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AN EXPLORATORY COMPARISON OF METHODS FOR COMBINING
FAILURE-RATE DATA FROM DIFFERENT DATA SOURCES

by

H. F. Martz, Jr. and R. A. Waller

ABSTRACT

Thirteen methods are considered for use in pooling failure-
rate data from different data sources. A Bayesian approach is
taken in which two distinct sources of variation are assumed to
be present; namely, prior variation between data sources and
statistical error variation within each data source. An ex-
ploratory Monte Carlo simulation is used to compare the per-
formance of the methods when used to construct both pooled point
and 90% interval estimates of the failure-rate. The results
indicated that those methods based on simple averaging techniques
are satisfactory when only a small number of data sources are to
be pooled. When there are fifteen or more data sets to be pooled,
more sophisticated methods, which incorporate additional model
structure, are superior. An example is given to illustrate the
use of each of the proposed methods.

I. INTRODUCTION

Frequently, in analyzing reliability data, the reliability analyst is con-

fronted with nonhomogeneous data that may be pooled or combined in some manner

in order to produce better reliability estimates. Such data may be experimental

data that has been collected under somewhat different experimental conditions;

failure data obtained from different data sources; operational data derived

from a population of plants that include plant environmental effects, etc.

Brelpohl (1978) refers to the combined estimates as "group" or "joint" estimates,

while an estimate based on each data source is referred to as an "individual"

estimate. For example, a recent IEEE project* involved soliciting information

*IEEE Project 500, Subcommittee SC-5. Reliability, Power Engineering Society,
Nuclear Power Engineering Committee, Institute of Electrical and Electronics
Engineers, Inc.



from a group of over 200 experts and consultants on failure-rates for elec-

trical, electronic, and sensing components used in nuclear power plants. The

estimates supplied by the experts were pooled in order to obtain both single

group point and interval estimates for the failure-rate of interest. IEEE Std
2

500-1977 (1977) contains the resulting estimates.

Various methods can be postulated for pooling the individual estimates into

a single group estimate and range in complexity from weighed averaging tech-

niques to complex adjustment methods based on highly structured models. Several

of these methods are presented in Sec. 3. Breipohl (1978) has shown that

group predictions outperform individual predictions and that a weighed average is

a satisfactory method of combining the individual estimates. It is shown

in Sec. 4 that such is not always the case, depending upon the structure of the

model from which the data are assumed to have been generated. Martz (1975)

discusses the use of an empirical Bayes approach for pooling failure-rate data.

The methods for pooling the data depend upon the structure of the model

underlying the data. For the purposes of this report, we assume a general

Bayesian structure of the problem in which two distinct types of variation are

assumed to be present. The first type of variation represents the inherent

variability in the reliability parameter underlying the data among the popula-

tion of data sources. This variation in the underlying parameter will be

referred to as prior variation, since it is present regardless of whether or

not estimates are supplied by each data source. The second type of variation

represents variability in the estimate supplied by each data source from the

true parameter value underlying the data source. This variation is due to the

fact that, based on limited data, parameter values are never exactly known. It

is referred to as statistical variation within each data source. Both components

of variation are illustrated in Fig. 1, in which the reliability parameter of

interest is a failure rate X of some device. The X values represent estimates

of the corresponding X values supplied by the data sources. The subscript

indexes a particular data source among the N assumed data sources. Thus, devi-

ations on the horizontal axis represent the prior variation in X, while vertical

departures from the line X = X represent the statistical variation in the

corresponding X value. It is observed that the total variation in the X, values,

represented by the vertical axis, includes both the prior and statistical

variance components. We are concerned with the estimation of each of these

components of variation.
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Fig. 1. The relationship between the prior, statistical,
and total sources of variation.

One important fact should be noted. As the quantity of data available for

a given data source increases, the statistical variation with respect to that

source decreases. Further, as the quantity of data at each data source approaches

infinity, the statistical variation at each data source approaches zero. Thus,

the individual failure-rates A. would be estimated perfectly; however, any group

estimate vjould still exhibit variability through the prior variation component.

That is, an interval estimate based on large amounts of data from different

sources need not approach zero width because the prior variation component is not

diminished by increases in the respective sample sizes. In this case, the total

variation would be equivalent to che prior variation. However, if no prior

variation is present in the failure-rate population, then the width of the group

interval estimate would tend toward zero as the quantity of data approaches

infinity. This is precisely what happens when Bayesian interval estimates are

constructed based on the posterior distribution of )• . Such Bayesian estimates

are not group estimates and their width approaches zero, becoming more and more

concentrated, as the amount of data upon which they are conditioned approaches

infinity. This is an undesirable property because any group estimate should retain

a prior variation component regardless of the quantity of data that is available



to be pooled. Thus, the usual Bayesian interval estimates based on the poste-

rior distribution are not suitable for direct use in pooling the individual

estimates.

Let us now quantify some of the foregoing notions. For convenience, hence-

forth we will restrict our attention to the case in which a failure-rate is the

desired reliability parameter of interest. We shall further assume that there

are N individual data sources, or individual failure-rate estimates, that are to

be pooled into a single group failure-rate estimate. Let A., i = 1,2,...,N,

represent the true failure-rate corresponding to the i data source, and let

A., i = 1,2,...,N represent the corresponding point estimate of A. supplied by

the i data source. Based on the preceding discussion, we assume that X. is a

value of a random variable X according to some prior distribution g(A). It is

also assumed that A., conditional on A., is the value of a random variable

according to some conditional distribution f(A.|A.). Thus, g expresses the

prior variation in the parameter A, while f accounts for the statistical variation

in the estimate A.. We shall further assume that, in addition to the best point

estimate A. of A. supplied by the i data source, the i data source also
. . • \ / ^

supplies upper and lower bounds, denoted by A. and A. , of A.. Further, in
1, u i, Li i

accordance with the IEEE Project 500 referenced earlier, let r. = 1,2,3,4,5

denote the "expertise" self-rating associated with the i data source, where

r. = 1 corresponds to a low rating and r. = 5 refers to a high rating. In

general, r. may be considered to be a "weight" assigned to the i data source.

