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A mechanical property characterization test program on type 316
stainless steel is in progress at ORNL to furnish information for
(a) the formulation and verification of cpnstitutive equations,

(b) setting failure critefia, and (c) verification of ASME design
sﬁresses and rules.. This characterization involves:

1. Tensile testing of 16~mm plate of reference heat (8092297) of type

316 stainless steel. Tests are in the temperature range of RT to 760°C

and at strain rates from 3.3 x 10~3 to 8.3 x 10~6sec™!l. Specimens were
tested in both the mill-annealed (as-received) and laboratory-annealed
(reannealed) conditions. The laboratory anneal was performed on
machined specimens for 0.5 h at 1065°C. Tests on this product form
provide base-line data as a function of both the test temperature and
test strain rate. The strain rate effects on 0.2% yieid, ultimate
tensile strength, and reduction of area are shown in Figs. 1-3. These
figures show thé following:

i) Yield strength is strain rate sensitive only at temperatures

of 2200°C.

ii) bltimate.tensile strength has two regions of strain rate

sensitivity. 1In one region ultimate tensile strength increased

with decreasing strain rate (dynamic strain aging region), and in

“Research sponsored by the Division of Reactor Research and Technology,
U.S. Department of Energy under contract W-7405-2ng-26 with the Union

Carbide Corporation.




the other region it decreased with decreasing strain rate (creep
region).

iii) Reduction of area shows drops in its values in the temperature
range of 500-700°C. The temperature at which drop in reduction of
area initiated decreased with decreasing strain rate. The ductility
at the minimum point was also found to decrease with decreasing
strain rate.

The reduétion of area values are extended over a wider range of
strain rates by combining tensile data with creep data (Fig. 4). ﬁote
that at 2 649°C, the reduction of area values started to increase from
the minimum values followed by another decrease. Similar trends are
becoming obvious at 538°C and 593°C. The reduction of area values hit
10% at the minimum point at 538°C. Figure 5 identifies four possible
regions observed for the ductility of type 316 stainless steel. This
figure also shows how a similar trend in ductility for two heats could
displace with respect to each other and be responsible for a large
variation in ductility observed for different heats.

2. Tensile testing of 10 different product forms (3 plates, 4 pipes,

and 3 bars) of reference heat. Tests were conducted at RT and at 200°F

intervals up to and including 1200°F. The test strain rate was

8.3 x 107 5sec~!. The product forms were tested in both the mill-
annealed (as-received) and 1aboratory—annealed (reannealed) conditions.
This work is completed and was published In ORNL-5348 (February 1978).
Figures 6 and 7 present yield strength data cn 10 product forms for
both mill-annealed and laboratory-annealed conditions. These figures

also list the average and standard deviation for yield strength values



at RT and 649°C. Note that laboratory annealing decreases average
values and the standard deviatioun for yleld strength at both RT and

649°C.

3. Creep and creep-rupture of 1l6-mm plate of reference heat of type

316 stainless steel. Both creep and long-term creep-rupture tests are

in progress on the reference heat (8092297). Most of the creep tests
are being conducted on mill-annealed specimens. The test temperatures
are in the range of 482 to 760°C, The planned test times are >50,000 h.
The current elapsed times for several tests are in the range of 15 to
20,000 h. The data are being monitored using averaging extensometers.
The strain-time data will be used for verification of the currently
accepfed creep equation. The rupture data on this heat are compared
with ASME Code Case.minimum curve and also against the data from other
heats for heat-to-heat variations. The long-term ductility data from
these tests will be used to develop the strain limits and set some sort
of failure criteria. Several long-term tests are currently in progress,
and several additional tests are needed to complete the planned test
matrix.

