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A mechanical property characterization test program on type 316

stainless steel is in progress at ORNL to furnish information for

(a) the formulation and verification of constitutive equations,

(b) setting failure criteria, and (c) verification of ASME design

stresses and rules.- This characterization involves:

1. Tensile testing of 16-mm plate of reference heat (8092297) of type

316 stainless steel. Tests are in the temperature range of RT to 760°C

and at strain rates from 3.3 x 10"3 to 8.3 x 10~6sec~1. Specimens were

tested in both the mill-annealed (as-received) and laboratory-annealed

(reannealed) conditions. The laboratory anneal was performed on

machined specimens for 0.5 h at 1065°C. Tests on this product form

provide base-line data as a function of both the test temperature and

test strain rate. The strain rate effects on 0.2% yield, ultimate

tensile strength, and reduction of area are shown in Figs. 1—3. These

figures show the following:

i) Yield strength is strain rate sensitive only at temperatures

of <200°C.

ii) Ultimate tensile strength has two regions of strain rate

sensitivity. In one region ultimate tensile strength increased

with decreasing strain rate (dynamic strain aging region), and in

^Research sponsored by the Division of Reactor Research and Technology,

U.S. Department of Energy under contract W-7405-ang-26 with the Union

Carbide Corporation.



the other region it decreased with decreasing strain rate (creep

region).

iii) Reduction of area shows drops in its values in the temperature

range of 500-700°C. The temperature at which drop in reduction of

area initiated decreased with decreasing strain rate. The ductility

at the minimum point was also found to decrease with decreasing

strain rate.

The reduction of area values are extended over a wider range of

strain rates by combining tensile data with creep data (Pig. 4). Note

that at £ 649°C, the reduction of area values started to increase from

the minimum values followed by another decrease. Similar trends are

becoming obvious at 538°C and 593°C. The reduction of area values hit

10% at the minimum point at 538°C. Figure 5 identifies four possible

regions observed for the ductility of type 316 stainless steel. This

figure also shows how a similar trend in ductility for two heats could

displace with respect to each other and be responsible for a large

variation in ductility observed for different heats.

2. Tensile testing of 10 different product forms (3 plates, 4 pipes,

and 3 bars) of reference heat. Tests were conducted at RT and at 200°F

intervals up to and including 1200°F. The test strain rate was

8.3 x lO^sec"1. The product forms were tested in both the mill-

annealed (as-received) and laboratory-annealed (reannealed) conditions.

This work is completed and was published in ORNL-5348 (February 1978).

Figures 6 and 7 present yield strength data en 10 product forms for

both mill-annealed and laboratory-annealed conditions. These figures

also list the average and standard deviation for yield strength values



at RT and 649°C. Note that laboratory annealing decreases average

values and the standard deviation for yield strength at both RT and

649CC.

3. Creep and creep-rupture of 16-mm plate of reference heat of type

316 stainless steel. Both creep and long-term creep-rupture tests are

in progress on the reference heat (8092297). Most of the creep tests

are being conducted on mill-annealed specimens. The test temperatures

are in the range of 482 to 76O°C. The planned test times are >50,000 h.

The current elapsed times for several tests are in the range of 15 to

20,000 h. The data are being monitored using averaging extensometers.

The strain-time data will be used for verification of the currently

accepted creep equation. The rupture data on this heat are compared

with ASME Code Case minimum curve and also against the data from other

heats for heat-to-heat variations. The long-term ductility data from

these tests will be used to develop the strain limits and set some sort

of failure criteria. Several long-term tests are currently in progress,

and several additional tests are needed to complete the planned test

matrix.

Figures 8 and 9 show the comparison of currently available rupture

data on the reference heat with ASME Code Case minimum value curve.

Note that only at 538°C the rutpure data appear to be quite close to

the minimum. At other temperatures data are significantly above the

minimum. It should also be pointed out that the stress-rupture data

at 649°C are showing more curvature than reflected in the ASME minimum

curve. If the same trend continues we may expect the experimental data

to fall below the minimum ar rupture times >20,000 h. The creep



ductility data on the reference heat have already been presented in

Fig. 4. The effect of varying nitrogen content on ductility of type

316 is presented in Fig. 10. ]£ote that increasing nitrogen decreases

ductility at the ductility minimum point. Furthermore, the strain

rate at which the minimum occurs also decreases with increasing

nitrogen content.

4. Creep and creep-rupture properties of 10 different product forms

of the reference heat. Short-term creep and creep-rupture tests are

being conducted on 10 different product forms to obtain a measure of

product-to-product variability for a single heat. One rupture test

each has been completed on all product forms. The creep tests, of

1,000-h duration, have yet to be started.

5. Creep and creep-rupture tests on 10 different heats of type 316

stainless steel. These are planned to identify the heat-to-heat

variations. Data will also be correlated with chemical composition

to identify the elements responsible for the observed variations.

Elevated-temperature ultimate tensile strength (Su) at the creep

tests temperature has been shown to be a possible index for estimating

the creep properties of types 304 and 316 stainless steel and associated

weldments. Figure 11 shows the predicting capabilities of Su-based

model for a heat tested at HEDL. Figure 12 shows the capability of the

model for long-term data available from NRIM (Japan). Predicting

capabilities of the rupture model for 5 different heats tested at the

University of Michigan are shown in Figs. 13 aad 14. An example for

type 16-8-2 weld metal data is shown in Fig. 15. All these figures

illustrate that elevated-temperature ultimate tensile strength-based

models can predict the rupture and minimum creep rate data of a given



heat more accurately than models without an Su term. Note, however,

that the Su models do not still solve the problem of extrapolation.

