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Abstract 

We have done a series of one- and two-dimensional calculations of 

hard-core Z-pinch flux compression experiments in order to study the effect 

of a plasma on these systems. These calculations show that including a 

plasma can reduce the amount of flux lost during the compression. Flux 

losses to the outer wall of such experiments can be greatly reduced by a 

plasma conducting sheath which forms along the wall. This conducting sheath 

consists of a cold, dense, high 8, unmagnetized plasma which has enough 

pressure to balance a large field gradient. Flux which i.; lost into the 

center conductor is not effectively stopped by this plasma sheath until 

late in the implosion, at which time a layer similar to the one formed at 

the outer wall is created. Two-dimensional simulations show that flux losses 

due to arcing along the sliding contact of the experiment can be 

effectively stopped by the formation of a plasma conducting sheath. 
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The Eulerian MHD code ANIMAL has been used to study the experiment 

illustrated in Figure 1. This system is a hard-core Z-pinch with an 

imploding liner outer wall. In all of these simulations an external 

current, I , flows through the center rod setting up an initial magnetic 

field which varies as 1/r. At t = 0 there is a uniform, 20 eV D„ plasma 

inside the vessel which is completely penetrated by the external magnetic 

field, i.e., no initial plasma currents. The moving liner has a constant, 

inward velocity of 1 cm/us and may compress flux as well as the plasma. The 

initial size of the hard-core Z-pinch is r „ = 15 cm and r. = 1 cm. 
outer inner 

Ths purpose of these simulations was to study the effect of the plasma 

nn flux compression when flux can be lost into either the center rod or 

the moving liner. The parameters of our study have been initial plasma 

density and initial external current. All other parameters (geometry, liner 

velocity, deuterium gas, initial temperature) were kept fixed. 

One-Dimensional Simulations of Flux Loss to the Liner 

One-dimensional simulations which have flux losses to the outer 

wall investigate implosions which have flux diffusing into the moving liner, 

but not into the center rod. Causes of such flux loss in a real experiment 

would include poor conductivity of the liner, increased flux diffusion due 

to late-time convergence thickening of a conducting liner, or thickening 

of an electrically insulating layer at late times, also due to convergence. 

To specify flux loss to this outer wall ANIMAL requires us to input 

B(t) at the outer boundary. The code uses this B(t) to establish a — "external 
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magnetic field inside the container. This external field can be thought of 

as due to a current, I, circulating through the center rod and around the 

walls of the container. When no plasma is present this external field is 

the total field and thus the total flux in the system at a given time 

would depend only on the input value B(t). For our calculations we 

specified a B(t) at this boundary which would Eive a vacuum flux, <J 
vac 

W 1 * - *o <l- " - 7 5 x (T3TTU/ > 

where A is the initial flux in the system. A can be related to an o To 
initial, circulating current I . 

2 T in outer x length 
o R. 

inner 

I is a convenient parameter we use to characterize the initial flux in o 
the system. 

The way this 6 (t) should be interpreted is that at the end of the 

implosion (13.7 us) we would have lost 75% of the flux in a system which 

had no plasma (vacuum experiment). Moreover, most of this flux loss 

occurs at late times. A plot of 6 (t) is shown in Figure 2. 
r Tvac ° 

In the presence of a plasma the total magnetic field becomes the 

sum of the external field and a magnetic field due to circulating plasma 

currents which develop during the course of the implosion. Therefore the 

total flux becomes 

6(t) = <j> (t) + /B , *dA Tvac / plasma 
/ ' 
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This can differ significantly from the vacuum value of flux which is due 

to B e x (. only. 

Line b of Figure 2 is a plot of total flux vs. time for a one-

dimensional simulation which had a plasma and which could lose flux to the 

moving liner. The initial circulating current was IMA. and the plasma 
17 -3 density was 10 cm . This plot shows us that the total flux inside this 

system at the end of the experiment is much greater than it would be if 

there were no plasma (vacuum experiment). The cause of this decrease in 

flux loss is what we call a plasma crowbar. 

The plasma crowbar is a thin, very dense layer at the wall which 

has enough plasma pressure to support a large magnetic field gradient. It 

is created when flux loss causes field lines in the plasma near the vail 

to diffuse into the wall. This results in an imbalance of the total pressure 

(magnetic and material pressure) next to the wall, driving a mass flow 

towards the boundary. This mass flow raises the density next to the wall 

and also brings in more trapped field lines which diffuse out when they 

get near to the wall. This field diffusion provides enough heating to keep 

the wall plasma at a few eV temperature. The credibility of eV temperatures 

so near to a zero temperature wall is discussed in Appendix A. 