In Sec. 2, several methods for pooling the individual failure-rate estimates

into both group point and interval estimates are presented. An example is

presented in Sec. 3. A Monte Carlo simulation is used to compare these methods

and is discussed in Sec, 4. The results are also contained in Sec. 4. Finally,

Sec. 5 presents the conclusions from this study.

II. POOLING FAILURE-RATE DATA

The authors participated ir. the IEEE Project 500 referenced in the pre-

ceding section. A part of the participation was to suggest a possible procedure

for pooling individual estimates. The procedures suggested were then circu-

lated for peer review. Response to the review provided numerous alternative

procedures by various people, The first two methods presented below were the

original methods suggested by the authors for use in pooling the individual

estimates in the IEEE Project 500. Methods 3-6 are modifications to Method 1



and 2. The remaining seven methods were suggested by the respondents during

the peer review of Methods 1 and 2.

Method 1: It is assumed that the conditional distribution f(X\|X ) has mean X .

In other words, the estimate X. supplied by the i data source is an unbiased

estimate of the underlying failure-rate X.. It is further assumed that the

standard deviation of f(X.|X ) is unknown and must be estimated. It is proposed

to estimate this unknown standard deviation by R./d., where R. = X - X

and where d. is taken from E(W) in Table II of "Tables of Range and Studentized

Range" by H. Leon Harter in the Annals of Mathematical Statistics, December 1960,

pp. 1130-1131. The quantity d. is chosen to reflect the degree of expertise

associated with a data source. Therefore, it is associated with the expertise

self-rating r . It may also be rationalized by using a sample size to correspond

to a level of expertise. We have arbitrarily used the following assignment:

Let r. = 5 correspond to n = 25 to give d. = 3.931

r. = 4 correspond to n = 20 to give d. = 3.735

r. = 3 correspond to n = 15 to give d. = 3.472

r. = 2 correspond to n = 10 to give d. = 3.078

r. = 1 correspond to n = 5 to give d. = 2.326.

For example, if a data source rated himself at level four and supplied the

upper and lower bounds 8 x 10 f/h and 4 x 10 f/h, respectively, we would take

7.6 x 10~ /3.735 = 2 x 10~ as our estimate of the standard deviation of the point

estimate supplied by the data source.

Suppose we let 8 and ty denote the mean and standard deviation, respectively,

of the prior distribution g(X). We desire to characterize the population of X.

values by pooling the individual failure-rate estimates and to provide both a

point and a probability interval estimate for X. Both of these estimates will

depend upon suitable estimates of 0 and ty.

It is proposed to estimate 9 by use of a weighted average of the X estimates

N N
§ = Z r.X,/ Z r. . (1)

This estimate will then be used as the group point estimate of the failure-rate

random variable X. In fact, 8 is the proposed point estimate in Methods 1-11 to

be presented. Only in Methods 12 and 13 does the point estimate differ from

Eq. (1).

5



Now let us consider an estimate of ty, which is used in calculating the

group probability interval estimate of A. We use the well-known relation-

ship between conditional and unconditional variance given by

Var(A) = E[Var(A|A)] +Var[E(A|A)] . (2)

Since it is assumed that E(A|A) = A, we find upon substitution that

Var(A) = Var(X) - E[Var(), ,s>; . (3)

In regard to Fi<». 1, this equation says in effect that the prior variation is

equal to the total variation minus the average statistical variation.

Let us now consider estimates of each of the terms in Eq. (3). Now Var(A)

may be estimated by means of the weighted total sample variance of the A. values

given by

A 2

V = E (A. - 8 ) Z r./ E r , (4)
1 i l 1 X i=l

and E[Var(A|A)] may be estimated by means of the weighted average of the statis-

tical variances given by

N - N
V, = E (R./d T r./ E r. . (5)
1 i 1 1 i=l

2
From Eq. (3), the estimate of the prior variance ty of A is given as

Vl " V2 '

Now it may happen that Vo > V , particularly when N is quite small. If this
~2

should occur, it is arbitrarily decided that ip = V,; that is, the prior variance

will be estimated to be the total variation in the A values. Another alternative

in this case would be to set $ equal to some arbitrarily small quantity e. The

choice to use V rather than e is motivated by similar results in empirical



Bayes decision theory and by practical observation. The empirical success of

this choice is demonstrated in Sec. 4.
4

Chebychev's Inequality [Hogg and Craig (1970), p. 55] is used to obtain the

required probability interval (PI) estimate of X as follows:

100(1 - ~ ) % PI: 9 - k$ <; X <; 9 + k$ , (7)
1c

where k is chosen to provide the desired containment probability. It is noted

that this interval is such that the probability that it contains X is at least
2

(1 - 1/k ). It is known that such intervals are usually conservative in the
2

sense that the actual containment probability is greater than (1 - 1/k ). For

example, for an at least 90% probability interval on X, we choose k = 3.16. It

is also noted that this interval does not depend upon the form of g(X), provided

that 9 and ty exist,which is assumed here. Thus, it is a prior distribution free

method.

Method 2: The only difference between Method 2 and Method 1 is that in Method 2,

a gamma prior distribution is assumed for X and used to obtain the required

probability interval estimate of X rather than Chebychev's Inequality. Here we

assume that X has a gamma prior distribution given by

,a-l -A/3
g(X) = A e , X, a, 3 > 0 , (8)

3

where a and 3 are the prior shape and scale parameters, respectively. Because

E(X) = e =
a and 3 by

2 2
E(X) = 6 = a3 and Var(X) = ty = a3 , we can use the method of moments to estimate

3 = ip /6 and a = 9 /^ . (9)

The incomplete gamma function is then used to obtain the desired 100(1 - Y ) %

probability interval for X by finding the lower and upper limits X and X
L U

such that



•tP(X < \) = I g(X) dA = Y/2

and (10)

•̂ o
P(X > Xu) = 1 - / g(X) dX - Y/2

Thus, the required 100(1 - Y ) % PI estimate for A is given by

100(1 - Y ) % PI: L ^ £ L . (11)
1J U

Method 3; This procedure differs from Method 1 in the manner used to estimate

the unknown variance of f(A.|Xj) for each data source. Rather than using the

d. factors based on the studentized range as in Method 1, Chebychev's Inequality

is used to estimate the variance of the estimate supplied by each data source.

