiobiological science and impacted broadly on pure science,

applied science and engineering. The previous chapters concentrated on (i) and we shall

now focus onaspects of (ii).

The effects of the nature, density, and state of the medium are generally small for

low-lying valence states, but they are profound for quasi---charge separated states (e.g.,

high n-Rydberg states), charge-separated states (electrons; positive and negative ions)

transient negative ion states, and the physical quantities which describe their behavior and

reactions. Thus, for example, the electron energy c, the quasi-free (excess) electron

"ground state" energy Vo, the electron drift velocity w, the electron mobility #, the cross

se,,tions for electron scattering asc, electron attachment CZa,dissociative attachment ada ,
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autodetachment aad , ionization ai, and the associated physical quantities [e.g., the electron

affinity EA, the vertical attachment energy VAE, the vertical detachment energy VDE,

the ionization threshold energy I, and the polalization energy of the positive (PW) and the

negative (P-)ions] are all strong functions of the nature and density of the medium in

which these elementary physical processes occur. While these physical quantities have

well--defined values at low-gas number densities, they ' assume a spectrum of values in

dense media.. Understanding these effects is a prerequisite for the successful use of

physicochemical knowledge in establishing mechanisms of radiobiological action and in

developing novel radiobiological instrumentation.

This article is on basic radiation interaction processes in dense fluids and on

interphase studies aiming at the interfacing of knowledge on radiation interaction processes

in the gaseous and the liquid state of matter. It is specifically focused on the effect of the

density and nature of the medium on electron production in irradiated fluids and on the

state, energy, transport, and attachment of slow excess electrons in dense fluids especially

dielectric liquids which possess excess-electron conduction bands (V o < 0 eV) [1-4].

Studies over the past twodecades have shown that the interactions of low--energy electrons

with molecules embedded in dense media depend not oItly on the molecules themselves

[1-7] and their internal state of excitation [8-10], but also on the electron state and energy

in =- - and the nature and density of-- the medium in which the interactions occur

[3,4,11,12].

II. ELECTRON PRODUCTION IN DENSE FLUIDS

A. Total and Free Electron Yields

The processes by which isolated atoms and molecules are ionized by radiation, and

the corresponding cross sections, have been well studied and are reasonably weil understood

[1,2,5-7]. Measurements of electron impact ionization cross sections _7i(_) in gases are, for

example, abundant. This, however, can not be said of dense fluids. In these, there exist

measurements of only the density, N, normalized ionization "" ' ' a/x,_coelI_Cl_nl, &g _1, IUlI.L, blU_.I Ul.
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the density-reduced electric field E/N (Fig. 1) at relatively low pressures (< 5x 10rg

molecules cm-a). In this gas density range, a/N is generally independent of N. This,

however, is expected not to bethe case for dense gases (N > 1020 molecules cm-3) and

liquids. An indirect measurement [15] of a(E/N) for liquid Xe, for example, has indicated

that it does net scale from the gaseous value by considering the density difference between

the gas and the liquid.

While the effect of N on ai(e ) and a/F,(E/N) is largely unknown, many studies

(e.g., 2---4, 16) have shown that the total, Gte , and especially the free, Gfe , electron yield

are strong functions of the density and state - gaseous (G), liquid (L) or solid (S)- --of

matter, ht least for the heavier rare gases (At, Kt, Xe)

(Gte)L > (Gte) G (1), ,

and for all liquids

(Gfe)L << (Gfe)G (2)

The inequaJity (2) is especially profound for densely ionizing (high LET) particles (Table

1). The primary reason for (1) is the lowering of the isolated atom's minimum ionization

energy IG when the atom is embedded in the dense medium. The primary reason for (2) is

the profound effect of geminate recombination on (Gfe)L, especially for high LET particles.

Understanding electron production in dense fluids, then, requires a.n understanding of the

1 density dependence of the ionization cross sections and energetics and electron-positive ion

recombination. DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
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bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
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Table 1: Electron Yields in Dielectric Liquids with Excess Electron Conduction Bands

(vo< 0ev)
L

Electron Yield (Electrons/100 eV Energy Absorbed)

Liquid Gte (e,,),,x)a Gfe (e,,),,x)a G_e(_)b Gas' Gte _ GfeC

Ed=0 E>0 E>0

Ar(87K) 4.2e 2.3f 4.4f,g 0.45f,g 3.8
2.7h 4.15f,g 0.46f,g

0.38f,g

Kr(129K) 6.05 4.05 - 4.2
4.9 i

Xe(165K) 6.4e 4.4h - -- 4.6

C(CH3)4 (,_296K) 4.3J 1.lr 1.18f,g 0.036f,g --
1.0k

Si(CII3)4 (_296K) - 0.74f,1 1.19f,g 0.029f,g 4.2o
0.98m,g 0,075n

Ge(CH3)4 (_296K) - - 0.95m,g - -

Sn(CH3)4 (~296K) - 0.621 1.15m,g - -

(CH3)3 CCH2 C(CHa)s -- 0,73f,g 1.1f,g 0.025f,g -
0.83P 1.14m,g

IL

aFor low-ionization density radiation [electrons (e), ")+--rays(0/), x-rays (x)].
bFor high-ionization density radiation [a-particles (_)].
cValue _or low-pressure gas determined from the W---datz (eV per ion pair) in Ref. 1 unless
otherwise noted. +
dApplied electric field.
e[ll], f[17]; die = 104 V cm<]; hi19]; i[201; j[161; k[21]; 1122];m[231; n[241; 0[25]; p[26].
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B. Ionization Threshold Energy and Its Dependence on the Nature and Density of the

Medium

In contrast to the almost complete absence of studies on electron-impact ionization

of atoms and molecules in dense fluids, there exist a number of investigations on the

photoionization processes and energetics of molecules in dense media [e.g., 11,27--34]. In

Table 2 are listed the ionization threshold energies IL of a number of dielectric liquids, and

of two organic molecules in dielectric liquids for which Vo is known. The data on pure

liquids were obtained using UV photoconductivity techniques and assumed photoionization

threshold laws. The data for the two organic molecules in dielectric liquids were obtained

using a laser multiphoton ionlzation conductivity method and carefully monitoring the

order of the multiphoton ioni,__tion process(es). Figure 2 shows this for the case of azulene

in 2,2,4,4-tetramethylpentane (TMP). When the two-photon energy lies well above IL [at

5.70 eV; (Fig. 2b)], the probability of electron escape is large and two-photon ionization is

the predominant multiphoton ionization mechanism. When, however, the two--photon

energy approaches IL, the geminate electron-ion pair recombines, and ionization occurs

predominantly via three--photon ionization. This latter process (Fig. 2b) occurs via

two-photon absorption to a high-lying state at energies < IL which converts internally to

a lower-lying long-lived state (second excited _,--singlet state S_ for azulene) from which ai

third photon leads to the ionization continuum high above IL. The two-photon ionization

onset IL was taken to be at that laser wavelength where the two- and three-photon

ionization processes contribute, respectively, 10 and 90_ of the total photoionization

signal, i,e., when the overall order of multiphoton ionization S = 2.9. This method is

accurate, but requires proper identification of the ionization mechanisms which often

become complicated depending on the characteristics of the laser pulse and those of the

excited electronic states involved, especially their lifetimes, and intramolecular relaxation

pathways [33]. The transition to the continuum by absorption of a photon by

:ii



the exalted molecule is both a function of the energy of the absorbed photon and of the

p_rticular electronic/vibrational state involved in the process.