Figure 3 shows various plasma parameters in the plasma crowbar layer 

vs. distance from the outer wall. This plot was made at 13.51 us into 
17 — "i a simulation which started with 1 = IMA and p = 10 en . We see that o o 

the plasma crowbar is cool, very dense and unmagnitized (WT « 1). The 
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thermal and electrical conductivities are their zero field values. This 

wall plasma supports the large field gradient which exists across this 

thin sheath. 

This large field gradient is seen in Figure 4 which is a plot of 
t 

B vs r at 13.1 us into the simulation of Figure 3. Also shown on this 

graph is what B(r) would be for an implosion done without plasma. We 

see in the figure that there is a bump on the magnetic field profile. The 
2 rising part of this bump has been seen by Gross next to a metal wall. 

It is due to field carried to the wall by the plasma as it experiences Vr 

drift. The plasma crowbar sheath provides a boundary which, to some 

degree, behaves as a conducting wall. 

Our physical model of the plasma crowbar says that plasma pressure 

on the wall holds off the magnetic field gradient. Thus, as we increase 

the initial current more plasma pressure will be required to hold off the 
L 

increased field gradient. Since the wall temperature will remain low (K a T ), 

more density is required at the wall to balance the field pressure. In order 

to raise the wall density more mass must come from the interior of the 

vessel. This additional mass will drag more flux wifh it which will be 

lost to the liner. Thus our model says that higher initial current should 

result in a greater fraction of the flux being lost. 

Figure 5a is a plot, for several initial currents, of the fraction of 

flux left at the end of the experiment vs. fill density. Inspection of these 

curves at fixed density shows that the fraction of flux conserved by the plasma 
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crowbar decreases with increasing initial current. Figure 5b is a plot of the 

mass fraction not -jammed against the wall at 13.0 us vs. initial current. 

As 1 is raised, more of the plasma is consumed by the plasma crowbar. 

These results a-:e consistent with our model. 

Finally we observe that our model implies that at fixed current more 

initial density should require a smaller fraction of total mass to flow to 

the wall in order to balance the field gradient. This means chat raising 

density should reduce the amount of flux lost due to formation of the 

plasma crowbar. Figure 5a shows this to be true. 

One-Dimensional Simulations with Flux Loss into the Center-Rod 

These calculations attempt to simulate an experiment in V7hich flux 

is lost into the center-rod. The most obvious reason for such losses in a 

real system is dissipation due to the large current densities that might be 

curried by this conductor. 

Qualitatively, one expects the same results for flux loss into the rod 

as were found for flux lost into the liner. Flux loss should drag mass to 

the rod which increases the pressure and tends to support a field gradient. 

However, quantitatively we find that over most of the implosion not enough 

mass goes to the rod to generate an effective plasma crowbar. 

This observation can be understood with the aid of Figure 6. This figure 

is a plot of mass fraction dragged to a boundary vs. the fraction of flux 

lost through that boundary. This plot is for a simplified experiment, similar 

to Figure 1, which does not have a moving outer wall but does lose flux 

into either the outer wall or into the center-rod. The particles are assumed 

to be frozen to field lines. 
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What we see is that when R . >> R. a small amount of flux loss 
outer inner 

to the outer wall is accompanied by a large fraction of the total mass. 

Thus loss to the outer wall can drag lots of material for creating a plasma 

crowbar. 

On the other hand, flux loss to the inner wall of the same system 

is accompanied by very little mass. We may not collect enough mass to 

generate a plasma, crowbar on this boundary. 

The physical reason for this difference is that the particles are 

mostly at large radius while the flux is concentrated at small radius. 

6N = 2irr p6A 

66 = - ^ 6A T r 

^ 6N 10irr2p Therefore T T = — j 

At 15 cm there are 225 times the particles/unit flux as there are at 

lcm. 

Also plotted in Figure 2 is the flux vs. time for a lossy rod simulation. 