It is assumed that the upper and lower limits A\ and X. , respectively,

include at least 95% of the area under the conditional distribution f(X |X.).

It follows that in this case the standard deviation of f(X.|X.) may be estimated

as R./8.94, where R. = A. IT - X. T. Thus, V, corresponding to Eq. (5) here
i i i , U i , L i ^

becomes

N ? N
V2 = £ (R±/8.94r x±l I r , (12)

i l i=l

while V is the same as in Eq. (4). The remaining steps in the method are the

same as in Method 1 in which Chebychev's Inequality is used to obtain the

required probability interval estimate. The details are given in Method 1.

Method 4; This method differs from Method 2 in the manner used to estimate the

unknown variance of f(X.|X.) for each data source. As in Method 3, Chebychev s

Inequality is used to obtain this estimate. The average variance estimate V~

given in Eq. (12) is again used here. The remaining steps in this method are

the same as in Method 2 in which a gamma prior distribution is assumed for



A and used to provide the required probability interval estimate of X.

The details are given in Method 2.

Method 5: This method differs from Methods 1 and 3 in the manner used to estimate

the conditional variance of X.j X., for each data source. In this method the

upper and lower limits A. and A* , respectively, for the i data source are
1)U i 9 Li

assumed to be the extrema of a uniform distribution over this range. It follows

that the standard deviation of A , conditional on A., may be estimated as

R-j/v 12» where again R = A - A . Thus, Vo corresponding to Eq. (5) now

becomes

N N
V = E (R. /12) r / I r , (13)
Z 1 1 X

while V is the same as in Eq. (4). The remaining steps are the same as in

Methods 1 and 3 in which Chebychev's Inequality is used to obtain the required

probability interval estimate. Method 1 gives the details.

Method 6: This method is the same as Methods 2 and 4 except that a uniform dis-

tribution is used to estimate the conditional variance of A, A. for each data
i1 I

source as in Method 5. The average variance estimate V^ given in Eq. (13) is

again used here. The remaining steps are the same as in Methods 2 and 4 in

which a gamma prior distribution is assumed for g(A) and used to provide the

required probability interval estimate of A. Method 2 should be consulted for

the details of this method.

Method 7: In this method, the failure-rate estimates A. are treated as though

they are the "true" failure-rates A. and the statistical variation component is
1 2

ignored. It follows that the prior variance i[) is estimated by V given in

Eq. (4), The moment estimates of a and $ given in Eq. (9) are used to fit a

gamma prior distribution to the failure-rate population. The required probability

interval is obtained by means of the procedure outlined in Method 2.

Method 8: In this conservative method, the standard deviation of f(A.|A.) is

estimated by R./d. as in Method 1 with the difference being in the choice of

values for d.. It is proposed to be conservative by using the following

assignment:

Let r. = 5 correspond to n = 6 to give d = 2.534

r. = 4 correspond to n = 5 to give d = 2.326



r = 3 correspond to n = 4 to give d. = 2.059

r = 2 correspond to n = 3 to give d. = 1.693

r. = 1 correspond to n = 2 to give d. = 1.128
1 1 2

It is then proposed to estimate the prior variance ip as

$ 2 = V± + V2 , (14)

where V and V are given by Eq. (4) and Eq. (5), respectively. The author of

this method based this selection on the fact that ..."it is better to have the

prior be as vague (large variance) as the data or lack thereof allows." Although

Eq. (14) cannot be theoretically justified, it is in keeping with the conserva-

tive nature of this method. As in Method 1, Chebychev's Inequality is then used

to provide the required probability interval estimate of A.

Method 9: This method is the same as Method 8, except that a gamma prior

distribution is fitted to the failure-rate population. The required probability

interval is then obtained by means of the procedure outlined in Method 2.

Method 10: This method is similar to Method 1, except in the manner of com-

puting the average statistical variance component E[Var(A|A)]. It is argued in

this method that even when all data sources provide the same range estimate, the

contribution to Eq. (6) given by V« in Eq. (5) is not equal to the common value

of all the data sources when the r values are different. This fact follows

from the double accounting in the expression for V«. It is proposed to rectify

this shortcoming by redefining V« as

N 0 N
V2 = E (R±/dr r±/ £ r±, (15)

where d is independent of each expert's rating and is a conversion factor from

the range value to the variance, dependent upon the probability level associated

with the range estimates. For example, if all data sources are estimating their

respective ranges at the 90% level, then R = 3.29a and thus d = 3.29.

As in Methods 8 and 9, :he prior variance would be estimated as the sum of

V, and V , i.e., $ = V + V.. A pooled range estimate R could be obtained by

multiplying the pooled standard deviation V P by the conversion factor d.

10



Chebychev's Inequality is then used to provide the required probability interval

estimate of X as described in Method 1.

Method 11: This method is the same as Method 10, except that a gamma prior

distribution is fitted to the failure-rate population. The procedure outlined

in Method 2 is then used to obtain the required probability interval estimate.

Method 12: This method is the one finally adopted for pooling the failure-rate

estimates in the IEEE Project 500. It is described in IEEE Std 500-1977 (1977),

pp. 18-20. The group point estimate is given by the geometric average of the

individual best estimates supplied by the data sources. That is, the prior mean

6 is estimated as

§ = n X. . (16)

In a similar way, the upper and lower endpoints of the group interval estimate

of A are also given by the respective geometric averages of the upper and lower

bounds of the data sources. That is,

. . (17)
max \ xUJ

Method 13: This method is the same as Method 12, except in the way in which the

group interval estimate of X is computed. Instead of using geometric averages, it

is proposed to use

\nin - . . f n „ <*i,L>' \nax = ™ * (X >, (18)
i=l,2,...,N i=l,2,...,N '

as the lower and upper endpoints, respectively.