6. Complex behavior tests in support of design methods data

requirements using 16-mm plate of reference heat (8092297). These

tests include the following loading histories:

i) Creep tests on strain-cycle specimens. Several specimens were

given ten strain cycles at total strain ranges of 0.2, 0.4, 0.6,

0.8, and 1.0%. In addition, for a given strain range (0.2 and 0.4%),

the number of cycles were varied from 10 to 10,000. The results of

creep tests on these strain-cycled specimens are now available at

creep conditions of 593°C and 207 MPa. A report on these tests is

being prepared. Two creep curves on strain-cycled specimens are

presented in Figs. 16 and 17. Figure 16 shows slight.1 y higher

creep strain but essentially no effect of prior strain cycling on

minimum creep rate and time to rupture. Results in Fig. 17 show

that strain cycling at 1% strain range produces less creep strain,

low creep rate, and longer time to rupture. The effect of

strain cycling at various strain ranges on minimum creep rate is

best summarized in Fig. 18. This figure illustrates that 10

strain cycles has negligible effect on minimum creep rate for

total strain ranges of ^0.8%. At higher strain ranges minimum

creep rate decreases. Figure 18 also illustrates that strain

cycling conditions which develop a fatigue crack will sharply

increase the minimum creep rate.

Creep tests at stresses with superimposed cycling. Several

creep tests with superimposed cycling have been completed at 593°C



on specimens removed from 16-mtn plate. Results show (Fig. 19)

a factor of 3-5 drop in rupture life as a result of stress

oscillations. More long-term tests with superimposed cycling

will be conducted to confirm these results.

iii) Compressive creep tests. These tests are in progress to check

if strain-time response under tensile and compressive stress

conditions is identical (as assumed by designers) or different.

The tests completed thus far were run at 593°C with stresses in

the vicinity of the proportional limit to minimize possible bending

due to large plasticity on loading. The tests thus far show more

primary creep strain during compressive loading than during tensile

loading. A typical example is presented in Fig. 20. Testing in

this area will continue for the next several months.

7. Tensile and creep tests on thermally-aged material. These tests

are planned on material aged in-house and on material removed from

service. Tensile results are now available on material aged in-house

for 20,000 h. Data for material removed from service are available

for aging time of 74,000 h. One short-term creep test each at 593 and

649°C is also aveilable on material removed from service.

A few tensile tests are also available on material subjected to

prior creep.

The changes in various tensile ductility quantities as a result

of thermal aging are presented in Fig, 21. Figure 22 shows the plot

of reduction of area as a function of thermal aging time. Note that

reduction of area values remain unaffected by thermal aging at 482°C.

Thermal aging at 593°C decreases reduction of area. The values drop



from 66 to 57% after 10,000 h. At 649°C reduction of area values drop

initially but show a substantial increase at longer aging time. Values

increase from 49% to ̂ 70% after 10,000 h. At room temperature all

ductility quantities decreased to an extent that increased with

increasing aging temperature.

The increase in RA at 649°C due to thermal aging at 649°C without

stress was also observed for aging under stress. For example, a

specimen of type 316 stainless steel creep tested at 649°C and 124 MPa

for 1983 h produced plasticity and creep strain of 17.32%. When tensile

tested, this specimen showed a reduction of area value of 55.9%, as

compared with 48.7% observed for the imaged material.

The effect of service exposure on various tensile ductility

quantities is shown in Fig. 23. Mote that in general the results are

similar to those observed for the laboratory-aged material (Figs. 21

and 22). Table 1 lists the creep data available on service exposed

material. Data shows that thermal aging increases both minimum creep

rate and time to rupture. However, the fraction of time to onset of

tertiary creep/time to rupture indicates that the longer time to

rupture is obtained as a result of delayed fracture or longer tertiary

creep stage.

Future Plans — Testing listed above will continue for the next few

years to complete the program outlined in the test matrices. Data

obtained will be analyzed both mathematically and microstructurally.
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Table 1

THE 8-YEAR THERMAL AGING AT 621OC SHOWS AN INCREASE
IN CREEP-DEFORMATION RATE WITH A SIGNIFICANT
DELAY IN THE RUPTURE (AS INDICATED BY THE

RATIO OF t 2/t r). NOTE ALSO THE
IMPROVEMENT IN DUCTILITY

LOADING TIME TO M J E p TOTAL REDUCTION
STRAIN RUPTURE ^ " K ELONGATION OF AREA
(%} (h) RATE

MATERIAL
CONDITION

(%/h)

SOLUTION-
ANNEALED

AGED 74000
h at 621°C

SOLUTION-
ANNEALED

AGED 74000
h at 621°C

•

8.

0.

4.

0.

.70

,78

75

48

408

812,

229.

183.

593OC AND 30 ksi

.3

.0

0.00495

0.0185

649OC AND 25 ksi

6

4

0.0428

0.0988

12

27

25

47

.63

.19

.19

.43

29.

40.

41.

45.

32

65

48

34

0.

0.

0.

0.

735

339

403

218