We see that it is close to the vacuum value over most of the experiment, 

deviating from the vacuum value only at late times. 'That is happening is that 

throughout the implosion a cold, dense plasma layer is being formed along 

the center rod. However, there is not enough mass in this layer to create 

an effective plasma crowbar until very late in time. 
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There are two reasons for the eventual, late-time formation of the 

plasma crowbar. First our flux loss model dictates that most of the flux is 

lost at late times. Second, the outer radius is no longer large corapared to 

the inner radius. Therefore, the mass fraction which accompanies a given 

amount of flux loss is now much greater (Figure 6). It turns out that at 

late time we can form an effective plasma crowbar along the center conduucar. 

This is seen in Figure 7 which is a plot of total magnetic energy vs. time 

for three cases - vacuum, plasma with IOSSPS to outer wall and plasma with 

losses to the inner wall. We see from this curve that the plasma crowbar 

becomes effective for losses to the rod only at very late times. 

Since the mechanism for forming the plasma crowbar on the inner 

conductor is the same as the mechanism for forming it on the outer wall, 

we would expect the dependence upon fill density and initial field to also 

be the same. This is supported by Figures 8a and b. Figure 8a shows the 

time at which the plasma crowbar becomes effective vs. fill density. 

This time is defined as the instant when the field energy of Figure 7 turns 

up. Raising the density makes the crowbar come earlier while increasing the 

field delays it. Figure 8b shows the fraction of flux left vs. fill density. 

It goes down at very high densities because tax is everywhere less than 1 and 

the plasma rapidly cools to the point where it is no longer tied to the field 

lines. Radiation losses in these high density simulations do not seem to be 

the dominant factor in the failure of the plasma crowbar at high p n. 
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Two-Dimensional Calculations 

Several two-dimensional calculations were done on the hard-core Z-pinch 

system to see it two-dimensional effects change the one-dimensional results. 

No significant differences were found. Figure 9 is a two-dimensional plot 

of current density for a system which loses flux to the outer wall. The 
17 -3 fill density was 10 cm and the initial current IMA. Figure 9 clearly 

illustrates the very large plasma crowbar current flowing along the outar wall 

Just inside chid region is a smaller current in the reverse direction. This 

reverse current is due to the bump on the magnetic field vs. radius shown in 

Figure 4. The flux vs. time for this system is shown in Figure 2. This curve 

is virtually identical to tl°. one-dimensional result. It appears that 

two-dimensional effects do not significantly modify the plasma crowbar. 

Finally, ve did two-dimensional calculations which attempted to simulate 

a cylindrical system which has arcing at the sliding contacts between the 

moving liner and the conducting end plates. To simulate these arcs we 

allowed the system to lose flux only at the ends of the liner. Figure 10 

shows the current distribution at 13 us for an experiment "which started 
17 -3 at p = 3 x 10 eta and I = IMA. We see a very large plasma current at the o o 

simulated arc. This is the plasma crowbar current which appears to be very 

effective in this experiment. The flux vs. time for this simulation is 

plotted in Figure 2. It had the smallest fractional flux loss of all our 

simulations. 
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Conclusions 

These one- and two-dimensional simulations indicate that the presence 

of a plasma in a hard-core Z-pinch flux compression experiment can 

significantly enhance the final magnetic field achieved by the system. The 

degree of enhancement depends upon initial field, plasma density and whether 

the loss is to the inner wall or the outer wall. 

It appears that flux losses into the moving liner or into an arc at 

the sliding contact will be greatly reduced by the formation of the plasma 

crowbar. This may be important because it indicates that good sliding 

contact and high conductivity pusher materials are not crucial for the 

success of such a flux compression. It also may be important because it 

further indicates that in plasma-implosion experiments the liner need not 

be a good conductor. Over a wide range of fields and densities the material 

may be chosen due to considerations other than a need for high electrical 

conductivity. Specifically, one could consider using an outer wall of a 

refractory insulator. 

Losses into the center-rod are not reduced until very late in time 

when the plasma has been pushed close to the rod where the flux is 

concentrated. Thus the plasma crowbar, while interesting, will not be 

nearly as effective in enhancing the flux compression of a system with 

losses into the center-rod. 
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Appendix A 

One result which should be questioned is the huge temperature 

gradient which must exist near the wall if this plasma crowbar is to be real. 

In order to form a plasma crowbar we need the plasma temperature to rise 

from the wall temperature to a few ey within seyeral .microns (see Figure 3). 

This appears to be an extremely steep gradient. However0 we believe it's 

real fox two reasons. 