Table I gives a summary of the thirteen methods just discussed, where the

numbers in parenthesis refer to equation numbers in the text.

III. EXAMPLE

In order to illustrate each of the methods presented in the preceding

section, consider ths following example. Table II presents a hypothetical set

11



Method

TABLE I

A SUMMARY OF THE THIRTEEN SUGGESTED METHODS
FOR COMBINING FAILURE-RATE DATA

Interval Estimate

1

2

3

4

5

6

7

8

9

10

11

12

13

Aa

A

A

A

A

A

A

A

A

A

A

G8

G8

(4)

(4)

(4)

(4)

(4)

(4)

(4)

(4)

(4)

.4)

(4)

-

-

(5)

(5)

(12)

(12)

(13)

(13)

-

(5)

(5)

(15)

O 5)

-

-

(4)-(5) Chebychev's Inequality

(4)-(5) Gamma Prior

(4)-(i2) Chebycliev'3 Inequality

(4)-(12) Gamma Prior

(4)-(13) Chebychev's Inequality

(4)-(13) Gamma Prior

(4) Gamma Prior

(4)+(5) Chebychev's Inequality

(4)+(5) Gamma Prior

(4)+(15) Chebychev's Inequality

(4)+(15) Gamma Prior

(17)

(18)

Comments

Scheme
Different Rating

Scheme

*A-Weighted Arithmetric Average; G-Geometric Average.

Data Source (i)

1

2

3

4

5

6

7

8

9

10

TABLE II

HYPOTHETICAL EXAMPLE

X± X 10
6

3

8

1

9

11

4

7

4

7

11

0

2

0

2

3

3

1

0

4

4

DATA SET

X l i B x io
6

8

11

3

14

16

10

10

7

9

20

r

5

4

5

4

3

4

4

4

5

4

of data used to Illustrate the calculations involved in each of the thirteen

methods. The point estimate of the prior mean 6 for Methods 1-11 is the

pooled estimate given in Eq. (1). Here,

= 5(3) < 4(11) =

where, for convenience, we have included the "units" of 10~ f/h only on the RHS

of the equation. This convention will be followed throughout this section.

12



A.iso, since V given in Eq. (4) is used in many of the methods, it is computed

to be

v = 5(3 - 6.19)2 + 4(8 - 6.19)2 +...+ 4(11 - 6.19)2
 = 1 Q < 3 9 x 1Q-12 f2 / h2

Now let us proceed with the calculations for each of the methods.

Method 1: Table III presents the required information for computing V~ according

to Eq. (5). Thus,

w _ 5(2.035)2 + 4(2.410)2 +...+ 4(4.284)2 _ , __ in-12 2. 2
Vn — . ̂  — o• jy x xu r /n .

2
Hence, the estimate of the prior variance ip becomes

$ 2 = 10.39 - 6.59 = 3.80 x 10~ 1 2 f2/h2 .

For an at least 90% probability interval estimate on X, we choose k in

Eq. (7) such that 1 - 1/k^ = 0.90, that is, k = 3.16. Hence, the 90% pooled

interval estimate of X becomes

6.19 - 3.16(1.95) <; X <; 6.19 + 3.16(1.95)

or

0.03 x 10"6 f/h s X s 12.35 x 10~6 f/h

Method 2: Assuming now that the prior distribution is a member of the gamma

family of distributions given in Eq. (8), the parameters a and 0 are estimated as

J3 - 3.80/6.19 = 0.61 x 10"6 f/h

and

a = (6.19)2/3.80 = 10.08 .

13



Data Source

1

2

3

4

5

6

7

8

9

10

INFORMATION

SD r i

5

4

5

4

3
4

4

4

5

4

TABLE I I I

REQUIRED FOR COMPUTING

d i

3.931
3.735
3.931
3.735
3.472
3.735
3.735
3.735
3.931
3.735

V 2 IN METHOD 1

R± x 106

8

9

3

12

15

7

9

7

5

16

R±/d± x 106

2.035
2.410
0.763
3.213
4.320
1.874
2.410
1.874
1.272
4.284

Thus, using an incomplete gamma function computer subroutine, the 90% interval

estimate of A is obtained by solving Eq. (10) with Y = 0.10 and is found to be

3.35 x 10"6 f/h £ X <L 9.64 x 10"6 f/h .

Method 3; According to Eq. (12), V here becomes

v - 5(8/8.94)2 + 4(9/8.94)2 +...+ 4(16/8.94)2 _ 1 ._ -12 Jl,,2

Hence,

$ 2 = 10.39 - 1.23 = 9.16 x 10" 1 2 f2/h2 .

Based on Chebychev's Inequality, the at least 90% probability interval estimate

on A becomes

6.19 - 3.16(3.03) ^ A :£ 6.19 + 3.16(3.03)

or

0 s. A s: 15.77 x 10"6 f/h .

14



Method 4; Now, the gamma prior distribution has parameters that are estimated

as

§ = 9.16/6.19 = 1.48 x 10"6 f/h

and

a = (6.19)2/9.16 = 4.18 .

Thus, using an incomplete gamma function computer subroutine, the 90% interval

estimate becomes

2.18 x 10~6 f/h £ X £ 11.85 x 10 6 f/h .

Method 5: Here V is computed according to Eq. (13) and becomes

v = 5(82/12) + 4(92/12) +...+ 4(162/12) =

Thus,

$ 2 = 10.39 - 8.55 = 1.84 x 10"12 f2/h2 .

Again using Chebychev's Inequality, the at least 90% probability interval

estimate on X becomes

6.19 - 3.16(1.36) £ X £ 6.19 + 3.16(1.36)

or

1.89 x 10 6 f/h £ X £ 10.49 x 10~6 f/h .

Method 6: The gamma prior distribution has parameters that are estimated to be

15



3 = 1.84/6.19 = 0.30 x 10"6 f/h

and

a = (6.19)2/1.84 = 20.82

Thus, the 90% interval estimate on X becomes

4.18 x 10"6 f/h s; X £. 8.65 x 10 6 f/h

Method 7: Here,

= V = 10,39 x 10" 1 2 f2/h2 .