The data in Table 2 (and other similar measurements [11,28,42]) show that IL is

related to IG by [43]_

I

IL=IG.V o.P. (3)

,,

i The polarization energy of the positive ion in the medium P + is a negative quantity which

' is usually approximated by the Born charging energy [44] (see, however, [33,45])

aBy analogy, the electron affinity of a molecule in the liquid, (EA)L, is related to that,

(EA)G , in the low-.pressure gas by (EA)L = (EA)G + Vo - P- where P- is the difference

in the solvation energies of the neutral molecule and its anion in the liquid. Since P- is

always a negative quantity and, as a rule, much larger in absolute magnitude than Vo,

(EA)L > (EA)G. Photodetachment (M L- + h_u-, ML + eL) studies in dense fluids are

scarce and must be undertaken.



Table 2: Ionization threshold energies IL for a number of dielectric liquids and corresponding

low-pressure gas values 1G along with the Vo values of these liquids, IG values for

azulene and fluoranthene and the IL values for these two molecules in various
dielectric liquids.

Liquid IL(eV)a IG(eV)b Vo(eV)c

Tetramethylsilane [/CH _)4Si] 8.1d;8.05 e 9.65 --0,55
Tetramethylgermamum [(CH 3)4Ge] 7.6d 9.35 -0,64
Tetramethyltin [(CH z)4_n] 6,9d 8,89 ---0.75
Neopentane [(CH3)4C] 8.55d,e 10,23 -0.43
n-Pentane In-Chill2] 9.15d;8,86e 1.0.28 +0.01
Cyclopentane [c-CBH 14] 8,82e 10,53 -0.22
3-Methylpen.tane [(C2Hh)2CHCH3] 8.85d 10,08 +0,01
Neohexane [(CH_)3CCH2CH3] 8.73d;8.49e 10,06 -0,22
n-Hexane [n-CoH 14] 8,70e 10,22 +0.07
Cyclohexane [c-CBd 12] 8.75d;8.43 e 9,87 +0.01
2,2,4-Trimethylpentane [(CH 3)3CCH 2 8,38e 9,86 -0,17

CH(CH3)2]
2,2,4,4-Tetramethylpentane [(CH3)3 8.2f 9,5f -0,36

C CH2C(CH3)a] _
n-Tridecane [C30HB2] 9.25d 10.03 +0.21
Tetramethylethylene [(CH3)2CC(CH3)2] 6.80d 8.30 -0.24

Azulene in
Tet r amet h yltin 5.33g 7.42g
Tetramethylsilane 5,45g
2,2,4,4-Tetramethylpentane 5.70g
n-Pentane 6.12g
n-Tridecane 6.28g

Fluoranthene in
: Tetramethylsilane 5.70 h 7.57 h

Ar N14.1187K]i 15.755J --0.20 k
Kr 11,55[121K]1 13,996J k
Xe 9.2[165K] I 12.127.1 ---0.61k

8,9 m

aT __.295K Unless otherwise indicated,
bAverage of photoionization and photoelectron values given in Ref, 35,
cUnlcss otherwise indicated, from Refs. 11, 36 and 37,
d[32,38]',..........e[31]', f[39]: _[33]', h[40]:......i[ll]: iI]:[,. k[see Fi_...5]', I[30]' mi,Ill.
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p+ e (i i= -7) (4)
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where e is the optical dielectric constant ofthe medium, The fact ',_,hatthe measurements

follow (3) shows that in the dense fluid the polarization dynamics are very fast (< pS). For

the systems in Table 2, the average values of P+ and e are "1.273 _ 0.i56 eV and _ 1.94,

respectively, which give a mean Value for the effective _radius R of the positive ion cavity of

 2.74h,

The energy difference IL - IG (_ -1 to -3 eV for organic molecules in nonpolar

liquids) is, then, given by P+ + Vo and the effect of the medium, and its density on IL is a

manifestation of that on P + and Vo.

The gradual lowering of I G to its IL value in going from the low-pressure gas to the

liquid can be seen fromFig. 3 (see, also [29], [30], [34]). Here the ionization onset energy

IF of the molecule TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) mixed with

C_HB was measured [34] as a function of the density of the latter from the low-pressure gas

to the liquid and in the liquid itself. The IF decreases with increasing gas density and

temperatureb, The dependence of IF on N has been shownc to be due to the N-dependence

of P + and Vo, viz,,

IF(N ) = IG + P+(N)+Vo(N ) (5)

bAt a given medium density the observed decrease in IF with increasing T (Fig. 3) was

understood from the T-dependence of Vo [34].

tin Eq, (5) the broadening of the valence levels of the isolated atom (molecule) in the dense

gas or the liquid has been neglected,



The densit/y dependence of P+ is dominated by the N-dependence of E, and can be

calculated [34] or be e×penmentally determined ([3,11,29-34,37,38,42]) via Eq. (3) when

the other quantities are known or assumed, The Vo(N ) function is more complicated; it

has been calculated for a few cases [34_46,47] using the Springett-Jortner--Cohen (SJC)
i

model [46] or has been estimated via Eq. (5) when the other quantities are known or
i

, assumed [29,30,48]. In Fig. 4 are shown values of P+ for TMPD in C_HBcalculated [34] as|

a function of the C2H0 density; they clearly show that P+ is a monotonically decreasing

function of the fluid density p. This decrease of P+ with increasing p is primarily due to

the increase of e with p and to a lesser extent due to changes in R with increasing p [34].
i,

Also plotted in Fig. 4 is Vo(P ) for C2H8 calculated' [34] by using the SJC model or by

relaxing some of the model's basic assumptions [34]. The Vo(P) values determined by the

modified SJC model [34] agree rather well with the experimental measurements [48].

TO understand the function Vo(N ) let us refer briefly to the SJC model. In this

model each molecule occupies a sphere whose radius ("the Wigner-Seitz (WS)" radius) rWS

is equa! to (4 _. N)-1/3; each molecule, also, has a hard---core radius a such that the sura of

the Hartree-Fock atomic potentials UHF(r) = _ for r < a and UHF(r ) = o for r >

[34,46,47]. The calculated values of Vo(N ) (Fig. 4) are rather strong functions of these

quantities. For TMPD in C_H0 both theory and experiment [34,48] suggest a value of 1.45

to 1.50/_ for _. The data in Fig. 4 show that Vo(N ) goes through a minimum; thi,,; is more

| dramatically exemplified in the case of the rare gases Ar, Kr, and Xe whose scattering
length is negative as can be seen for the data in Fig, 5, This is understood by noting that

Vo is a sum of two terms' the polarization energy Up and the kinetic energy K. That is,

dFor He whose scattering length is positive, V° increases with increasing N [49].

I
rln' U1
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V0 = Up + K, (6)

where

%=,

and

K _ k___2---m (s)

when_ is the molecular polarizability, a (_-a) is the scattering length, and ko is the

electron wave number determined by

tan ko(rws - a) = korws , (9)

Since Up is negative and decreases with p, and K ispositive and increases with p, the Vo

has a minimum whose value and position depends mainly on the hard core radius a. The

functions P+(N) and Vo(N ) in Fig. 4 were used by Faidas et al, [34] along with the value,

5.9 eV, they measured for IG(TMPD ) to estimate the IF(N) of TMPD in C2H0 using Eq.

