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ABSTRACT

This document is an exposition of the physics in the RAVEN code and the numerical
methods used in implementing the physics.

I. INTRODUCTION

The development of a one-dimensional (1-D) magnetohydrodynamics (MHD) code RAVEN is part of
a broadly based and highly flexible program being pursued at the Los Alamos National Laboratory for
the study of many experimental situations. Because the purpose of this report is not a general
documentation of numerical methods, mention is made only of previous work that contributed directly to
the present code development.1 3

The developmental philosphy of the RAVEN _ie is to broader he structure gradually to apply to
more and more general situations while keeping previous simple calculations as default options. The
development is not strictly TOP-DOWN because it is impossible to nicipate all the problems that will be
attacked with the code. However, it is necessary to keep the program logical and flexible. Thus, the code
is not allowed simply to grow like a fungus, here is a continued effort to retain a generally TOP-DOWN
code organization, although the specifics of this organic inn will change as time goes on and as more
experience is gained.

The overall structure will contain several options not compatible with each other, but the user should
not use contradictory problem specifications and checks to avoid inconsistency. These checks are
included in the code to the extent possible. For example, the calculation is formulated for a partially
ionized gas with separate atomic and electronic equations for the case of hydrogen only. However, other
general materials are considered provided the energies and pressures of the components are considered
together in local thermodynamic equilibrium (LTE). Thus, the electronic populations are not specifically
referred to in nonhydrogen materials such as copper or aluminum. The plan is to remove this limitation
eventually. Accordingly, it is intended that a new write-up of the code be issued with any major change in
code structure.

II. MHD EQUATIONS

in general the materials considered ere mult component with different velocities, temperatures, and
degrees of ionization. The approach taker in the RAVEN code is to set up a structure that handles as
many options as possible, some of which may not be totally compatible with others but each of which can



be handled within the code structure. Therefore, the fluid equations will be formulated with this objective
in mind. The code attempts to include tests that disallow the use of incompatible assumptions.

One of the main influences on the formulation is the handling of the equation of state (EOS). The
MAGPIE-EOS packages that are included assume LTE and a single fluid. Thus, the state variables
consist of the density p, the temperature T, pressure p, and specific energy e of the total fluid. This fluid
may be molecular, atomic, ionized, or a combination of these depending on the conditions. The MHD
equations make no direct reference to the degree of ionization; this is taken care of internally in the
transport coefficients subroutines. At present, the SESAME2 tables are used in fhe same way, although a
complete treatment of transport coefficients in this context has not been obtained

In the special case of hydrogen, u slightly more elaborate treatment has been developed. A package has
been written by John D. Thomas (Los Alamos National Laboratory) that provides molecular, atomic,
ionic, and electronic populations. This allows the use of the last quantity in calculating transport
coefficients separately. In this package, all the components can be considered to be in LTE or the
electrons can be handled separately. In the latter case, the electrons in general have a different
temperature from the heavier particles. The heavier particles are assumed to have the same temperature
because they equilibrate more rapidly with each other than with the electrons. In this case, two energy
equations are used with temperature equilibration terms. Another LTE assumption that is relaxed is the
Saha populational equilibrium between electrons, ions, and atoms. For this purpose, a rate equation is
solved.

The theory is formulated to satisfy the three basic I D geometries by using index a in the differential
operators. For example, the continuity equation for the total density p is

4£ + _ £ - ± ( r ^ ' u ) = 0 • (1)
d t r a-1 i r

where a is equal to (1.2,3) for (plane, cylindrical, spherical) geometry, respectively. Because only radial
motion is allowed, the radial velocity component

u - 41 (2)
dt

is the only one *!iat appears.
In using MAGPIE or SESAME EOS calculations, the density p is the only quantity needed because

the handling of different species is done inside the subroutines. However, for the more general treatment
of hydrogen, an ionization fraction f is defined by

where n, is the number density of atoms present whether ionized or not and whether combined into
molecules or not. The ionization fraction f is determined by the electron continuity equation that with the
help of Eq. (3) is written in the form

4 i + _ i i ( r a - J u ) - -of + (l-f)S . (4)
dt r a - l 3r

The a and S coefficients on the right of Eq. (4) are the recombination and ionization coefficients as
tabulated by Bates, Kingston, and McWhirter.4 This a is not to be confused with the index in the
differential operators. This equation enters the calculation only in the case of non-LTE hydrogen.



