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ABSTRACT 

The plasaa performance is assessed for two tokaaak reactor 
experiments, the Tokaaak Fusion Core Experiment (TFCX) and the Joint 
European Torus (JET). Both machines appear ignitable for a reasonable 
range of transport assumptions. 

v 



1. INTRODUCTION 

In this report we assess performance for the Tokamak F'is ion Core 
Experiment (TFCX) and the Joint European Torus (JET). We use both the 
Plasma Operation CONtour (POPCON) analysis and dynamic startup simulations 
using the WHIST transport code.1 For a given set of transport assumptions 
and machine parameters, we find there is a significant operating regime 
in density-temperature space. The performance and auxiliary heating 
requirements are altered substantially by variations in the transport 
assumptions, so flexibility and robustness in the performance have also 
been assessed. 

2. PHYSICS MODEL 

Plasma simulations are based on the work of Houlberg et al. 1 

Previous work and details of the model are described in ref. 2; a 
summary of the model follows. The noncircular plasma equilibrium 
(consistent with particle, temperature, and current profiles) is treated 
using the Lao moments method.2'3 By using flux-coordinate labeling, the 
noncircular (two-dimensional) transport problem is reduced to one 
dimension. Evolution of the various profiles is followed in flux 
coordinates using conservation of particles (five ion species plus 
electrons), energy (ions and electrons), and poloidal flux. The model 
includes simple edge/divertor physics and fixed impurities (five species) 
with coronal radiation losses using the model of Post et al.1* Ohmic 
heating and local, instantaneous alpha particle deposition are supple­
mented by Gaussian heating i^exp[-(r/rQ)2]), which is strongly peaked in 
the local minor radius (r) similar to ion cyclotron resonance heating 
(ICRH). The rf-like power is split between ions (75%) and electrons 
(25%) with r = 0.8 m. Fueling of the deuterium-tritium (D-T) plasma 
is by gas puffing with a 95% recycling fraction. 

Sawtoothing is an important aspect of these simulations that occurs 
when the on-axis safety factor q(0) drops below one. The strong central 
heating lowers the plasma resistivity and restricts the current channel. 
The centrally peaked current density rises, lowering q(0) below unity 
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and initiating the sawtooth instability. The density, temperature, and 
current profiles are flattened by turbulence inside the sawtoothing 
region, which is consistent with conservation of particles, energy, and 
helical flux. Further poloidal flux diffusion allows this cycle to 
periodically repeat with an expected period of 400 ms in TFCX5 as compared 
with an energy confinement time >1 s. The resulting central turbulence 
typically extends to three-fourths of the minor plasma radius; this is 
consistent with t periments.6 The profile for q is flat for r/a < 0.75, 
rising abruptly to q(a) for r/a > 0.75. Consequently, plasma losses ara 
dominated by confinement in the outer plasma, where gradients are large 
and the typical temperature is low, resulting in a current relaxation 
time ̂ 30 s. Plasma parameters are time averaged over each sawtooth 
period to obtain the quasi-static POPCON performance. Without stw-
toothing, q(0) < 0.4 is typical with a well-confined coie plasma, lower 
gradients, ano higher temperature that result in a resistive decay time 
^250 s. The performance with sawtoothing is much poorer than without 
sawtoothing. 

The transport assumptions include neoclassical losses that are 
twice those given by Hinton and Hazeltine.7 The Hastie-Hitenon model8 

is used for the thermal ion conduction loss by toroidal field ripple, 
assuming an edge ripple of 1.5% and 16 toroidal field (TF) coils. 
Ripple losses increase as the magnetic axis shifts outward during 
evolution of the magnetohydrodynamic (NHD) equilibrium. Anomalous 
electron energy confinement and particle diffusion (D = \/S) are a 
version of neo-Alcator (NA) scaling,9 

*NA ( C ," 2 / S ) 
1.5 x 1 0 1 7 

n e (cm - 3) 43 (cm) 
250 (cm) 12 CD 

and a modified form of ref. 10 (GMS), 

XGMS (cmVs) - 65[1 • 4(r/a)2] \l<fiL* (2) 
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Here, n is the local electron density, I is the plasma current, and r 
is the local minor radius on the midplane. A finite-beta enhancement of 
the GMS scaling is included: 

f(B) =0.384 exp[(g/Bc)2] , (3a) 

*c = 5RQq(a) IM (3b) 

so that f(B = B ) ̂  1, with B generalized from ref. 11 for a non-
circular plasma. An anomalous electron conduction coefficient is taken 
as 

Xe = XNA + °- 7 2 xGMS X f <« ( 4> 

to model the ohmic confinement (x N A) together with the high-beta, 
auxiliary heating scaling [O^x^-g x f(8)]. The anomalous particle 
diffusion coefficient is taken as D = x F /5. 