(5). Their results for three values of a are represented by the solid lines in Fig. 3. They

obtained the best fit to their measurements at 373 K with E = 1.4 ,_, This understanding,

gratifying as is, has not as yet been extended to polar media,

i , i,i , , Ii
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As IF(N ) is lowered from its low-pressure value IG, excited states lying in the

range IG - IF(N ) become autoionizing, The effect of the medium density on such

high-lying excited electronic states has been investigated especially for high-n Rydberg

states: For example, high n-states of CHsI and CBH8 in H2 or Ar were found [50] to shift

linearly with the number density of atomic Ar (0.6 to 7,5 x 10_0atoms cm-a) and molecular

H2 (0,9 to 10,5 x 1020molecules cm-3), The density-induced energy shift _(N) of atomic or

molecular high-n Rydberg states was reported [50] to decrease linearly with the density of

the medium to N __1 x 1021 molecules cm-a and to agree with the modified Fermi model

[51,52], This model expresses a(N) as

a(N) = :t=(2x_2/m)aN - 9,87(ae2/2)2/3(hv)1/3N (10)

where a is the scattering length and v is the relative thermal velocity of the colliding

partners, In Eq, (10) the first term is due to scattering and the second due to polarization,

C, ._2__o_mbi nat ion

Geminate recombination, While in low-pressure gases Gfe __Gte , in liquids Gfe <

Gte, The two quantities are related to each other and to the applied electric field E by

G_ e 0 (11)= Pesc Gte

GE E (12)fe = pesc Gte

In Eqs (11) and (12), o and pE' Pesc esc are,respectively,theescapeprobabilities(i,e,,the

probabilitiesthatanelectronataninitialseparationdistancer wouldescaperecombination

withitssiblingcation)intheabsence(E =O)and in thepresence(E > O)ofan applied

electric field. For isolated ionizations (low LET particles) Pesc° and PescE are normally

expressed as [3,53]



Q

, 12

o = exp( - (13)i Pesc rc/r)
] ,,

I

, er c
'_ PescE= exp(-rc/r ) [1 ._E] (14)

J,

The quantity rc--the "Onsager length"--is the distance at which the Coulomb energy of

the electron--cation pair equals kT, viz.

e2 (15)rc - ekT

where e is the dielectric constant of the medium. Actually, since there is a distribution of

electron-_ation thermalization distances r the fraction of the electrons that escape (for E =

0) is
_

f d3r g(r)exp(-rc/r ) (16)

_ where g(r)is the probability density of the electron thermalization distances e

In low-pressure gases r is very large and Pesc _ 1, In liquids, however, r is short

(100 - 200 /_ for dielectric liquids [3] and ~ 11 /_ for water [54]) and thus Pesc < < 1. Of
fi

the parameters which govern the process of free electron production in liquids c appears to

be of primary significance; Gfe increases with increasing e [3,55]:

eGeminate recombination can, of course, involve the whole spectrum of incompletely-

relaxed to completely relaxed states.

i M,, "' "_I' H ' ' '_ " III '" " ''



In Eq. (12), GEe is the free electron yield when an electric field E is applied across

.the volume in which the electrons are generated; G_e exceeds G_e by an amount which

depends on E and the liquid [3,53]. This is especially the case for densely ionizing particles
i ,

(e.g., a_--particles, T_.ble 1) due to the low value of Pesc in such instances. The Pesc

increases with increasing drift velocity w; the w--as' well as the electron thermalization

length-:'-increases ,_th decreasing electron scattering cross section of the liquid. For pure'

liquids (V ° < 0 eV), then, 'a low IL and a iargew and E are desirable for a large G_e.

In Fig. 6 the G_e and the density-normalized thermalization distance bp are plotted

as a function of the medium density p (from 0.01 to 0.6 g cm-S along the vapor/liquid

coexistence curve) for n-pentane (:,-_t) and neopentane (neo--Pt)[16]. The G_e decreases

continuo_,sly with increasing p in Pt, but it goes through a .maximum in neo-Pt (and other

"spherical"-molecule liquids) with conduction bands (V o < 0 eV). The bp also goes

through a maximum in neo-'Pt (and other "spherical"-molecule liquids) but remains

relatively constant for n-Pt. The maximum in G_e and bp for "spherical!'-molecule

liquids correlates with that of the density-normalized thermal electron mobility #N.

Finally, attention is drawn to recent femptosecond studies of the kinetics and

dynamics of geminate recombination of electron-cation pairs formed in liquids (water [54],

alkanes [54]) by photoionization. In the case of water it was reported [54] that within ~ 60

_- ps of electron solvation, ~ 50 to 60% of the solvated electrons undergo geminate

recombination.

Volume or Bulk In low-pressure gases, volume electron---cation recombination is

normally an overall three---body process with a recombination rate constant k r that can be

expressed as [57]
=.

k_ = k2 + k3N (17)
1

.

_

,,, _ ..... i_ ................ I_ I_ _
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where k2 and k_ are the two-- and three-body coefficients and N is the medium number

density. At high gas pressures and in nonpolar liquids (at least in those with electron

mobilities #in the range 0.09 to 300 cre2 V-I s-L[58]), recombination occurs on a time scale
I

many orders of magnitude longer than geminate recombination and k r assumes

diffusion--controlled values

kD "- 4_re#/_.; (18)

that is, k r is limited by the rate at which the electrons diffuse toward the ions.

In Fig. 7 is shown [58] the variation of the kr for CH4 in the density range 2 x 1020

to 1.9 x 1022molecules cre-3 including the critical region and the liquid-solid phase change.

The N'-dependence of kr follows closely that of #(N) (Fig. 7b). The abrupt increase in kr

and # on the phase transition from liquid to solid is common to other liquids with Vo < 0

eV and may be due to the decrease of the isothermal compressibility on phase change [58].

III. THE ELECTRON STATE AND ENERGIES (UNDER STEADY-STATE

CONDITIONS) IN LOW PRESSURE GASES, _ DENSE GASES, AND

DIELECTRIC LIQUIDS

In low-pressure gases the electron mean free path t(_[Nasc]-l; asc = total electron

scattering cross section) is much longer th.an the electron de Broglie wavelength _(= 2rk)

and the electrons in such media are free interacting with single atoms and single molecules.

Their electron transport properties have been, in many instances, 'successfully treated using

the Boltzmann transport equation. The electron kinetic energies have been found to be

well in excess of thermal by ea amount that depends on the gas and the value of E/N [1,2].
,.

In Fig. 8 the mean electron energy <e> is plotted as a function of E/N for a number of

low-pressure gases to illustrate the gas properties which determine their ability to
,,

!
negative ion states of CO2 are responsible for its exceptional slowing--down properties,

I_F rll i ['' ,,, nlqupn ' ,,qrr
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while the 2.3 eV negative ion state of Ns explains the flatportion of the <e> vs E/N

function for this gas), dipole scattering for NHs, multiple--bonds for C_H_; the lower-lying

vibrational thresholds of CF4 compared tO CH4 explain the superior thermalizing ability of

CF4 at low energies. The steady-state electron energy distribution functions f(e,E/N) are

non-MaxweUian (except at very low E/N) and---depending on the gas, E/N and T-

-they peak at energies ranging from 1.5 kT to < 10 eV ([1.2]; Fig. 9).

In dense gases and liquids, t < k, the electrons interact with more than one species

simultaneously and they are not free but quasi-free (eqf) and/or localized (el) depending

on the medium_ N and T. Excess electrons are generally localized--upon thermalization-

-in dense media whose V° > 0 eV and they are quasi--free in those with Vo < 0 eV. The

Vo itself can be a function of N(Figs. 4 and 5). Quasi-free electrons have much higher

mobilities than localized electrons (see Section IV; [3,11,12,64]). The energies of the excess

electrons are generally thermal in dense media. However, in dense media with Vo < 0 eV,

the excess electrons can----especially at high E/N--attain energies well above thermal.