The magnetic fields and currents have components only perpendicular to the radial coordinate. When
the simple Ohm's law is used, the only components of the momentum equations that need be considered
are the radial ones.

" l - l l T " e " i ! E r + <Hi * 8 > J - - 3 7 - + P i e , r • K>

d u e , 3 P e (f,\

Because mt « m,, the inertial term in Eq. (6) is ignored and the radial electrostatic field is given by

Using Eq. (7) and the charge neutrality assumption

ne * n i

allows elimination of Er from Eq. (5) so that

» E - « * » > r - S • (8>

where p ~ ^m, and u ~ u,. The total pressure is

P - Pi + Pe . W

To take proper account of the neutral component, another contribution from the neutral momentum
equation is added in; p then includes a neutral component and the pressure becomes

where the a-species includes all atoms whether neutral, ionized, or within molecules. In the MAGPIE
reduction, pc is removed as such and considered to be included in p, where, in that case, species a is
considered to include all particles. Note that, although the radial electrical field Er is indeed strong, it has
been eliminated from consideration and can be calculated as an edit from Eq. (7) if desired.

The energy equation for atoms is

^ ± + p j - . J L - ± ( r « m±
dt Pa dt r a- l 3r a 3r

where

v , 1
p



The pressure and energy EOS are taken to be of the form

and

(12)

(13)

(14)

Although ec does not appear in Eq. (11), it appears in the electron energy equation. In the MAGPIE case,
tfl) —• oo, and ea includes the electron specific energy. In this case, there will be no separate electron
energy equation. The first term in Eq. (11) is written

dTa
ea.T

a I T
dv

v dT

where

and

From the first law of thermodynamics.

(15)

A standard thermodynamic relation is'

dv T " dT~ ,
a a "

Thus, the first law can be written in the form

e a , v + Pa ' TaPa,Ta .

where



Note that v is used instead of va because ea is defined as the energy of atoms per total mass. The same
thing will be true of the electronic component. Furthermore, because

3pa 3p

Eq. (15) can finally be written in the form

The electron energy equation is handled in a similar way.

eq

where the Joule heating rate eD and bremsstrahlung loss rate ebr are given by

•D " - J • (nJ) ( 1 8 )

P

and

e\ . *±L (19)
ebr — ^ >

with

Pb r - 1.757 X 10-4°neTe • (20)

The bremsstrahlung formula shown here is for an optically thin medium. The method of generalizing this
approximation will be discussed in a subsequent document.

With no displacement, current Maxwell's equations are

WOJ - V X E ( 2 1 )

- i ! - 7 X E , (22)

7 • B - 0 . (23)

and

2 • ? " f < " i - » e ) . (24)



The simple form of Ohm's law is used,

E = rj - u X B , (25)

where u is given by

and r| is a tensor quantity.
In the reduction of the magnetic equations, keep in mind that all magnetic equations as well as aJl

magnetic terms in the momentum and energy equations are only meaningful for a = (1,2). In the 1-D
geometry. Ampere's law, Eq. (21). reduces to

L i (27)

and

j z = _ _ ! _ _ J L ( r a - i B _ , . (28)

Thus, the momentum Eq. (8) can be written as

0—- + -— ;i 4- + = 0 \ ^ l
dt ••!• ~-o r 2 f a - 1 i d r • 2 J Q

Faraday's law. Eq. (22). and Ohm's law, Eq. (25), are written

^ - ^ (30)
at jr

and

K ? = - e z J . . + ' z z ) z - u B . . . ( 3 3 )

For purposes of solution, the current components Eqs. (27) and (28) and the electric field components
Eqs. (32) and (33) are substituted into Eqs. (30) and (31) leaving two equations.

+9t 5r ' u dr ! ?r ' a-1 9r

and

(34)



3t
_1 3_
0-1 "37

1 3 ,r
3r

(35)

The basic set of equations to be solved includes Eqs. (4), (29), (16), (17), (34), and (35). Equations
(3O)-(33) are used after the solution of the basic set of equations to evaluate current and electric field
components.

III. LAGRANGIAN COORDINATES

The position r of any point moving with the fluid can be regarded as a function r (x,t), where x is a
monotonically increasing function of the initial fluid position. Thus, any quantity f expressed as a function
of space and time is now form

f - f ( r ( x , t ) , t ) .