Figures 8 and 9 show the comparison of currently available rupture
data on the reference heat with ASME Code Case minimum vélue curve,
Note that only at 538°C the rutpure data appear to be quite close to
the minimum. At other temperatures data are significantly above the
minimum. It should also be pointed out that the stress-rupture data
at 649°C are showing more curvature than reflacted in the ASME minimum
curve. If the same trend continues we may expect the experimental data

to fall below the minimum ar rupture times >20,000 h. The creep



ductility data on the reference heat have already been presented in
Fig. 4. The effect of varying nitrogen content on ductility of tybe
316 is presented in Fig. 10. Note that increasing nitrogen decreases
. ductility at the ducrility minimum point. Furthermore, the strain
rate at which the minimum occurs also decreases with increasing

nitrogen content.

4. Creep and creep-rupture properties of 10 different product forms

of the reference heat. Short-term creep and creep-rupture tests are

being conducted on 10 different product forms to obtain a measure of
product-to-product variability for a single heat. One rupture test
each has been completed on all product forms. The creep tests, of
l,OOO;h duration, have yet to be started.

5. Creep and creep-rupture tests on 10 different heats of type 316

stainless steel. These are planned to identify the heat-to-heat

variations. Data will also be correlated with chemical composition
to identify the elements responsible for the observed variatioms.
Elevated-temperature ultimate tensile strength (Sy) at the creep
tests temperature has been shown to be a possible index for estimating
the creep properties of types 304 and 316 stainless steel and associated
weldments. Figure 1l shows the predicting capabilities of Sy—-based
model for a heat tested at HEDL. Figure 12 shows the capability of the
model for long-term data available from NRIM (Japan). Predicting
capabilities of the rupture model for 5 different heats tested at the
University of Michigan are shown in Figs. 13 and 14. An example for
type 16-8-2 weld metal data is shown in Fig. 15. All these figures
illustrate that elevated-temperature ultimate tensile strength—-based

models can predict the rupture and minimum creep rate data of a given



heat more accurately than models without an Sy term. Note, however,
that the Sy models do not still solve the problem of extrapolationm.

6. Complex behavior tests in support of design methods data

requirements using 16-mm plate of reference heat (8092297). These

tests include the following loading histories:

i) Creep tests on strain-cycle specimens. Several specimens were

given ten strain cycles at total strain ranges of 0.2, 0.4, 0.6,
'0.8, and i.O%. In addition, for a given strain range (0.2 and 0.4%),
thé number of cycles were varied from 10 to 10,000, fhe resuits of
creep tests on these strain~cycled specimens are now available at
creep conditions of 593°C and 207 MPa. A report on these tests is

being prepared. Two creep curves on strain-cycled specimens are
presented in Figs. 16 and 17. Figure 16 shows slightly higher
creep strain but essentially no effect of prior strain cycling on
minimum creep rate and time to rupture. Results in Fig., 17 show
that strain cycling at 1% strain range preduces less creep strain,
low creep rate, and longer time to rupture. The effect of

strain cycling at various strain ranges on minimum creep rate is
best summarized in Fig. 18. This figure illustrates that 10
strain cycles has negligible effect on minimum creep rate for
total strain ranges of <0.8%. At higher strain ranges minimum
creep rate decreases. Figure 18 also illustrates that strain
cycling conditions which develop a fatigue crack will sharply

increase the minimum cresp rate.

i11) Creep tests at stresses with superimposed cycling. Several:

creep tests with superimposed cycling have been completed at 593°C



on specimens removed from 16-mm plate. Results show (Fig. 19)
a factor of 3-5 drop in rupture life as a result of stress
oscillations. More long-term tests with superimposed cycling
will be conducted to confirm these results.

1ii) Compressive creep tests. These tests are in progress to check

if strain~time response under tensile and compressive stress
conditions is identical (as assumed by designers) or different.
.fhe tests-completed thus far were run at 593°C with stresses in

the vicinity of the proportional limit to minimize possible bending
due to large plasticity on loading. The tests thus far show more
primary creep strain during compressive loading than during tensile
loading. A typical example is pfesented in Fig. 20. Testing in
this area will continue for the next several months.