Thus, the parameters of the gamma prior distribution are estimated to be

10.39/6.19 = 16.8 x 10~6 f/h

and

a = (6.19)2/10.39 = 3.69

90% interval estimate on X becomes

2.00 x 10"6 f/h ^ X s 12.28 x 10~6 f/h

Method 8: For this method, V., = 10.39 x 10~ 1 2 f2/h2 and

v = 5(8/2.534)2 + 4(9/2.326)2 +...+ 4(16/2.326)2 = 1 ? n ^ 1Q-12

2
The estimate of the prior variance ty becomes

16



$ 2 = 10.39 + 17.23 = 27.62 x 10" 1 2 f2/h2 .

Using Chebychev's Inequality, the at least 90% probability interval estimate

on X becomes

6.19 - 3.16(5.26) £ X £ 6.19 + 3.16(5.26)

or

0 £ X <; 22.81 x 10"6 f/h

Method 9: The parameters of the gamma prior distribution are estimated to be

6 = 22.62/6.19 = 4.46 x 10"6 f/h

and

a = (6.19)2/27.62 = .1.39

Thus, the 90% interval estimate on X becomes

0.64 x 10"6 f/h <; X * 16.57 x 10~6 f/h

Method 10: Now,

v = 5(8/3.29)2 + 4(9/3.29)2 +.. .4- 4(16/3.29)2 = 8 < 3 7 x 1Q-12

from which

$ 2 = 10.39 + 8.37 = 18.76 x 10"12 f2/h2 .

Using Chebychev's Inequality, an at least 90% probability interval estimate on

X is given by

17



6.19 - 3.16(4.33) £ X £ 6.19 + 3.16(4.33)

or

0 s A £ 19.88 x 10 6 f/h .

Method 11: The parameters of the gamma prior distribution are estimated to be

0 = 18.76/6.19 - 3.03 x 10~6 f/h

and

a = (6.19)2/18.76 = 2.04 ,

from which the required 90% interval estimate on X is given by

1.13 x 10"6 f/h <; X £ 14.57 x 10~6 f/h •

Method 12: The estimate of the prior mean G is calculated from Eq. (16) as

§ = j(3 x 10"6)(8 x 10"6)...(ll x 10"6)J1/10 = 5.38 x 10~6 f/h .

Similarly, the limits of the interval estimate are computed according to Eq. (17)

as

1 . = j(0 x 10~6)(2 x 10~V..(4 x 10" 6)! 1 / 1 0 = 0
min • ( j

and

X = (8 x 10"6)(ll x 10"6)...(20 x 10"6) 1 / 1 0 = 9.83 x 10~6 f/h .
max

Thus, the interval estimate of X is
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0 <; A £ 9.83 x 10~6 f/h .

Method 13: The interval estimate is easily found according to Eq. (18) to be

0 £ X £ 20.00 x 10 6 f/h . 0

Based on the data in Table II, Table IV gives the point and interval estimates

for all thirteen methods. It is observed that Method 8 yields the most- con-

servative, while Method 6 yields the least conservative, interval estimate.

IV. MONTE CARLO SIMULATION

A Monte Carlo FORTRAN simulation was conducted in order to assess and compare

the performance of all thirteen methods for pooling individual failure-rate

estimates into a single group point and interval estimate. The simulation was

performed on a CDC 6600 Computer at the Los Alamos Scientific Laboratory. Sample

sizes N of 2, 5, 10, 15, and 25 were used. Each replication in the simulation
th

proceeded in the following manner. For the i"~ data source, i=l,2,...,N, a

"true" failure-rate X. was randomly drawn from a gamma prior distribution given

by Eq. (8) with shape parameter a and scale parameter 3. Three prior distribu-
-6

tions were used; namely, a = 0.25, g = 24.0 x 10 h; a = 1.0, 6 = 6.0 x 10 and

TABLE IV

Method

1

2

3

4

5

6

7

8

9

10

11

12

13

A SUMMARY OF THE CORRESPONDING POINT AND INTERVAL ESTIMATES

Point Estimate

>6.19 x 10"6 f/h

5.38 x 10"6 f/h

Interval Estimate x 10

(0.03, 12.35)

(3.35, 9.64)

(0, 15.77)

(2.18, 11.85)

(1.89, 10.49)

(4.18, 8.65)

(2.00, 12.28)

(0, 22.81)

(0.64, 16.57)

(0, 19.88)

(1.13, 14.57)

(0, 9.83)

(0, 20 .00)
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a = 10.0, 6 = 0.6 x 10~ h. All three distributions have a prior mean of

6.0 x 10 f/h, although they have different "shapes." The first gamma prior

is L-shaped with a standard deviation of 12.0 x 10 f/h; the second is an

exponential distribution with a standard deviation of 6.0 x 10~ f/V; and the

third is a positively skewed unimodal model with a standard deviation of

1.9 x 10 f/h. Thus, the first distribution is significantly more diffuse

than the third.

The estimate supplied by the i data source was simulated in the following

way. Another gamma distribution was used in which the shape and scale parameters

are denoted by a.* and 3.*» respectively. Now a.* was randomly sampled from a

uniform distribution with range [a" - e, a" + e]. In this way, the shape para-

meter for the estimate supplied by the i data source could be made to either

conform closely or not conform closely with the shape parameter value a of the

prior distribution by taking a^ S a and £ small or large, respectively. In all

simulation cases, a' = a and £ was set equal to either 0.05 (for a = 0.25 or 10.0),

0.125 (for a = 0.25), or 4.0 (for a = 10.0). In one case, e = 0.20 was used.