The space and time derivatives of f ;n rhe Lagrangian frame are obtained using the chain rule

- i£
t = "a7

(36)

and

x 3r
II (37)

The fluid velocity u at a point fixed in the fluid is given by

(38)

Thus, the transformation of the time derivative, Eq. (37), becomes

(39)

The total time derivative is therefore

dc " I t
3+ u —3r

_3_

c * "3t
(40)

Substituting Eqs. (36) and (40) into Eq. (I) gives

3x l a

. ± !± III) 1
3 x l 3 t a x

J t



Because x and t are independent, this can be written as

3c
p _ j _ -_i i f

•a f a dt ' dx ' a 't 'x

3x ' a ' t

For this relation to be satisfied, the quantity in brackets must have the same t-dependence as p (x,t) '.
Thus,

„ g ( x j
ox u t i ' x , t )

where g(x) is an arbitrarily chosen function. The relative volume or inverse compression V is defined by

v = X . f 2

where v is the specific volume and the zero subscripts refer to the initial values p0 = p (x,0) and vo

v (x,0). The transformation Eq. (41) is therefore written

Because V (x,0) = 1, Eq. (42) is integrated over x at t = 0 to give

r ( x , 0 ) a - r ( 0 , 0 ) a + a , ' X g ( x ' ) d x ' .
o

The simplest choice for g and the one that will be used in the following sections is g (x) = 1, in which case

x - r ( « , 0 ) a - r ( 0 . 0 ) : i . {43)

This is not the only choice; for example, g (x) = x leads to

x = r ( x , 0 )

provided r(0,0) is set to zero. The form in Eq. (43) makes x proportional to the original volume of
material. This might suggest that mass rather than original volume be used as the Lagrangian coordinate.
However, this is less good in situations where there is creation or destruction of the fluid component
under consideration. Although this does not occur in the present model, future extensions of the theory
will require it.

With g (x) = 1. Eq. (42) becomes

+ - - vfx.tj (44)

and the transformations from Eqs. (36) and (39) are written



_3_
3r

_ r " - 1 3
t " V 3x

(45)

and

3t
r " " 1 _3_
V 3x

(46)

In the remainder of the test, the subscripts that indicate the quantities held constant under differentiation
will be omitted.

Application of Eqs. (45) and (46) to the relevant equations of Sec. II results in the following set of
equations.

df f 3 , a-1 * r / , «\o (47}

1 3 f
r

(48)

dT TaPa,T a dV 1 3 1 - ^ Ta Te
'a t

- 0
eq

(49)

dT

eD + e br

VV 3x

i a , r o- i H7 "7 u 3

eq

(50)

(51)

(52)

3t

3 B
Z 1 r0"1 3 , n « 3 a_. •

3x ; V • t e l i i o v U l e '

u r a - l 3Be r a - l

V 3x
(53)

2(a-l)n98 3B

3t V Jx l VOV 3x
3

-sr ( r

V 3x ~ V 3x
(54)



The transformation to Lagrangian coordinates was set up to satisfy the continuity equation. Therefore,
the latter needs no further explicit consideration.

Equations (53) and (54) can be put into flux-conserving form in the following way. Differentiation of
Eq. (44) with respect to time gives

f = i (r'-'u, . (55)

By means of Eq. (55). the velocity terms as such are eliminated from Eqs. (53) and (54), giving

± • b = _L. Tlt _ : - _1 r_!_J_! 1± (56)

and

3 3 r 2 ! . t - l > , " - • .-<B • . - j - l . u z A:.-, ,C-I\
(\'ft ) = _ . _ „ L_̂  IJ ' )

3t ' z 3x uov t)x ' 5x i. V « '

where

The motion of the medium is taken into account through the time ependence of V (x.t). The basic set of
partial differential equations (PDE) to be solved includes Eqs. (47) - (50) and Eqs. (56) and (57).
Equations (51) and (52) are used after the fact to express the current components. The quantity Cc is
constant in a vacuum region and is therefore better to use than BH in the numerical treatment.