This can be seen from the data shown in Figs. 10 to 12 for liquid Ar and liquid Xe.

Evidence for steady--state excess-electron energy distributions energetically lying above

= thermal has been obtained also for "spherical"-molecule liquids with Vo < 0 eV [72,73].

i While the accuracy and the quality of such knowledge is still very limitedf, it clearly shows
the existence of energetic excess electrons in dense fluids with conduction bands (Vo < 0

i eV). The state of the electron and its energy crucially depend on the medium and
profoundly affect the magnitude of the interaction cross sections of excess electrons in

dense media.

!
I
|
|

i fThe E/N dependence of the DT/# measurements for liquid Ar and liquid Xe in Fig. 10

lends support, to the < e> vs ,E/N data of Ref, 65 (Figs. 11 and 12).



IV. ELF, CTRON DRIFT AND SCATTERING IN LOW-PRESSURE GASES,

DENSE GASES, AND DIELECTRIC LIQUIDS

The electron transport coefficients--electron drift velocity w and transverse (DT)

and longitudinal (DL) diffusion coefficient-'-are functions 0fthe gaseous medium, E/N,

, and T [1,2,74,75], For sufficiently 10w N where t >> k, w and DT (DL) are independent of

z N. Under these condi ons well---developed expressions relate w and DT (DL) to f(_,E/N)

' and the cross sections Crsc(_) of the various collision processes [1,2,74]. Thus, the

low-den._ity low-field value, (#N)0, of the density-normalized electron mobility #N is

. expressed as

(#N) ° 4 e 1 (19)
= _ (2_mkT)!/2' <asc>

where <asc> is an average of the scattering cross section at thermal energies. Accurate

measurements of w(E/N)and DT/#(E/N ) [1,2,74,75], along with the development of the

Boltzmann transport and Monte Carlo computational code analyses in the past two

decades, have provided a substantial body of information on---and an improved

understanding of- -electron motion in gases and the cross sections for the Various

energy-loss processes [2,63,74-79]. In Fig. 13 an example of the collision cross sections

obtained from such analyses [83] is shown. As the density of the medium is increased,r.

howe_e:', wg decreases or increases depending on the medium and the type and cross

sections of the electron-interaction processes involved. Thus, in the density range over

gThe author is not aware of any experimental observations on the dependence of DT on N,

although they have been hypothesized [84].
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which Nasck < 0.5, w (or # or/_N) decreases slowly with increasing N for nonpolar gases

with small ase (e.g., H_,N_,C2HB). An understanding Of these dependences of w on N was, .

attempted [2,7.1,85--88] by considering the effects of multiple scattering on w and by

introducing phenomenological density corrections to the low-N expressions for drift

-=- :velocity w [or mobility #, Eq_ (19)]. The dependence of w on N seems to be energy

dependent. For example, it was found [89] that the maximum change in w with pressure

occurs at thermal energies (_0.038 eV) for H_ and C_H8 but at _0.06 eV for CH4 and at

_0.07 eV for C2H8.

The electron drift velocity (or the electron mobility) has been shown [2,12] to

decrease substantially with increasing medium density in systems (e.g., He, CO2, 1-C3F_)

where transient or permanent anions are increasingly formed as the medium density is

increased, and for polar media where, in addition, the electron scattering cross section is

- large (due to the long-range electron--electric dipole interaction). Thus the w in CO2

decreases by ~ 3 orders of magnitude when N is increased to ~ 1021 molecules cm-a [90];

largedecreases in w at even lower number densities (<5 x 1018 molecules cm-3) were

reported for 1-CaFB [91]. In polar media N esc k > 1 at relatively low N and the delay in

electron drift begins at relatively low values of N (~2 x 1019molecules cm-_). This can seen

from Figs. 14a,b where the dependence of _(E/N) on N(T=300 K) and (#N)/(#/N)o on N

(at various T) are given for the polar molecule NH,_. For NH3 the <ase> at thermal

(T=300 K) energies is ~ 1.2 x 10-13cm _.[92] and 1 __k at _5.5 x 101_molecules cm-3. As N

increases beyond the range of values in Fig. 14, permanent or transient electron trapping

occurs and causes a rather sharp decrease in w or # as c_.n be seen from the data in Fig. 15.

. These latter processes are, obviously, a function of T; their effect decreases with increasing

T.

On the other hand, w(# or #N) was found to increase with increasing N for the

heavier rare gases and the "spherical"-molecule hydrocarbon dielectric fluids for which Vo

< 0 eV. An example of this type of behavior is shown in Fig. 16 for Xe. The increase in w

i
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up to ~ 3 x 1021atoms cm'_ is associated with a reduced contribution to electron scattering

from the polarization component of the interaction potential by overlapping of the fields of

adjacent atoms. The evolution of the N---dependence of the low-field (thermal) electron

mobility for Xe in the density range from the low pressure regime to the liquid is shown in

Fig. 17. Below ~ 3 x 1020 atoms cm'_ (Fig. 17) #N is independent of N since in this range

NCrscis low enough for single-atom scattering to prevail. Beyond this value, #N decreases,

passes through a minimum, increases to a maximum and again.
falls The decrease in the

density range from ~3 to ~40 x 1020 atoms cm-a was attributed (see discussion in Ref. 11)

to enhanced electron scattering due to multibody interactions and the large subsequent

increase due to interference effects. Certainly the structure of the medium and its effect on

electron transport needs to be considered at these high densities. Multiple scattering

theories [85-88] attempted to account for these changes for gases with negative scattering

lengths by considering the attenuation of the electron scattering by density effects due to

the screening of the long-range polarization interaction potential. In general, however, the

theoretical treatments of w(N) fail at high N especially in the transition region. Part of the

difficulty lies in the fact that the theory often retains the atomic scattering picture and

introduces corrections to the low---density scattering as the N is increased. Another serious

problem is the inability to properly describe the electron scattering potential and its

1 screening by the medium, and to account for the effects on w of temporary electrontrapping.

In the liquid, Nasck >> 1 and the electron is strongly influenced by the structure of

the medium. The thermal electron mobility (p_L)th in the liquid has been expressed by

21i llJ2 o(#L)th - 3 N 4_ra_fS(0) (20)

i1



' 19
4 I

where aef(N ) is the effective scattering length at a density N, S(0) -- NkTx is the structure

factor at thermal energies (K _ 0), and X is the isothermal compressibility, IS(0) _ 0,03 -

0.05 near the triple point of simple fluids; S(I4) -,1 for e > 4eV,] It is emphasized that the

success of any theoretical treatment of electron motion in liquids depends on the assumed

form of the scattering potential and the proper correction for its screening by the medium,

That the electron scattering processes at low energies are strongly affected by the

liquid structure, can be seen from Figs, 18 and 19 where w(E/N) for gaseous (low-pressure)

and liquid Ar and Xe [Fig. 18] and gaseous (low pressure) and liquid tetramethylsilane

(TMS), neo-pentane (TMC) and 2,2,4,4-tetralnethylpentane (TMP) [Fig. 19] are shown.