7. Tensile and creep tests on thermally-aged material. These tests

are planned on material aged in~house and on material removed from
service. Tensile results are now available on material aged in~house
for 20,000 h. Dbata for material removed from service are available
for aging time of 74,000 h. One short-term creep test each at 593 and
649°C is also aveilable on material removed from service.

A few tensile tests are also available on material subjected to
p;ior creep.

The changes in various tensile ductility quantities as a result
of thermal aging are presented in Fig., 21. Figure 22 shows the plot
of reduction of area as a function of thermal aging time. Note that
reduction of area values remain unaffected by thermal aging at 482°C.

Thermal aging at 593°C decreases reduction of area. The values drop



from 66 to 57% after 10,000 h. At 649°C reduction of area values drop
initially but show a substantial increase at longer aging time. Values
increase from 49% to ~70% after 10,000 h. At room temperature all
ductility quantities decreased to an extent that increased with
increasing aging temperature.

The increase in RA at 649°C due to thermal aging at 649°C without
stress was also oBserved for aging under stress. For example, a
specimen of type 316 stainless steel creep tested at 649°C and 124 MPa
for 1983 h produced plasticity and creep strain of 17.32%. When ténsile
tested, this specimen showed a reduction of area value of 55.9%, as
compared with 48.77 observed for the unaged material,

The effect of service exposure on various tensile ductility
quantities is shown in Fig. 23. Note that in general the results are
similar to those observed for the laboratory-aged material (Figs. 21
and 22). Table 1 lists the creep data available on service exposed
material. Data shows that thermal aging increases both minimum creep
rate and time to rupture. However, the fraction of time to onset of
tertiary creep/time to rupture indicates that the longer time to ’
rupture is obtained as a result of delayed fracture or longer tertiary

creep stage.

Future Plans — Testing listed above will continue for the next few
years to complete the program outlined in the test matrices. Data

obtained will be analyzed both mathematically and microstructurally.

e g e i
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Type 316 Stainless Steel.
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Fig. 17. Prior Strain Cycling at a High Strain Range (10 cycles at 1.0%)
Can Introduce a Strengthening Effect in the Creep Behavior of Type 316
Stainless Steel.
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Fig. 19. Loading History (Especially Superimposed Cycling) Appears to
Have a Strong Effect on the Rupture Behavior of the Reference Heat.
Note that the rupture time may be lower by a factor of 3-5.
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Fig. 20. <Comparison of Tensile and Compressive Creep Curves at 593°C
and 107 MPa for 16~mm Plate of the Reference Heat of Type 316 Stainless
Steel. Both specimens are tested in the A 240 condition.
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Reference Heat of Type 316 Stainless Steel.
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Fig. 22. Reduction of Area as a Function of Aging Time for the Reference
Heat (8092297) of Type 316 Stainless Steel. Specimens were aged and
tested at (a) 482, (b) 593, and (c) 649°C.
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Steel Specimens Taken fr the Header.
elongation. (c¢) Reduc’ . : of area.

removed from service
time 72,000 h).
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Table 1

THE 8-YEAR THERMAL AGING AT 6210C SHOWS AN INCREASE
IN CREEP-DEFORMATION RATE WITH A SIGNIFICANT
DELAY IN THE RUPTURE (AS INDICATED BY THE
RATIO OF t,/ty). NOTE ALSO THE
IMPROVEMENT IN DUCTILITY

wareria, LoADING  TiMe 1o MIRTHUM TOTAL  REDUCTION [tz
STRAIN  RUPTURE ELONGATION  OF AREA |ty
CONDITION ) A RATE ) (%)
(%/h)
5930C AND 30 ksi
SOLUTION- 8.70 408.3  0.00495 12.63 20.32  0.735
ANNEALED
AGED 74000  0.78 812.0  0.0185 27.19 40.65  0.339
h at 6210C .
6490C AND 25 ksi
SOLUTION-  4.75 229.6  0.0428 25.19 41.48  0.403
ANNEALED »
AGED 74000  0.48 183.4  0.0988 47.43 45.3%  0.218

h at 6210C