IV. FINITE DIFFERENCE EQUATIONS

The domain of solution in r will always be finite a ^ r ^ b, and for a = 2,3. it is required that a ^ 0.
For a = 1.2, the physical space is infinite, but is treated on a per unit area basis for a = 1 and on a per
unit length basis for a - 2. In the latter case, the physical domain is as illustrated in Fig. 1. The
Lagrangian variable x is defined over the domain xa < x ^ xb, where xa = a"/a and xb = b°/a. The
variable x is made discrete by choosing a finite set of values x, monotonically increasing with the integer
index i where 0 < i < I. The extreme values of x, are made to coincide with the boundaries so that
xo = xa and x, = xh. Thus a set of cells is formed as shown in Fig. 2 with each index corresponding to
a cell edge. As will be seen below, many quantities will be defined at cell centers *»nd will be labeled by a
half-integer as is also shown in Fig. 2. As indicated in the figure, the cells need not be of uniform size. The
discrete time variable tn is a monotonically increasing function of the integral index n.

Fig. 1. The basic cylindrical system.

10



\ \ \ \ \

I
Fig. 2. The radial mesh.

The discrete position r" of the fluid particle is written r" (x,tn). In the following sections, indexing
subscripts will refer to Lagrangian position and indexing superscripts to time, as in the above example.

The velocity of a cell edge or "mass point" is given by the difference form of Eq. (38).

r" - r " ' 1 (59.1

where

Atn-l/2 - tn . tn-J _

The value of V for a given cell center is obtained by using the difference form of Eq. (44),

(rn
i

1/2

. ( rn )

i
xi+l/2

(60)

where

The quantity V"+1/2 is defined at a cell center as most other quantities will be. The integer or
half-integer nature of the subscript will always indicate where the quantity in question is defined. When a
quantity is required in a position other than where it is defined to be, it will be so indicated with i bar
representing an average.

For a quantity Q normally defined at a cell edge, the cell center value is given by

Q?

For a quantity Q normally defined at a cell center, the cell edge value is given by

(61)

(62)

The implicit difference equations are as follows. Equation (47) becomes

11



12

2 ' f lt

t n - l / 2

t l - 1
1
1 f n
1/2 f i f l / 2

V j + ] / .

l+l

•-" i + 1 / 2

The momentum Eq. (46) is written

( 6 3 )

CAn
1 + ! , 2 r - ' B j . w j f

(64)

where the artificial viscosity q " . | j is given by

, . n - i . _ . , [ • - ! • . .

i+i/:
(65)

for u" ^ u". , and zero otherwise, where c is a constant of order unity. For a forced quasi steady
pressure balance. K is set to zero. For a dynamic calculation. K is set to unity.

The implicit difference approximations to Eqs. (49) and (50) are

(e
a 'Ta

and

Te,l-H/T ' TS.1*1/2 . n
" " < e >

(67)



where

B? , ( r " ' i ( A j n + ; A ) n : (68)

and

^n _ (rg)^1"1 ' r,J^_," + ,Je_)" (69)
Y i 2 '''VAX i + 1/2 k V A x ' i _ l / 2 J

The implicit difference approximations to Eqs. (56) and (57) are

• vi+l/2
ci+l/2

Ti+l/2

+ r^ [<a6z)i+l (Bl+3/2 - BI+l/2> " <a9z>? (B?+i/2 - B? ,,,>; - 0 (70)
uooxi+l/2

and

nil l»n~ 1 nil" 1
B l / 2 " v l / 2 B l /

- (a96)?

T ~ ^ l ( a i+1 (Cl+3/2 " ci+l/2> - <a 'i <ci+l/2 - ci-l/2)' ° ' v '

where

• ( n 9 6 ) "-' /2 ; (72)

(QZZ)n . | ( " -W/^ + <^'>?-l/2 , i ( 7 3 )

Vi+l/2tal+l/2 Vi-l/2flxl-l/2

and



1 - 1 / 2

V. SOLUTION ALGORITHM

The solution of the difference equations of Sec. IV is accomplished by splitting off all the diffusive
terms and some rate terms to obtain a truncated system that is solved implicitly by Newton-Raphson
iteration. This partial solution is then used in conjunction with the previously deleted terms to complete
the solution. This splitting is very much like the implicit contip'iousfluid Eulerian (ICE) technique
developed by Harlow and Amsden.*1 The intermediate solution is accordingly labeled by a tilde. The
truncated svstem is summarized as follows.

f. - (75)

,7b ,

•Pi + l.'l1 " P i - 1 / 2
' ' " ( B 1 - ' ' ' "1 - ' ' - '

