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ABSTRACT

This paper deals with interpolation of one-dimensional data using
piecewise cubic interpolants. Methods are presented for modifying
the derivative values in the Hermite representation in order to
eliminate the "bumps" and "wiggles" that frequently plague the more
common cubic spline or Akima interpolants. The resulting interpolant
is C], but generally not Cz.
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This report consists of a reproduction of a poster prepared
for the SIAM 1978 Fall Meeting. A more complete description of
our new algorithm is being prepared for publication.

The poster contained a two-dimensional display of methods vs
data sets to facilitate comparison of the six methods on four sets
of data. This is simulated here by numbering the figures i.j. as

follows:

Data Sets:
is= 1. LLL data set RPN 12*
i=2. LLL data set RPN 14*
i= 3. Example 3 from Akima's paper (see page 5).
i= 4. A nonmonotone example. These data are from S. Pruess,
“An Algorithm for Computing Smoothing Splines in Tension”,

Computing 19 (1978), 365-373.

Methods:
Jj=1. Cubic Splines.
Jj = 2. 3-Point Difference Formula.

j= 3. E11is-McLain Method.

Jj = 4. Akima Method.
J = 5. Zero Derivatives.
j = 6. A new method by the authors that guarantees a monotone

interpolant when the data are monotone.

*Actual data from a radiochemical calculation.
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PIECEWISE CURIC INTERPOLANT
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e Two c\agr&s of —Cmc.c\om) 6€V\Qro.\\5 used to
Sper,'\-ﬁﬁ ond po‘mt Lirst or second darivative

values.

o This versionn uses %—Po‘m’t (non—Cewtered)
difference formulas to &Ppro)('\w\odce end derivatives .

® _wae,rpolowvl:s COM hove U.V\PMﬁiCa.\ uuicﬁ\es.

(See Figures i.1)
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e di s the derivative of %, of the abuo.dro.-l:ic. that
posses through (i,Yea)y (Kiy Yi), (Lin, Yir)-

e di is a convex combination of

the s\opc.s of the ad)'o.cemt data :

di = i Bioy + — il b,
o+ hio +

where

A= K=y,

Aj": (‘53’4—\‘91' )/*\} g

(See Figures i.2)
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e d; is the derivative ot %, of the cubic thek passes 'H/\r*ouﬁ\f\
(HasYin), QL Ye), OlnyYin)  ond provides best (we,la\/\'tec\)
least sc%;.ares £t o (1;—2., Ye-a) ond (A4, ‘ﬂﬂ-z)

min (_.__6 + ____?-_.SH' >

k; -2 MH‘\ SHJ’H'I./
¢ Reswlts ore 3ev\exa-\hj %ui'te similar /4 "
to 2PD 5;.27‘3/}3 o
+ Reference: T.M.R.Ellis omd D.H. -
Aa Ay A Ain Nivz

Mclain,” A\qori{:\mm Si4, A New
Method of Cu.b\c Cwrve F’chn3 Using
Locol 'Do:\:o. ACM=TOMS 3 (1417), 115-118.

(See Figures i.3)
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*d; is & convex combination of the slopes

of tha adie.ce.vx‘t' data , derived by o %QOW\MC
o-rcsu.mw.t :
a; b;
d; = A, +
a; +bi a; +by

A
where
0~£=IA¢+\'AL| > b, = ‘Ai—l -Ai—z] .

*Reference: H. Akima, “A New Method of Tnter-
polation and Smooth Gurve FH:HV\B Based on

Local ?roculurcs': J. ACM 17 (1970), 589-602,

(See Figures i.4)
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ZeroDerivatives

* The simplest possible al%or;'\:\v\m is to jusk set di=o0, i=1,.. N As
nobed in the references, this turns out to be piecewise monotone.,

T o As the 6xam.P\e.s Nlustrate, this produces interpolants that are
Q_‘A'l:re.mc\sé “unp\\\ﬁsica-\". Thus, while \oe.'mg yownotone whare the
dato ore woy be necessary, it is not sufficient to produce interpo-
lants that “look opod .