The polyatomic molecules of TMS, TMC, and TMP are "spherical" and their liquids--as

those of Ar and Xe---have excess electron conduction bands (Table 2). It is clearly seen

(Figs. 18 and 19) that at a given value of E/N, the w is very much larger in the liquid than

in the corresponding gas, indicating that ase (e) is much smaller at low energies e in the

liquid. Indeed, the w(E/N) measurements for liquid Ar and Xe in Fig. 18 were used [99]-

-in a manner analogous to that for gases [83]--in a Boltzmann transport equation

analysis to determine a set of scattering cross sections and an electron energy distribution

function f(e, E/N) consistent with the w(E/N) measurements. The cross section for elastic

energy' loss ao(e), elastic momentum transfer _l(e), and inelastic electron scattering for

liquid Ar and Xe obtained this way [99] are shown in Fig. 20. Clearly Cro(e) and at(e) are

lower than am(e ) below _0.2 eV, and e_:hibit a shallower Ramsauer-Townsend minimum

which is shifted to lower e compared to that of am(e ), (See also [89] and [100]). At e> 4

eV, cro and at ----*Cm' A quantitative calculation of ase in any liquid is still lacking.

Finally, it is interesting to observe that for the molecular liquids in Fig. 19, w

increases linearly with E up to a "critical" electric field Ec beyond which the E/N

dependence of w becomes sublinear indicating that at E > Ec the excess electrons have

mean kinetic energies <E> L > 1.5 kT. Such media have potential applications in radiation

detectors [17,101-104] pulsed power switches [105] and other technologies [4]. In Table 3

,,
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are listed values of Ec, #th' maximum, Wmax, electron drift velocity measured and the

corresponding, Emax, applied,for dielectric liquids with excess electron conduction bands,
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Table 3: Ec' #tb.' Wmax' and Ema x for a number of dielectric liquids with Vo < 0 eV
i

Ec #th Wmax Emax
Liquida (10sVcm-_) (cm2s-tV-1) (108cms-A) (10sVcm-l)

Ar(87 4oob o,35 ,o -
Xe(lq i5K ) 0,05b 2000b 0,26b,0 -
C(CH 3)4d 3,5 e 71,5e 3,3e,f 116e
si(CI_ _)4d 7U 119,3o 7,2u,f 125e
GeIC: t_)4 d 15e 114,7o 7,4e 109e
Sn(CI [_4 d 30e 85,7e 6.0e 75e
(CH_ 3CCH2C(CHa)_ d 15_' 31.8e 2,6e,f 115_

aSee Ta,ble 2 ibr values of IL, IG, and Vo for these liquids.
bRef, [101],
cSee Fig, i8,
d_296 K,
eRefs. [102,73],
fSee Fig, 19.



V. EFFECT OF THE MEDIUM ON NEGATIVE ION STATES (TRANSIENT

ANIONS)

Studies of negative ion states (NISs) of isolated molecules are abundant [1,2], None,

however, exists to the author's knowledge on liquids. Notable changes are expected,

however, in the resonance energy, cross section, and lifetime of the NISs of atoms and

molecules embedded in dense fluids as the fluid density is increased [2,11,12,65,69]. Figure

21 shows schematically the increase in the vertical attachment energy (VAE) and the

electron _ffinity (EA) in going from a low-pressure gas to the liquid and Fig. 22 shows how

the position of the NO_ resonance responsible for the reaction

e + N2O _ N20- ------.O- + N_ (21)

shifts from ,_2.3 eV when the reaction occurs in a low-pressure gas of Ar to ~0.3 eV when

tile reaction occurs in liquid Ar [69], Similar downward shifts in the energies of tile NISs of

isolated molecules have bee,_ observed for solid films of molecules such as H2, N_, O_, CoHs

[106], In general, these downward shifts in the resonance energies of transient anions can

be accounted for by considering the polarization of the dense medium (fluid or solid) by the

temporarily localized electron. The gradual downward shift in the energy position of a NIS

(and the associated changes in tile electron attachment cross section) with increasing N of a

dense gas, have first been observed for the case of O'_ in a buffer gas of N_ whose density

was increased from ~1 x 1010 to ,_1x 10_ molecules cm-3 [107-109]. Later work on the EA

of cluster negative ions as a function of their size [110] is consistent with these early

findings.

t

Under isolated-molecule (single--coUlsion) conditions the autodetachment lifetimes

Ta of transient anions vary from ~I0-L, to > 10-4 s [1,2,111]. Similarly, in low-pressure

gases (multiple--collision conditions)the attachment cross sections cra 'for negative-ion
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formation vary from molecule to molecule (and the position of the negative ion states) by

over 11 orders of magnitude [1,2,111], The transition from a low-pressure gas to the liquid

can result in changes of both ra and ga' In general such changes would depend on whether

the electron affinity of the molecule in the gas (EA)G is negative (< 0 eV) or positive (> 0

eV) and on whether a negative (BA)G becomes positive in the condensed phase,

In connection with the changes in ra, studies of the lowest ((EA) < 0 eV) NISs of

N2, CO, and H_ in solid films have shown [106] that the ra of the NIS in the solid is

decreased from its v_lue, ('ra)G, in the low-pressure gas; in the condensed phase the

centrifugal barrier is greatly distorted due to symmetry changes which are effected by the

medium, One might, thus, expect (ra) G to be longer than the lifetime (Ta)L of the NIS in

the liquid, When (EA)G > 0 eV (or when the EA of a molecule is negative in the gas but

positive in the liquid), (r'a) G < (Ta) L due to the faster energy relaxation inthe liquid,

In connection with the changes in ga' the electron state in the liquid (or the dense

gas) crucially determiues both the magnitude of (era)L and the relation of (ga) L to the

corresponding value (aa) G in the gas, As will be shown in the next section (aa) L (eqf) >>

(era)L (e(), It is only for liquids for which the electron is in the quasi-free state that a

compa,rison with gaseous data is meaningful, When, however, (EA)G > 0 eV the electron

attachment cross section in the liquid (ga) L is maximum when the captured electron is

quasi-free (eqf) and (era)L is close to its diffusion-controlled value when the captured

electron is localized (ee),

In connection with the decomposition of the NIS via dissociative attachment, it is

clear that since (Ta) L < (Ta) G for molecules such as O_ (O_ -4-e ----, O_, _ O- + O;

resonance peak at 6,7 eV in the gas) the cross section for dissociation attachment gda

would be smaller in the liquid than in the low-pressure gas due to the decrease in the

survival probability [1,2], It should, however, be noted that since the position of the

resonance is lower in the liquid than in the gas and since the magnitude of"the dissociative

a_,tachment cross section is larger the lower the energy position of the resonance [1,2], the



cross section for a dissociative attachment process may actually be much larger in the

liquid than in the gag, This is certainly the case for reaction (21) (see Fig, 22), Fast

energy relaxation in dense fluids may reduce (_rda)L when the dissociative attachment

process is exoergic,

! VI, ELECTRON ATTACttMENT IN DENSE GASES AND LIQUIDS

Studies of electron-molecule attaching collisions in dense gases are the domain of

electron swarm methods [1,2,5,112,113], The last two decades have seen the 'tmaturity" of

swarm methods and their unique contributions to the understanding of electron

interactions in fluids, A most distinct advancement in this area has been the development

of experimental methods to study electro_l attachment to molecules embedded in dense

buffer gases for which the electron energy distribution function f(e,E/N) carl be calculated

over a wide range of E/N values (Fig, 9; [],2]), These methods allowed measurement of the

absolute (total) electron attachment rate constant k a as a function of E/N or as a function

of the mean electron energy <e> since <e> (E/N) can be computed once f(e,E/N) is

known, Furthermore, the measured k a (<e>) have been used to determine tile absolute

total electron attachment cross section aa(e ) from!