"n

(78)

c ' u - "
- . ^ 1 . 2 <79>

l . ' J

( g 0 )

14



po,1+1/2 A c n ~ 1 / 2

l / 2 v l / (82)

v n un-l Hn-1 f«3)

;i+l/2 Bl+l/2 " Vl+l/2 Bl+l/2 • l ° '

This system can be reduced to a system involving strictly radial positions of the form

f i < ? i - i . ? i . * i + i > " ° ( 8 4 )

by the following chain of substitutions. First. ii| and 9 u l / 2 are eliminated from the remainder of the
equations by means of Eqs. (75)-(77). Then qi^1/2 is eliminated by Eq. (79). Further, 'f,,,,.,̂ , Te l.1/2.
B(., ,. and C,., 2 are eliminated by means of Eqs. (8O)-(83). This leaves the momentum Eq. (78), which is
now in the form of Eq. (84). This substitution procedure is not made algebraically, but step by step
numerically.

The Newton-Raphson system for solving the system Eq. (84) is

f l i l i 3 f i

The derivatives in Eq. (85) are best evaluated numerically by, for example.

i.i. ft. ? i M ) , g 6 )

with h some nominal deviation. The other derivatives are given by similar expressions.

Once the intermediate solution is found, it is generally adequate though not necessary to solve the
resulting system linearly. The resulting linear system for the variables at tn is given as follows.

. T
' 3 o,1+1/2

- Te,l+t/2
(g7)

teq,l+l/2

15



t-
e

( e o A x l + l / 2 )

P o > 1 + 1 / 2

' ' 1 + 1 l T e , 1 + 3 / 2 " T e , 1 + 1 / 2 ' " Y i u e , i + l / 2 " ' e , i + l / 2 J

' e , 1 + 1 / 2 ' a . i + 1 / 2 . n , • , n
+ — ! " ' + ^ D > ? + l / 2 " < e br>?+ l /2 =

£eq,1+1/2

v / L
i-n-1 /-n-1
MM/2 L l

(jr, , 2 ( 0 - 1 ) f ^ n - 1 , 2 ( a -
l r i + l / 2 ' ( r i + l / 2 ;

uo"xi+l/2

1
uoaxi+l/2 ' '

,-n

(B
n
1 + 3 / 2

n

o .

a tn-l/2

uoaxl+l/2

l — '(
uoaxi+l/2

1+3/2

(90)

The only difference between Eqs. (87) • (90) and the corresponding equations of Sec. IV is that some of
the quantities are evaluated using tilde quantities. Thus, this set of equations is linearized. This completes
the numerical solution.

VI. CIRCUIT COUPLING

The self-consistent coupling of an external circuit to an interior point is best illustrated in terms of a
pure Z-pinch (Fig. 3) or a pure 8-pinch (Fig. 4). Although the couplings are illustrated individually, they
can be combined to form a mixed pinch with no changes in the coupling cell equations.

Because the two cases are handled in a similar way, they are treated together. The entry and return
current paths are assumed to enclose a single cell. As will be seen below, the coupling is achieved by
merely altering the difference equations for the coupling cell.

The rate of increase of flux in the coupling cell is given by Faraday's law.

- ~ / B • dS (j E • ds

16



Fig. 3. The Z-pinch coupling circuit

Fig. 4. The 8 pinch coupling circuit.

Evaluating the integrals for both cases gives

and

V g 6

(91)

(92)

These electric fields are considered to be in the Lagrangian frame. Thus, Ampere's law and Ohm's law
give

- 1 ; ^ j i [[*l?Zl)

and

nzz 3CC

2 l l A x l+ l /2 '

(93)

(94)

These equations agree precisely with the space difference form of Eqs. (89) and (90) for the pure Z-pinch
and 6 pinch except for the source terms involving the gap voltages V(0 and Vfz. As will be shown below,
these gap voltages are eliminated in terms of the circuit terms with lumped parameters.

Elimination of the circuit current in terms of the magnetic field components yields a set of difference
equations as before with the simple addition of terms at the coupling cell involving the lumped circuit
parameters. In this way the MAGPIE2 code does the circuit coupling.

This coupling breaks down when the resistivity of the internal gas is very large, as is the case when
there is no appreciable ionization. In such a case, the bracketed term in Eqs. (93) or (94) almost precisely
balances V|z or Vf9, respectively, and the time derivatives thus evaluated are very inaccurate because they
involve small differences of large quantities. Such a situation occurs in the gas-imbedded dense Z-pinch
before the laser beam has caused appreciable ionization.