For example, the case in which a"" = 10.0 and e = 0.05 would simulate the situation

in which all data sources have information which is quite consistent with the

underlying prior distribution. On the other hand, the case where 0.' = 10.0 and

e = 4.0 simulates less consistent information about the prior distribution since

the shape parameter underlying the estimate for each data source is expected to

vary more widely than in the preceding case. Once the shape parameter value

a.* has been randomly selected, the corrpsponding scale parameter value $.* was

computed as

Since it is assumed that each source reports an unbiased estimate of X., by

computing & .* in this way it is insured that E(X\|X ) = a * 3 * = X . Thus,
1 /- *•*• • * • • * • •*• t h

each estimate X. is unbiased. The point estimate Xi supplied by the i data

source was then randomly drawn from a gamma distribution with parameters a *

arid B.*.
x t^

The individual interval estimate supplied by the i data source was sim-

ulated as follows: Lower and upper Y/2 and 1 - Y/2 percentiles of the gamma

distribution with parameters a * and 8 * were computed and taken as the lower

and upper bounds, X and X. 5 respectively. Three values of Y were used,
I, Li 1, U
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Y = 0.01, 0.10, and 0.?.0, in order to determine the effect of the individual

interval width and the probability of coverage on the 90% group interval

estimate. All data sources were considered to be reporting intervals with

the same value of Y in each simulation run.

The results of the IEEE Project 500 revealed that most data sources rated

themself either a four or five, with five being the most prevalent. In con-

formance to this observation, ratings were randomly assigned to each data source

according to the following distribution: P(r. = 5) = 0.7, P(r. = 4) = 0.2,

P(r. = 3) = 0.08, P(r. = 2) = 0.01, and P(r. = 1) = 0.01,

After the data for the N data sources were simulated as described above, the

thirteen pooling methods presented in Sec. 2 were used to compute both a single

group point and a 90% interval estimate. The estimates were then compared to

corresponding "true" values from the underlying prior distribution. One hundred

independent repetitions of the above simulation experiment were made for each

parameter combination. Several performance measures were defined; namely, the

average point estimate, the average squared error of each point estimate and

the "true" prior mean, and the standard error of each of these averages. The

average and average squared error of the area under the true prior distribution

within each group interval estimate was also computed. The closer this average

coverage probability to 90%, the better the performance of the estimator. Also,

the smaller the average squared error, the better the estimator's performance.

The standard error of each of these averages was also computed. In many cases,

the standard errors were less than 10% of the averages. In cases where conflicts

arose regarding which method was superior, those cases were rerun to 1000

replications in order to further decrease the magnitude of the standard errors.

V. PERFORMANCE COMPARISONS

Twenty-seven simulation runs were made by varying certain parameters in

each run. The basic experimental design for the simulation study consisted of

the vertices of two cubes, since four parameters were varied in the study.

Based on the preliminary results of these 16 runs, additional runs were made

at the midpoint of the faces of one cube, at the center of the cube, and a few

other selected positions as well. Table V gives the parameter combinations

for the 27 runs that were made. These 27 combinations are graphically rep-

resented in Fig. 2 and indexed by case number. It is to be noted in Fig. 2 that

21



TABLE V

CHOICE OF PARAMETERS USED IN THE SIMULATION STUDY

Caae Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

N

5

5
15

15

5

5

15

15

5

5

15

15

5

5

15

15

15

10

5

10

10

10

10

25

15

5

2

a

0.25
0.25
0.25
0.25
0.25

0.25
0.25
0.25

10.0
10.0
10.0
10.0
10.0
10.0

10.0
10.0

1.0

10.0
1.0

1.0

0.25
1.0

1.0

0.25
0.25
0.25

0.25

B

24.0 x
24.0 x
24.0 x
24.0 x
24.0 x

24.0 x
24.0 x
24.0 x
0.6 x

0.6 x
0.6 x
0.6 x
0.6 x

0.6 x
0.6 x
0.6 x
6.0 x
0.6 x
6.0 x
6.0 x

24.0 x
6.0 x
6.0 x

24.0 x
24.0 x
24.0 x
24.0 x

io-6

io-6

lO"6

10'6

ID"6

ID'6

la'6

io-6

l O " 6

io-6

10"6

ID"6

ID"6

io-6

lO"6

ID"6

lO"6

ID"6

lO"6

ID"6

ID"6

io-6

io-6

I D ' 6

lO"6

10"6

ID"6

a

0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

1.0

10.0
1.0

1.0

0.25
1.0

1.0

0.25
0.25
0.25
0.25

e

0.05
0.05
0.05
0.05
0.125
0.125
0.125
0.125
0.05
0.05
0.05
O.OS

4 . 0

4 . 0

4 . 0

4 .0

0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05

_ ! _

0.01
0.10
0.01
0.10
0.01
0.10
0.01
0.10
0.01
0.10
0.01
0.10
0.01
0.10
0.01
0.10
0.05
0.05
0.05
0.10
0.05
0.01
0.05
0.01
0.20
0.20
0.01

case numbers to the right of a point refer to the "faces," and "center," of

the design. This convention will also be used in the remaining figures in

this section. Table VI gives the values associated with the low, medium, and

high levels of each of the parameters. Other values are indicated in Fig. 2.

TABLE VI

PARAMETER LEVELS USED IN THE SIMULATION STUDY

Parameter

N

a
a.'

e

Y

Low Leve l

5

0.25

0.25

0.05

0.01

Medium Level

10

1.0

1.0

0.125

0.05

High Level

15

10.0

10.0

4.0

0.10
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(a) «=0.05 (SMALL) (b) *« 0.125 OR 4.0 (LARGE)

Fig. 2. Graphical representation of the twenty-seven cases
in the simulation study.