OO

ka(<e> ) = (2/m) ½f Cra(C)e'[f(e,E/N)de (22)
O

| In Fig, 23, is shown the ka(<_,> ) and ga(e) obtained [61] by these methods ibr the
perfluoroalkanes n-CNH2N+2 (N = 1 to 6), Tlm attachment cross sections increase with

decreasing resonance energy, eres, approaching irk2 as eres --, kT [1,8], The wealth of

knowledge that has been obtained from suctl studies has tlad a profound impact on the

basic understanding of slow electron-molecule interactions (especially indirect electron

scattering and molecular fragmentation by electron capture), and on the development of

energy and pollutant-monitoring technologie_J (e,g,, lasers [114], radiation and chemical

I
........... III '



detectiondevices [I14--11{]],gaseous dielectrics[Ii4,117],pulsed power switches

The natureand number densityofa gaseousmedium inwhichelectronattachment

reactionsoccurcanhave a profoundeffecton suchre_tions,The effectisa functionofthe

medium and itsdensity,themode (dissociativeornondiss._ciative)ofelectronattachment,

and thea_uionicstateinvolvedintheelectronattachmentprocessespeciallyitslifetimeand

resonanceenergy,For dissociativeelectronattachmentprocessestheeffectofthemedium

isinsignificantat low N becausefragmenta.uionsdo not normallyrequirecollisional

stabilization,For nondissoclativeelectronattackment,however,theeffectofthemedium-

-evenatlow N----canbe profound,

- Quite generally, at low gas number densities (_< 5 x 10t9 molecules cre-s) electron

attachment to a molecule AX in a gas M can be represented by the reaction scheme,

AX- -----_ AX- (or X'-) complete (23)

long lived Nrent anion

/ (r a _>10"_s) stabilization
/

:\X + e AX + e auto--- or (24)

__ / ra collisiona_ly-

_ k/ v_ fi_¢ induced
detachmen_

- AX-* / ks

AX- + energy partia2 (25)
- raoderately short li e_' p_trent _nion

"_10"r_x _10"i:': _ stabilization

A + X- c)jssociative (26)
, attachment

When only long-lived (r a _ 10"_ s) anions [process (23); e,g., SF6- at near---zero energy]

_md/or dissociative attachment fragment anions [process (26); e,g., fragment anions of C3F_

i
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and n---C4Fl0 (Fig, 23)] are formed by electron capture, ka is independent of N, In the

absence of processes (23) and (26) competition between auto-- or collisionally-induced (.!,!

detachment (process (24)) and stabilization of AX-* by collision with M (process (25)) can

result in a press'are-dependent k a, For the above reaction scheme

[ k ,_N "] (27)ka=kl v2 -b k3NJ'

At low N or short ra such that v2 = ra'l >> k3N, ka _ N if dissociative attachment and

other processes are absent, Alternatively, if the ra is long or N is large (i,e,, ra'l < < k3N),

then ka = k l and is independent of N or the nature of M, Considerable variations in the

ability of the molecules M to collisionally stabilize AX-* have been reported

q [107,109,119-121] and showed that k3 increases with increasing complexity of the =

stabilizing third body M, At relatively low N (< 5 x 10lg molecules cm-_) a number of

molecules (e,g,, O2, SO2, N20 [1,8,107,109,119-122] have been found to attach electrons by

a three-body process which is well-represented by (24) and (25), At higher N, however,

the ka(N ) of a number of molecules (e,g_, O2, 1-C3F_ [107,109,120-123]) does not follow

that predicted by a three-body process, This is exemplified by the ka(N ) data in Fig, 24

for the formation of O2- in the buffer gases N2 and C2H8, which show the involvement of

more than one buffer gas molecules in the electron attachment process [107,109], Other

studies [121,122] contented that electron attachment to Van der Waals dimers is a major

electron capture process; for example, electron attachment to O2 forming O2-in a dense

buffer gaseous medium M was suggested to be principaUy due to electron capture by Van

der Waals molecules of the form [O2,M],
,,

When, over a given energy range reactions (25) to (26) occur concomitantly, the

ka(<e.> ) has both a density independent [due /_o processes (26) and/or (23)] and a

density-dependent component [due to (25)]; the lat}ter is a function of M and r a, This can

be seen from the data in Fig, 25 where the ka(<,_> ) are shown for C3Fs and n-C4F10 for
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several buffer gas pressures. The increase in ka with N is due to process (25) and the

N-independent component due to process (26). For these molecules as the size of the

transient anion increases its ra increases [61] and hence, the effect of N on ka(<e>) is less

for n-C4F,0 compared to C3F8.

To illustrate the effect of the state of matter on electron attachment and the

relevance of electron attachment to molecules in low-pressure gases to those in liquids, we

focus on the simple case where the electron attaching molecule (SFs) in low-pressure gases

captures thermal and epithermal energy electrons forming predominantJy long-lived (r a >

10-5 s) parent anions (SFs-)and the liquid medium (liquefied At) has a conduction band

(V o < 0 eV; eqf). In Fig. 26 the rate constant (ka) G for electron attachment to SF8 in

low-pressure (_ 3 atm) gaseous Ar (T __300 K) as a function of E/N or <e> G (the mean

electron energy in the gas) is compared with that, (ka) L (E/N) in liquefied Ar (T ~ 87K).

The thermal value of (ka) G at 298 K and at 87 K (extrapolated) agree well with the liquid

(ka) L data for the lowest E/N, showing that (ka) G ~ (ka) L when the electron energy

distribution is thermal. Indeed, in liquefied rare gases the attachment of slow electrons to

SF6 forming SFs-is similar to that in gases both in magnitudeand energy dependence (see

discussion in [65]). This is actually the case for other molecules as can be seen from Fig. 27

where the ka for SF_, O2, and N20 measured [!24] as a function of the electric field

strength E is plotted as a function of <e> L (as determined in [65]).

In general [11,12,85,69,109] for high mobility dielectric liquids (# >> 1 cm2 V-t s-t;

Vo < 0 eV) the electron is quasi-free and its attachment to a molecule AX embedded in

the liquid can be viewed - as in gases - as a vertical transition between the initial (e +
,

AX)L and the final (AX-)L state; the attachment process depends on the properties of

AX and the medium (especially Vo) and a comparison of (ka) L with (k a) G is possible.

However, in liquids in which the electron is initiol!y Jn a |nr_li_o_ ¢_*,_, the r_te

determining step is the diffusive motion of the electron, and (ka) L depends only weakly on

the medium and varies little with AX. In such cases (ka) L can attain diffusion---controlled

' n ' INII ' , ,, , , , e r ....
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values as 10ng a's a negative _ionstate of AX exists at thermal energies; this condition seems

to be satisfied for most liquids when(emax) G _ l eV [109]. In these cases (ka) L canbe

expressed as

(ka) L __47rR De, (28)

where R is the encounter radius, and De is the electron diffusion coefficient. Since,

more._ver, De = (kT/e)_, (ka) L is predicted to increase linearly with #, a behavior observed

experimentally in some instances [124,125]. Finally, when the electron drifts part of the

time as quasi-free and part of the time as localized, (ka) L can be expressed as

(ka) L, (ka) { p+(ka)f(1-p), (29)

where (ka) l and (ka) f are, respectively, the attachment rate constants involving et and eqf

and p is the probability of finding the electron in the locahzed state (see further discussion

in [11]).
i

VIII. ELECTRON-EXCITED MOLECULE INTERACTIONS

The interactions of slow electrons with molecules depend not only on the electron

energy, but also on the internal-energy content of the molecules themselves. While the

study of electron-ground state molecule interactions traces back many decades, the study

of electron-excited molecule interactions is just beginning. Indeed, little is known about

the scattering Of electrons from excited molecules in spite of their implicit significance in

radiation and life sciences--especially the initial stages of radiation action on matter,

,and in many applied areas such as lasers and plasmas.