17



A procedure that is a liltle more lengthy but gets rid of the above prrNem is obtained as follows. The
set of difference equations is added together over the whole mesh for Eqs. (93) and (94). Thus, the electric
field terms cancel except at the outer boundaries and the resulting relations are written as

" x £ § W + =*- t ;E* (r?'-E* (ronj' :- v (95>

and

2nAx ± ( V B z ) i + , / 2 + Efl - 2-.[rfEB(ry> - r ^ f r ^ ) j - Vg6 . < 9 6 )

where

lj+1/2 V i / 2 _ V l / 2 V i / 2 • (97)

and

where now the time differences have been written out in the back electromotive force (emf) terms. When
perfectly conducting boundaries are assumed, the electric fields are zero in Eqs. (95) and (96). When C
and B are specified as functions of time or either boundary, the associated electric field components in
Eqs. (95) and (96) do not vanish, but they are omitted from these equations because specification of
boundary values of C or B involved elimination of these field values from these equations. Again, special
consideration is given when r" — 0. The r£ factor in the relevant term of Eq. (96) causes it to vanish.
There remains only the term in Eq. (95) that accounts for the field along the axis, which we denote by
Vpl o. Thus, for computational purposes at the coupling cell, Eqs. (95) and (96) become

£Ax ± .-I' + -- = -V , - V (99)
3t ,2 ' ~z P"° 8*

21.AX ± (VBZ) + l% - - Vg 6 , (100)

where

V . o - * n"(rg) Jz(rS) •

The gap voltages Vge and Vg2 are given in terms of the lumped circuit parameters from Figs. 3 and 4 by

V g - § - L £ - R 1 + V b ' ( 1 0 2>

18



where Vb is the battery voltage, and the lumped parameters refer to the circuit connected to the 6-pinch or
Z-pinch loop as the case may be. The capacitor ctiarge is given by

Q - Qo - !l i d f . (103)

The relation Eq. (102) along with Eq. (101) is substituted into Eqs. (98) and (99) giving

u , JL : Z£^j + l i t i£^ + l!L ( i t + R jc 6 - ( ^ + vb + v , + E • - o (104)

and

where the indices of Eqs. (104) and (105) are for the coupling cell. The coupling cell difference equations
become

and

<""»

The lumped elements are labeled according to whether they refer to the Z-pinch or 6-pinch circuit.

A. The Back emf Calculation

The back emf is calculated using Faraday's law. In integrated form,

The path integral on the right is defined to be the negative of the back emf E. The flux is given by

• - / B • d§

Thus,

19



In the cases of the 9-pinch and Z-pinch, respectively, we have

and

"6
; 0 = 2" — B rd r

dr ' z

Transforming to Lagrangian coordinates gives

i . C.-.V
2 IT

3t >~X

and

= .j = « — ,' BzVdx

Taking the derivative inside the integral now and replacing the integral Hy a sum,

: = ± ' ^ " _ CV ""I A)< ( l0 8 )

" z A t i = i ' ' r 2 ' i + l / 2 ' r 2 ' i + I / ; ' 1 + 1 ' - '

and

Now suppose there is some intermediate radius T used to separate a region on the outside, which will act
mainly like a vacuum-filled or lumped inductance. In that region, B and C are rather close to their
vacuum values, which also equal the value at the coupling point. Thus, the lumped inductance in the outer
region, when it acts as a vacuum inductance, gives an emf i:> the form

/~n i7n
 r n - l iin—1

I \ K
c i + l / 2 v i + l / 2 - , L i+ l /2 v i+ l /2

^ " ^ i - T l [ - ^ T ~ j - ' ( r n - l .2 •' ^ 1 / 2 (HO)
( r i + l / 2 } ( r i + l / 2 J

and

2TT 1 i n n n n- l un-1 i A f i l l )
~ei ° It i-T ^ i + 1 / 2 V i+l /2 " B i+ l /2 V1+1/2J ^1+1/2 • ( '

The analytic form for the effective lumped inductances is

L^-^idlisj (112)

and

20



Thus, addition of the lumped inductances, Eqs. (112) and (113), to the external circuit and subtraction of
Eqs. (110) and (111) from Eqs. (108) and (109) yield an equivalent physical result. In that case, the
modified back emf formulas become

H = -t- I x " " " • " • - " " " ' i x / i + 1 / 2
z At ' -• ' - "* " T

 J J

" Cif,+]/2) vi+l/2 tci+l/2 " ci^.+l/2)

( U 4 )

and

I-!1

Thus, Eqs. (114) and (115) are used to calculate the back emf in the code. When the outer region is truly
a vacuum, the second summation becomes identically zero in both Eq. (114) and Eq. (115).