® Refeyences: (1) E. Passow, "Piecewise Movnctone Spline. Iano\ad:'ion\:
T ppprox. Theory 12 (1974), 240-241.
(2) C. deBoor amd B. Swartz, "Piecewise Monotone Interpelation,’
T Approx. Theory 21 (19717), 4li-4le.

(See Figures i.5)



Fritsch-Carlson

Toward o Piecewise monotone. interpolawnt
That “looks gooc\"{

° AVRES (‘di-f—l "‘ﬁf)//{ti , /Lu": Aip=Ae e TF A =0, £ &0

Cannot be movnotone on Eii ,XC.H] uwnless d;:d{....:O.

¢ Su.Ppose_ Al #0 amd let o = di /b y B=din /4.
Thewn

£ ) = -____ifz (&+p-2) ()3 —@d+p-3) Ay (a-2;)>

t et )]+ oy

/() = jfz [(3Gi+p-2) @2 )% - 2 (R 4p-3) A (-23)




+ ookf'] ;

') = BB [3 (wap-2) () = (2 +p-3) b |-

v

* It s eosg'tv show "k\r\‘o:t 0 necessavry condition for

mono‘tov\ici'bj of £, on [, X} s A2 0, @20.

® Because ‘/CL’(j,.) s %uadro:\:ic,, Ynowo‘tbv\'\c,i'\:j of ¢ (x)
IS c\'\rzc:\:\j related +o tha \ocation of Phe extrevwum
of VC.L/:

o i [24+p-3
= A+ 3 <d+{5.’2> (A+p#2)

and 1ts value there :
/@) = DA, p) - B,

_ 1 (2 4p-2)%
$L,p) = o 3(a(+;r3|/5_2L.

°* Thus, we can characterize the
w\ov\ofonici‘\ﬂﬁ properties of 0
on iykin} by the @o\\ow'm_g diagram.
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* Let ‘M be the region bounded by ¢@hp) =0
omd the coordinate oxes. TThis is the.
set of monctone '\ntexPo\ants on [0y Xinld -

o | et d be o subset of . with the propcf-bj:
et (,MeB WIF 0<L¥Lel, OF " <3, them
G* e, G (Ba)e S (symmetry).
TF we adjust ,p) to lie inside § by decreasing
L omd /or s (i) insures that we do not d.es-hroj

monotoni city e OM od:)acey\‘t interval.

. Rzg'\cms 3 we have comsidered :

o] bounded by =3, p=3, and $lxp) = 3.
JC£2 bowunded b_’f =3, /«}:3) and o/-/-/ir—‘/,
J_g éoundtd Ay ol -I—ﬂ =3,

J,; Aoumc/cc/ by 20<+/4 =3 and o(+,;é=3.

(A// Sbprended below é_y coord inate. a.Xes)
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° A -Fo.wsi\sﬁ of piecew'\se. monotone. Piecewise.-

cubic \vx‘texpo\a.ﬁow schewmes:

Step L. Initialize d; +o gome convex
combinetion of By, amd B;. [For
these examples we use 3PD.]

Step 2a.. If b, =0, sat d; =dy, =0, Ond 304:0 nekt interval.
Step 2b. It Bi#O, compule o and (. ‘

Step 3a. If d20, 20 omd (o(w(s)e,g, 60 +o next interval.

S&P 3b. IF 420, P20 omd Q’(\{ﬂ‘ﬁxg, Compm the lo.rges't T,
0<¢T¢ 1, such that (o, TP)ed. Set di=di, diyi=Tdiy.
[Here we use 43--.33.]

Step 3c. If d<o or p<o the dato. ore nowmonotone. Possib)
(o) leove di, di wnchanqed omd go to next intervol.
(b) Set di=di =9 [this insures exact piecwise W\ono-‘comc.ihj.j

[ Procedure (0) wos used for these examples. |

e proccdwms:

(See Figures i.6)
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Figure 1.2.

3-Point Difference Formula on
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E1lis-McLain Method on Data Set 1.
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Akima Method on Data Set 1.
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Zero Derivatives on Data Set 1.
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Fritsch-Carlson Method on Data Set 1.
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Cubic Spline on Data Set 2.
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3-Point Difference Formula on Data Set 2.
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Akima Method on Data Set 2.
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Figure 2.6.

Fritsch-Carlson Method on Data Set 2.
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