Electron transport in 'ihot" (vibrationally-/rotationally-exc:ted)gases has been

shown to be influenced by the internal vibrational/rotational states [1,2,74,126] and a

number of recent studies [8,9,112,113,127-133] have unraveled delicate and often large
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effects of the internal energy of molecules (e.g., freons, halocarbons, perfluorocarbons) on

the decomposition of their transient anions by dissociative electron attachment _ and

autodetachment. Dissociative electron attachment to molecules has been shown

[8,9,112,113,127-131] to increase with increasing internal energy of molecules (Fig. 28a).
,

On the other hand, nondissociative electron attachment to many molecules which form

long-lived parent negative ions at ambient temperature (e.g., the perfluorocarbons CBF0,

n'C4F10, c-C4F8) has been shown [8,9,129,131"133] to decrease when the gas temperature

is increased above ambient (Fig. 28b). While the preponderance of the observations on the

effect of internal energy of molecules on their dissociative electron attachment cross

sections involved electron attachment to thermally-excited vibrational/rotational states of

the ground electronic states of molecules, similar observations have been reported for

vibrationally-excited molecules produced by laser irradiation [134].

Electron scattering from electronically-excited atoms and molecules is very limited

indeed. The little information that exists on electronic excitation from metastable states

suggests that the cross sections are substantially higher than those for the ground states.

. Thus, the scattering cross section for the reaction

; . e(4.5eV) * + .'g 2.3 x 10"17 cm_O2 (b g

has been reported [135] to be ~ 10 times larger than that for the ground state, viz.,

02 X3E )+e(4.5eV)2.1 x l0 -hs cm_O2 ) +e'

I

In keeping with this trend, the low-lying (excitation energy ~ 0.98 eV)

electronically-excited state 02 (a_ag) produced in a microwave discharge was shown to

have 3 to 4 times larger cross section for dissociative electron attachment compared to the

: O2(X3Z-) ground-electronic state [136].g
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Recently a number of novel techniques have been developed [10,137-139] for the

study of electron attachment to electronically--excited molecules using lasers. The first

Observation of 0ptically-enhanced electron attachment to electronically excited molecules

was reported [137] in 1987. Thiophenol (C_H_SH) moleculeswere indirectly excited (via

laser light absorption to high-lying optically-allowed states which undergo rapid internal

conversion and efficient intersystem crossing) to their long-lived (lifetime _, 8 ms)

first-excited triplet states; at near--_zero electron energies ~ 5 to 6 orders of magnitude

larger electron attachment coefficients (due to dissociative attachment via these triplet

states) were measured compared to the ground electronic states of these molecules (Fig. 29;

[10,137]). Quite similar to the case of thiophenol, 5 to 7 orders of magnitude enhancement

in electron attachment has been reported for the first-excited triplet states of

p--benzoquinone and its methylated derivatives [140].

Very recently, Pinnaduwage et al. [138,139] used a newly---developed technique for

the study of electron attachment to short-lived (< 10-s s) species. In this technique the

same laser pulse that produces (via multiphoton absorption) the electronically--excited

species also produces in their vicinity concomitantly (via multiphoton ionization of the

same gas or of an additive gas) the attaching electrons. They claim to have observed

electron attachment to superexcited states of molecules occurring with enormous (> 10-tr

cm2) cross sections which (for the triethylamine molecules investigated) are ~ 107 times

larger than those for the ground state molecule. These incredibly large cross sections may

involve high-lying Rydberg states (See discussion in [139]).

It is, therefore, clear that slow electrons colliding with electronically-excited

molecules have electron attachment cross sections many (has high as 107) times larger than

those for the groundstate (unexcited)molecules. The optical control of the

electron-molecule collision cross sections opens up new frontiers and new possibilities of

optic__:!!yco_n_tro!!i_n_gthe imppd_nr_ rhnrnrt_ri._ti_.q nf (_n.q_fm.q_ m_,tt_,r _,t times in the/_q to
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ns range, The excited species are very reactive toward slow electrons, Slow electrons by

transferring their energy to molecules, make the molecules and themselves more reactive,

VIII. CONCLUDING REMARKS

Our understanding of the basic processes of radiation interaction with dense gaseous

matter has advanced considerably over the last two decades. Progress has also been made

in our efforts to link knowledge on radiation interactions in low-pressure gases with

knowledge on Such processes in dense fluids. The basic knowledge acquired illuminated

broad areas of pure and applied science, led to new radiobiological and

environmental-monitoring instrumentation, and aided the development of many energy

technologies.

In spite of the impressive progress, our knowledge still remains incomplete in a

number of important areas (see a partial list in Table 4). Foremost among these are the

interfacing of the gaseous and condensed phases of matter and the interactions of radiation

(especially slow electrons and photons)With energy-rich (excited) atoms and molecules,

The understanding of radiobiological effects and mechanisms from basic knowledge remains

a challenge.

The long-range programs of the Office of the Health and Envivo_.,.nental Research

of the Department of Energy contributed fundamentally to these developments.
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Table 4: Radiation Interaction with Dense Fluids (Quasi-Liquids and Liquids): Some

Future Research Areas

• Electron interactions with electronically--excited species,

• Electron diffusion and energies in dense fluids with conduction bands,

• Electron-impact ionization and excitation cross sections,

• Electron dynamics and fast (sub-picosecond) medium responses,

• Theoretica/u,derstanding of electron scattering and dynamics.

• Photon absorption by electronically--excited species,

• (Multi) photon ionization and energetics especially in polar media,

• Transient photoionization mechanisms,

• Ionic and neutral decomposition mechanisms,

• Relation of microscopic to macroscopic properties,

• Structured fluids,

• Fast pulse conductivity techniques.

• Liquid state electron and mass spectrometry.
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FIGUP_ CAPTIONS

Fig, 1: Density--normalized electron impact ionization coefficients _/N versus E/N

for CF4, CH4, C,_F0, CAFB, and n-C4F10 [13,14]. Note that the a/N(E/N)

curves shift to higher E/N values as the molecular size is increased, This is

because o_/N is related to cri(e) and f(e,E/N) by a/N (E/N) = (2/m) ½
OO

f zi(e) e½ f(e,E/N)de and as the molecule becomes more complex, f(e,E/S)
0

shifts to lower energies for a fixed E/N due to the increase in the energy loss

processes.

Fig. 2'. (a) The slope (order of multiphoton ionization) as a function of laser

excitation wavelength for the azulene molecule in liquid

2,2,4,4-tetramethylpentane (TMP). Regions I, III, and II, correspond

respectively to wavelength ranges where two-photon, three--photon and both

two- and three-photon ionization occurs. The arrow points to the laser

wavelength where the two-photon ionization onset energy is located [33],

(b) Schematic illustration of the energetics and mechanisms involved (see the

text),

Fig. 3'. Measured ionization threshold energy IF of tho TMPD molecule in ethane as

a function of ethane density p at various temperatures T, The solid lines

represent the predicted values of IF based on the SJC model [46] for hard

core radii <_:> = 1.30, 1.40, and 1,50/1; the best fit to the experimental data

is for <g> values between 1,45 and 1.50 /1,. Densities p > 10 Mt-t are for

liquid ethane [34].