With the addition of the effective lumped inductances, Eqs. (106) and (107) become

and

(H7)

where now 2Z^ and 2 e ^ are evaluated by Eqs. (114) and (115).

B. Multiplicative Coupling

In calculating the behavior of machines such as ZT-40, it is necessary to consider coupling by circuits
with a large number of primary turns or by many parallel voltages placed at positions along the torus.
Thus, some simple adjustments must be made in Eqs. (116) and (117).
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Tne impedances in the primary circuit appear to the pinch column as divided by the turns ratio
squared, whereas the voltages appear as divided by the turns ratio N r The same thing is true of the
9-pinch circuit with N8. Now. if the Z-current is driven by voltages placed at TL positions along the torus,
the length t is effectively divided by T2. Hence, Eqs. (116) and (117) become

rTz Lz L z , t
z, t -

4 t n - l / 2
vg l /2 , 2"T* f ±z T2 , , °Z

— 11 — + Vk
(118)

and

(119)

C. Transmission Line

In Figs. 3 and 4, the driving circuits are represented as simple LRC circuits. For some pinch
calculations, this is quite adequate. However, in the high-density Z-pinch (HDZP) experiment, the main
driving circuit, including a Marx bank, is connected to the load circuit, including the pinch tube, through
a transmission line. The transmission line is treated using the telegrapher's equation1

P'-v + (RC + LC ) -r- + LC
3t

(120)

The distributed circuit parrmeters denoted here by R, G, C, and L are given per unit length of
transmission line and are not to be confused with the lumped parameters considered in the earlier parts of
this section.

The transmission line circuit is shown schematically in Fig. 5. The block D represents the Marx bank
and its associated circuits; the block L represents the plasma load circuit including the lumped elements in

0

i(x.t) *•

v(x,t)

1 1

L

I,

Fig. S. The transmission line.
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Figs. 3 and 4; and the quantities v(x,t) and i (x,t) represent the voltage and current at the point x along
the transmission line at time t.

For the present treatment, it is preferable to break Eq. (120) into two first-order equations.

-^ - - Ri - 3 < I 2 1 >
3x 3t

and

2 l = - G v - G^i (122)
3x 3t

This pair is rewritten as

21 - - i ;R1 + i i ; (123)
3t L 3x

and

The transmission line is divided into cells along x with the current given at the cell edges represented by
discrete values Xj, where j is an integer. The voltages are evaluated at cell centers where the index is
half-integral. The difference analogs of Eqs. (123) and (124) are staggered both in space and time.

1 r
L lAt L

(125)

and

vn+\ _ vn Vn+1 + vn jn+1/2 _ jn-1/2 ( 126 )

flc ~ ~C ' 2̂  + ta J

Equation (125) is solved for i"]+"2 and Eq. (126) for v ^ . Thus,

'-L . I ) ±n-l/2 . vj-H/2 ~ v j - l
iP+1/2 , ^t l' J Ax

J (— + - )

and

' a t
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The sequence of calculations goes as follows. The values i"+"2 and i"+"2 are taken as the driving currents
from blocks D and L at n + 1/2. The internal values i"+1/2 for 2 < j < J — 1 are solved using
Eq. (127). The quantities on the right of Eq. (127) are known from previous calculations. Then Eq. (128)
is used to calculate v "*\/2 for 1 <; j < J — 1. The quantities on the right of Eq. (128) are knovn from
previous calculations. Finally, the voltage at the end points j = 1 and j = J is obtained from linear
extrapolation and fed back into D and L. D and L now take v"+1 and \"+\ and after they are treated by
other subroutines, the resulting currents i"+l and i[}+l are obtained, thus completing the loop.

In the RAVEN code, v"41 is inserted in place of the battery voltage in the coupling cell calculation for
the field routines.
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