First, let us consider the group interval estimate for the failure-rate

population. Figure 3 gives the average (over the 100 replications) coverage

probability (in percent) within the 90% theoretical interval for pooling method

number 1 for all 27 simulated cases. The closer to 90%, the better a method

performs when used to construct a 90% group interval estimate from the individual

estimates. It is immediately observed in Fig. 3 that e has practically no

effect on the average coverage within the true 90% interval for Method 1. Recall

that e controls, in some sense, the degree of conformance of the shape of the

gamma distribution of the data sources to the prior distribution. Thus, the

variation in the shape of the gamma data source distributions has little if any

effect on the average performance of the method, at least within the range of

e considered here. This was also found to be the case for the remaining methods

and for all other performance measures as well. Henceforth, £ will be eliminated

ac a parameter in presenting the results of the simulation. Figures 4-15 give

the average coverage probability within the 90% theoretical interval for pooling

Methods 2-13. Since e has little if any effect, the results presented are for

those cases in Fig. 2(a) only. The conclusions based upon Figs. 3-15 are

presented in the next section. Table VII presents the typical output of a
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(a) c «0.05 (SMALL) (b) « =0.125 OR 4.0 (LARGE)

Fig. 3. Average coverage within the 90% theoretical
interval for Method 1.

simulation run. The output is for case number 1, for the average, average

squared error, and corresponding standard errors of the coverage probability

within the 90% theoretical interval. The column headed AVERAGE in 27 tables

such as these were used in constructing Figs. 3-15. Now, the method with the

average closest to 90% was identified in all 27 runs and the results are

presented in Fig. 16 for the 19 runs in Fig. 2(a). in a similar way, the

method with the minimum average squared error over the 100 replications in each

of the same 19 runs is presented in Fig. 17. For example, in Table VII,

Method 13 has the minimum average squared error and this is indicated in Fig. 17

at the origin (case number 1). For N = 2, Methods 8, 10, and 13 were essentially

tied for the minimum and all three methods are indicated.

Now let us consider the group point estimate. Recall that Methods 1-11

give the same group point estimate by means of the weighed arithmetic average

given in Eq. (1). Methods 12 and 13 compute the point estimate by means of

the geometric average given in Eq. (16). Table VIII gives the average squared

error and associated standard error for both averages for each of the 27 simu-

lation runs.
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Fig. 4. Average coverage within the 90% Fig. 5. Average coverage within the 90%
theoretical interval for theoretical interval for
Method 2. Method 3.
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Fig. 6. Average coverage within the 90% Fig. 7. Average coverage within the 90%
theoretical interval for theoretical interval for
Method 4. Method 5.
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Fig. 8. Average coverage within the 90% Fig. 9. Average coverage within the 90%
theoretical interval for theoretical interval for
Method 6. Method 7.
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Fig. 10. Average coverage within the Fig. 11. Average coverage within the
90% theoretical interval for 90% theoretical interval for
Method 8. Method 9.
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100

Fig. 12. Average coverage within the Fig. 13. Average coverage within the
90% theoretical interval for 90% theoretical interval for
Method 10. Method 11.

IOO

Fig. 14. Average coverage within the Fig. 15. Average coverage within the
90% theoretical interval for 90% theoretical interval for
Method 12. Method 13.

27



TABLE VII

AVERAGE AND AVERAGE SQUARED ERROR OF THE
COVERAGE PROBABILITY WITHIN THE

90 PERCENT INTERVAL FOR SIMULATION CASE NUMBER 1

Method

1

2

3

4

5

6

7

8

9

10

11

12

13

Average

7.62E-01

5.66E-01

7.6OE-01

5.51E-01

7.63E-01

5.71E-O1

5.86E-01

9.81E-01

3.38E-01

9.74E-01

3.89E-01

6.91E-01

9.S2E-01

STD Error

2.31E-O2

2.29E-O2

2.29E-.02

2.21E-02

2.30E-02

2.22E-02

2.25E-02

4.75E-O3

4.05E-02

5.76E-03

4.25E-02

2.19E-02

4.SIE-O3

Average Squared Error STD Error

7.24E-02

1.62E-01

7.22E-02

1.71E-01

7.16E-02

1.58E-01

1.49E-01

8.88E-03

4.80E-01

8.85E-03

4.42E-01

9.18E-02

8.68E-03

1.11E-02

1.62E-02

1.10E-02

1.63E-02

1.11E-02

1.59E-02

1.56E-02

2.83E-04

3.68E-02

4.09E-04

3.81E-02

1.24E-02

2.87E-O4

V. CONCLUSIONS

The conclusions are based on the results of the simulation study described

in the preceding section. First, let us consider the group point estimate.

From Table VIII, the geometric average used in Methods 12 and 13 for com-

bining the individual failure-rate estimates was observed to yield a smaller

average squared error in 17 of the 27 cases. Although it is inconclusive here,

it appears that geometric averaging is slightly preferred over arithmetic

averaging as a method for combining individual failure-rate estimates into a

group point estimate. Recall, that this method was the one finally selected for

use in the IEEE Project 500.

Now consider the proposed 13 methods for combining the individual failure-

rate estimates into a group interval estimate. Based on Figs. 3, 5, and 7,

Methods 1, 3, and 5 provide interval estimates whose coverage probability

exceeds 90% for most of the caaes considered, particularly for large values

of N and/or large values of a. For N £ 5 and a = 0.25, all three methods

yielded interval estimates which, on the average, contained significantly less

than 90% probability. For n = 2, only 54% coverage probability was observed.

Generally, these three methods can be useful in providing somewhat conservative

group interval estimates.
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TABLE VIII

AVERAGE SQUARED ERROR FOR THE ARITHMETIC AND GEOMETRIC AVERAGES
AS GROUP POINT ESTIMATES FOR THE 27 SIMULATION RUNS

Case Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

IB

19

20

21

22

23

24

25

26

27

Average Squared Error Standard Error

Arithmetic
Average

2.94 x 10',-10

2.94 x 10

5.08 x 10'

5.08 x 10"

2.92 x 10"

2.92 x 10'

,-XO

,-H

,-H

4.08 x 10,-H

4.08 x 10.-11

2.12 x 10.-12

2.12 x 10.-12

5.18 x 10.-13

5.18 x 10.-13

2.03 x 10.-12

2.03 x 10,-12

5.95 x 10.-13

S.95 x 10

8.24 x 10'

7.30 x 10'

2.12 x 10"

r13

.-12

.-13

.-11

1.18 x 10.-11

4.49 x 10.-11

1.18 x 10'

1.18 x 10'