Fig, ,t. Vo of C_H_ and P+ of TMPD + in C2H_ as a function of the ethane density

p, The P+ was determined using Eq. (4) and the Vo using either the SJC

model ( ...... ) or as modified in Ref. 34 ( .---), The experimental

point.q (A) are from R:ef. '_8,_
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Fig, 5: Vo versus N for Ar, Kr, and Xe [12,49],

Fig, 6: GTe and bp versus fluid density p for n-pentane and nee-pentane, Also

shown are the Gte(P ) for n-pentane (i) and neopentane (a), The critical

densities and temperatures are, respectively, 0,232 g cm "'a and 434 K: for

nee--pentane and 0,237 g cm-a and 470 K for n.pentane [16] (see the text).

Fig, 7', Density dependence of kr (Fig, Ta) and # (Fig, 7b) in methane [58], Solid, n;

liquid, .; gas, o (295 K), + (254 K), x (222 K), rn (193 K), nc . critical

density (6,11 x 1021 molecules ca'a), . (194 K)[59]; ...... (295

K),--(273 K),---(206 K),,,, (196 K)[60],

Fig, 8', <e> versus E/N for At, CH4, CF4, N_, C2I_I_,CO,_, and NHa, The data for

Ar and N_ are from [61]; those for CH4, CF4, and CO_ are computed values

[62] using published cross section data for elastic and inelastic scattering and

ionization [2,63]; the data for C2H2 and NH3 are characteristic energies [1,2],

Fig. 9', Normalized electron energy distribution functions f(e,E/N) --. f"(e)e 4_for

several E/N values in Ar and N_, obtained using a two-term Boltzmann

solution and the cross sections shown in the figure [61],

lo.  .7o A,.a',,=300,<
T = 87 K (o) and gaseous Xe at T = 300 K (h) and 165 K (?), The

experimental [23-e_--T-T]L versus E/N for liquid Ar (ii: [66])and for liquid Xe
"iN

(.: [67])respectively at 87 and 165 K. Inset', Ratio [-_]G // [-_]I,

versusN/N forAr (,) and Xe(_)(from [65]),

Fig, 11: Calculated <_>L versus gi N for liquid Ar: v [68]; o [09]; i [70]; ¢ [71], in

comparison with the calculated values of [65] for liquid Ar at T = a'/' K (_)

and gaseous Ar at T = 87 K (o) and 300 K (n) [from [65]),

1
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Fig, 12: Calculated <e>L versus E/N for liquid Xe(T ._ 105 K): • [70]; o [65], For

comparison<e>GversusE/NisshownforgaseousXe',rn(1¢5K)I o (: 00K)

(f om
Fig, 13, Cross sections for momentum transfer and inelastic electron scattering in

COn calculated [80,81] from _n _nalysts of electron transport data, The

ionization cross sections are from [82] (from [83]),

Fig, 14', (a) w versus E/N for Nt-I_ at various values of N at T = 300 K, (b)

#N/(#N)o versus P (or N) for NI-iu at a number of T, For a given value of

E/N, the w and #N data were plotted as a function of N and extrapolated to

N ----, 0, These values are designated in (a) by the solid circles (N = 0) and

in (b) by (#N)o (from [92]),

Fig. 15'. # versus N in subcritical and supercritical NHn vapor at various T:300 (o),

320 (o), 340 (,), 360 (@), 380 (,), 400 (a), 410 (V), 420 (_), 440 (+), and

460 (e), The arrow indicates the critical density of NHn and the dashed line

represents the averaged mobility of unidentified impurity ions (T < 400 K)

(from[93]),

Fig. 16', w versus E/N for Xe (T = 298 K) at various values of N, Curves 1 through

14 correspond to N (irt units of .1.021atoms cm',_) of', 4.24, 4,97, 5.38_ 6.3,

6,97, 7,34_ 7,75, 0.1, 0,438, 0,91, 1,92, 2,74, 3,54, and 3,92, respectively, (from

[94]).

Fig. 17', #N versus N for Xe (from [95].

Fig, 18', w versus E/N for gaseous Ar (_, o; [1,96]) and gaseous Xe (,, o [1,97]) and

liquid Ar (o: [98]) and liquid Xe (,: [98]), Inset: Ratio wC/w L versus E/N

for Ar and Xe (from [@5]),

Fig. 19'. w versus E/N (T __295 K) for gaseous and liquid TMS, TMC, and TMP (see

the text)(from [73]).

' Ill ' _lv ' ','1,
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Fig, 2[}: Cross sections _0(_), _1(e), and crin(e) for liquefied Ar and Xe (see the text);

a'm is the low density gaseous momentum transfer cross section (ft'ore [99]),

Fig, 21: Schematic illustration of the relative value of EA and VAE in a gas and a

liquid,

Fig, 22: Electron attachmezLt rate constant for N_O in gaseous, (ka)G_ and liquid,

(ks)L, argon plotted versus E/N and <:e> G or <:e,>L [69], The attachment

is due to the reaction (21), Note the shift oi' the resonance to lower

energies---and the increase in the rate constant---in the liquid,

Fig, 231 (a) Total electron-attachment rate constant ka as a function of the mean

electron energy <_> for the perfluoroalkanes n.-.CNI 2N+2(N = I to tl), (b)

Corresponding ct'oas sections [61],

Fig, 24: Electron attachment rate constant for O_ in N_, (o), C_I-I4 (,) and C_I'I_ (A)

as a function of the pressure (corrected for compressibility) of these buffer

gases, These rate constants correspond to a vaJue of <e> _ 0,05 eV (from

[107]),

Fig, 25: Electron attachment rate constant k a a,s a function of mean electron energy

<e> and total gas pressure for C3Fs (Fig, 25a) and n-C_FI0 (Fig, 25b) in

Ar buffer gas [61],

Fig, 26: (ka) G versus <_>G or E/N for SF0 in gaseous Ar and (ks) L versus E/N for

SF_ in liquid Ar; A, thermal value of (ka) G at 298 K; a, thermal value of

(ka) G extrapolated to 87 K (from [69]),

Fig, 27', Rate constant, (ka) L for electron attachment to SF_, N_O and O_ measured

in liquid Ar [12,i] plotted versus <:e>l,., [{]5],

Fig, 28', Total electron attachment rate constant as a function of the mean electron

energy <e> and T, ka(<:e:> , T) for (a) freon CClF_ which attaches show

electrons dissociatively [128] and (b) C_F0 which attaches show electrons

nondlssociattvely [132],
i
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Fig, 2g: Electron at,tachment coefficient _]/NA versus B/N for thiophenol (CoH_SH)

in N2 buffer gas, Curve 1 was obtained without laser irradiation and depicts

electron attachment to the ground state, Curves 2 _nd 3 wore obtained with

XeC1 and KrF laser lines respectively, The photon energy of the XeC1line is

not sufficient to excite electronically the rnolecul_ monophotonicaUy and

therefore only the ground state attachment is observed; however, electronic

excitation _tnd enhanced electron attachment occurs at the KrF line, [Note
,

theft r//NA is _ 100 times larger than _/N A since the excited molecule
,

number density NA is about one percent of NA], The photoenhanced

electron attacSment (Curve 3) was attributed to electronically--excited first

triplet states populated indirectly via laser ir_'adiation [10,137],
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