First, the ANIMAL results converge as we put finer and finer zones 

next to the wall. Figure 11 shows T(r) for two different zonings at 
16 — 11 p = 3 x 10 cm" and X = 2MA, The data points show the locations of the o o 

zone centers for each calculation. T resulting T(r) profiles are nearly 

the same, indicating that the calculations have converged on a consistent 

solution of the code's physical model. 

The second reas'..i for belieying the temperature profile is that it 

is not as steep as it could be if one considered thermal conductivity alone. 

If we neglect radiation, PdY, and ohmic heating, then energy conservation 

takes the form 

> 
We would want T to be <\> 0 at the wall if tbe plasma is not to 

collapse. Using Spitzer conductivity we find that this requires 
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This implies that there is some maximum downward curvature iu the temperature 

profile which will not require a local energy source to prevent cooling. This 

maximum curvature profile is 

„, , „ . 0.286 T(r) = T + c r 

This profile is also plotted in Figure 11 where one end point has been tied 

to the interior plasma temperature. Comparing this T(r) to the one 

calculated by the code, we see that the calculated value does not have as much 

curvature as it could have. The wall thermal gradient, while steep, 

is not as steep as it could be. In absence of any other effects (which are 

considered by the code) the thermal gradient would actually steepen. Thus 

we are willing to believe the code when it predicts eV temperatures a few 

microns from the wall. 
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Figures 

Figure 1 - Geometry used for all of our calculations. A hard-core Z-pinch of 

1 cm inner radius and 15 cm initial outer radius. The liner implodes 

at 1 cm/us. There is an initially uniform D_ plasma at 20 eV temperature 

inside the container. At the start of the implosion the circulating 

current, I , creates a magnetic field which fully penetrates the plasma. 

Figure 2 - Flux vs. time for several systems. 
17 -3 a) Vacuum, b) 1-D with flux loss to the liner, 10 cm , IMA 

c) Sane as b except 2-D calculation, d) 1-D with flux loss to rod, 
18 —3 10 era , ll'li., e) 2-D with arc losses at the ends, 
17 -3 

10 cm , MA. 

Figure 3 - Plasma crowbar sheath parameters at 13.57 lis vs. distance 

from the liner for a flux loss to the liner calculation which 
17 -3 

started at 10 cm , IMA. 

17 -3 
Figure 4 - B vs r at 13.1 us for a simulation whicrti started at 10 cm 

and I = IMA. The lower curve is B(r) for a vacuum, o 

Figure 5 - a) Fraction of flux remaining at 13.7 us vs. N for several 
o 

i n i t i a l currents. Loss to l ine r . 

b) Fraction of mass not consumed by the plasma crowbar at 

13.0 us vs . i n i t i a l current . 
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Figure 6 - Fraction of total mass dragged to a boundary vs. fraction of 

flux lost thru that boundary. Non-imploding system with material 

frozen to field lines. The two outer curves are for 

R .. /R. =15 while the inner curves are for R „ /R. =1.7. outer inner outer inner 

Figure 7 - Total magnetic energy vs. time for a) vacuum, b) plasma 

with loss to the center rod, c) plasma with loss to the liner. 
17 -3 Initial plasma density 3 x 10 cm and I = IMA. 

Figure 8 - a) Time of plasma crowbar vs. fill density at two initial 

currents. Loss to the center rod. 

b) Fraction of flux left @ 13.7 us vs. fill density for 

two initial currents. Loss to the center rod. 

Figure 9 - Current density at 13.0 us for a 2-D calculation with flux 

loss to the liner. The large current flowing next to the liner is the 

plasma crowbar current. The smaller current just inside the plasma 

crowbar flowing in the reverse direction produces the bump on the 

B(r) profile seen in Figure 4. 

Figure 10 - Current density at 13.0 us for a 2-D calculation with flux 

loss due to arcs at the sliding contact. The large current at the 

upper right is the plasma crowbar current. The smaller, reverse 

current along the conducting liner results from the rise in B vs. r 
2 that one gets at a conductor from Vr drift . 
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ure 11 - Temperature vs. distance from the liner at 13 us for two 

different zonings of the same problem. I was 2MA & p = 3 x 10 cm . 

The points are located at the zone centers. Also shown is the temperature 

profile that would exist if the interior point were held at 30 eV and 

thermal conduction to the zero temperature wall were the only energy loss 

mechanism in the plasma sheath. Thermal conduction alone will support 

a much steeper temperature gradient than is needed to create a plasma 

crowbar. 
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Figure 9 
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