8.82 x 10~

5.08 x 10"

r11
,-n

2.94 x 10'.-10

7.37 x 10",-10

Geometric
Averane

3.45 x 10.-11

3.45 x 10.-11

3.53 x 10
3.53 x 10'
3.46 x 10'
3.46 x 10'

.-11

r11

,-n
3.54 x 10

3.54 x 10'

1.93 x 10

1.93 x 10"

r11

-11
.-12

6.31 x 10.-13

6.31 x 10.-13

1.85 x 10.-12

1.85 x 10',-12

7.67 x 10
7.67 x 10'
1.59 x 10'
8.40 x 10'
1.75 x 10'
1.54 x 10'
3.50 x 10
1.54 x 10'
1.54 x 10'
3.58 x 10'
3.53 x 10'
3.45 x 10'
3.44 x 10°

.-13

r1 3

.-11

f13

.-11

,-n
r11

,-n

Arithmetic
Average

2.58 x 10,-10

2.58 x 10

1.30 x 10'

1.30 x 10'

3.53 x 10'

3.53 x 10'

1.05 x 10

1.05 x 10"

,-10

r11
r11
,-12

r12
r11

3.85 x 10.-13

3.85 x 10.-13

6.85 x 10,-14

6.85 x 10.-14

3.14 x 10

3.14 x 10

1.06 x 10

1.06 x 10

2.91 x 10

2.91 x 10

8.95 x 10

8.95 x 10'

2.77 x 10

2.77 X 10

7.07 x 10

7.07 x 10

3.42 x 10"13 2.72 x 10'

2.72 x 10

4.03 x 10

3.93 x 10"14 4.03 x 10

7.02 x 10

1.08 x 10

9.29 x 10

8.28 x 10'

2.06 x 10

8.28 x 10

8.28 x 10

2.54 x 10

1.06 x 10~

3.42 x 10

3.93 x 10

I"13

,-14

1.28 x 10.-12

9.61 x 10.-14

4.40 x 10.-12

3.32 x 10

1.24 x 10'

f12

3.32 x 10

3.32 x 10'

f12

.-12

2.99 x 10.-U

1.30 x 10.-11

2.58 X 10

4.36 x 10'

,-10

-10

Geometric
Average

f13

f13

f13

f13

f13

f13

,-14
,-14

f13

f"
,-14
,-14

r1 3

r13

,-14

,-u
.-13
-13

f13

f13

f13

-13
-13

f 1 4

3.14 x 10

2.46 X 10.-12

From Figs. 4, 6, and 8, Methods 2, 4, and 6 are observed to be significantly

less conservative, yielding variable coverages between 25 and 88% for Method 2;

25 and 93% for Method 4; and 25 and 87% for Method 6. Again, the coverages

tend to be quite low for N si 5 and a = 0.25. Coverages tended to exceed 80%

for N ^ 15, particularly when a = 10.0.

By observation of Fig. 9, Method 7 provides somewhat variable average

coverages. The coverages range from 26 to 95%. The coverages tend to be large

for N £ 15 and a = 10.0, while they tend to be small for N £. 5 and a = 0.25.

On the other hand, Method 8 yields extremely conservative interval estimates,

with most coverages exceeding 98%. From Fig. 11, Method 9 provides extremely

variable coverages ranging from 27 to 100%. Based on Figs. 10 and 11,
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Fig. 16. The method having the cov-
erage probability closest to
90%.

Fig. 17. The method having the minimum
average squared error of the
coverage probability within
the 90% interval.

it appears that estimation of the prior variance ty2 by means of Eq. (14) is not

a particularly good estimate to use.

Now consider Methods 10 and 11. Based upon Fig. 12, Method 10 yields ex-

tremely conservative interval estimates with most coverages in excess of 90%.

From Fig. 13, Method 11 is less conservative than Method 10. Low coverages are

observed for a = 0.25 and all values of N, while high coverages are reported

for N :> 10 and a = 1.0. In general, the coverages are quite variable ranging

from 30 to 100% within the design.

Recall that Methods 12 and 13 were used in the IEEE Project 500. Method 12

generally provides coverages which underestimate the desired 90% value, except

for a = 10.0. The parameter y appears to have a significant effect on the

coverages with coverages decreasing as y increases. In fact, for y = 0.20,

the smallest coverages, 47 and 48%, were observed. Coverages are generally un-

satisfactorily small for a - 0.25, regardless of the values of y and N. Method 13

provides conservative coverages, most of which exceed 98% in the design.

Method 13 is not as sensitive to y as Method 12.

From Fig. 16, it is clearly observed that no method is preferred for the

entire design. For example, for N s 5 and a » 0.25, Method 10 is the preferred
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method. For N £ 10 and a = 0.25, Methods 3 and 5 are preferred. For a = 10.0

and Y = 0.10, Method 12 is preferred. For a = 1.0 and N ^ 10, Method 7 is

superior.

Since the average does not describe the entire picture, let us consider

the best average squared error performance methods presented in Fig. 17. Certain

performance aspects are readily apparent. For N £ 5, the simple interval

estimates proposed in Methods 12 and 13 are superior. For N £ 15, y = 0.01, and

a = 0.25, the more complicated interval estimation method given in Method 3 is

superior. For y = 0.20, Method 13 is superior. Method 11 is superior for

a = 1.0, except for N = 5.

Some general conclusions can now be made. Again, it is stressed that these

are based only on the results of the simulation study conducted here. Generally,

the best method to use depends upon the value of the prior gamma shape parameter

a, the parameter y which controls the coverage of the individual interval

estimates, and the number of data sources N which are being combined. It is

clear that simple averaging methods (such as Methods 12 and 13) are as good or

better than more complicated methods (such as Methods 1-6) when N £ 5. More

complicated methods should be considered for 5 < N £ 15, and are likely to yield

superior group interval estimates when N ^ 25. Methods 2, 6, and 9, which are

all based on the use of a gamma prior distribution, were not observed to be

superior for any point in the design, and should likely be eliminated from further

considerafion. On the other hand, Methods 3, 7, 10, 11, 12, and 13 deserve

serious consideration as useful methods for pooling failure-rate data.
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