3. RESULTS FOR TFCX 

3.1 PLASMA PERFORMANCE 

The nominal copper TFCX design 1 2 was chosen as a representative 
example having the following parameters: 

Parameter Value 

Major radius, R (m) 3.25 
Minor radius, a (m) 1.30 
Elongation, K 1.6 
Triangularity, 6 0.3 
On-axis field, B Q (T) 4.00 
Safety factor, q(a) 2.4 

Other TFCX devices have similar performance parameters. 
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Using the method of ref. 1, Fig. 1 shows the Plasaa operation 
CONtours (POPCONs) assuming neo-Alcator confinement [Eq. (1)] with 
sawtoothing. There is 10* androgen to simulate dilution of the fusion 
source during ICRH H-minority heating. The auxiliary power at quasi-
static equilibrium ( P J L ) i s required to maintain the operating point in 
density (n ) and temperature (T) space [Fig. 1(a)] against confinement 

© 
losses. Ignition corresponds to the contour of zero auxiliary power 
(P~L = 0) in Fig. 1(a). The minimum ignition density lies at 
n = 7 x 1 0 1 3 cm - 3 and T = 16 keV, corresponding to a fusion power 
© 

P f u s of 200 MS [Fig. 1(b)], a toroidal beta B T of 7% [Fig. 1(c)], and a 
poloidal beta 6 of 0.7 [Fig. 1(d)]. Large auxiliary powers [Fig. 1(a)] 
at low density and high temperature are needed to overcome thermal ion 
losses due to TF ripple. Increasing auxiliary power allows this ripple 
loss to be surmounted as fusion power becomes dominant. An ignition 
margin M of 1.5 is denoted by the dotted contour in Fig. 1(a), where 

(fusion power from alphas) P 
M = - a 

(power lost) - (ohmic heating power) P - P ' 

and indicates the depth of the superignited domain. Ignition is the 
same as M = 1. The performance for neo-Alcator scaling is optimistic, 
making a large extrapolation from ohmically heated experiments. 

Figure 2 shows POPCONs, assuming GMS scaling [Eq. (2)] with saw-
toothing and 10% hydrogen. The minimum ignition density lies at 
n = 7 x 10 1 3 cm - 3 with 14 keV < T < 18 keV [Fig. 2(a)], corresponding 
© 
to 200 MW < P £ u s < 300 MW [Fig. 2(b)], 6% < 0 T < 8% [Fig. 2(c)], and 
0.6 < B < 0.7 [Fig. 2(d)]. Since GMS scaling is more optimistic than 
neo-Alcator for auxiliary heating, lower powers are necessary to over­
come the thermal ion TF ripple losses. At low B values, the shift in 
the magnetic axis is small, requiring less plasma current than at high 
B T with fixed q(a) • 2.4. There is a corresponding reduction in con­
finement since XQJJS ^ 1/1 [Eq. (2)], thus requiring somewhat larger 
auxiliary powers [Fig. 2(a)] to maintain operation at high density and 
low temperature. There is a saddle point in the intermediate region 
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Fig. 1. Plasma Operation CONtours (POPCONs) for (a) auxiliary 
power, (b) fusion power, (c) toroidal beta, and (d) poloidal beta, 
assuming neo-Alcator confinement. 
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[Fig. 2(a)] near n = 4 x 1 0 1 3 cm' 3 and T = 10 keV. The performance for 
GMS scaling alone is also optimistic because ohmic losses (i.e., neo-
Alcator scaling) are not included. 

Figure 3 shows POPCONs assuming a combination of GMS scaling with a 
soft-beta enhancement [Eq. (4)], sawtoothing, and neo-Alcator scaling of 
the form: 

, 2/ A i!-5 x 1 0 1 7 

XNA ( C m / S ) = T ~ 
"* n (cm"3) e 

VST ] [250 (cm) 
83 (cm)J [ R Q 

(5) 

The minimum ignition density lies at n = 7 x 1 0 1 3 with T = 12 keV 
[Fig. 3(a)], corresponding to P-. = 150 MW [Fig. 3(b)], $_, = 5.5% 
[Fig. 3(c)], and 8 = 0.5 [Fig. 3(d)]. The finite-beta enhancement to 
X E e limits the ignition region [Fig. 3(a)] to P ^ < 300 MW [Fig. 3(b)], 
3 T < 8% [Fig. 3(c)], and B< 0.7 [Fig. 3(d)]. These results are 
optimistic at low temperature because impurity radiation losses are not 
included. 

Figure 4 illustrates P0PC0N results assuming a combination of neo-
Alcator and B.-enhanced GMS scalings [Eqs. (4) and (5)] with sawtoothing 
and 1.5% oxygen. There is no ignition region. The minimum power near 
ignition is <2 MW at n g = 0.9 x 101** cm - 3 and T = 10 keV [Fig. 4(a)], 
corresponding to P f u s = 150 MW [Fig. 4(b)], & T = 5% [Fig. 4(c)], and 
6 = 0.5 [Fig. 4(d)]. The large auxiliary powers required to operate at 
low temperature and high density are due to oxygen impurity radiation 
loss. This result is probably pessimistic because experiments can 
obtain a constant impurity density with increasing n (rather than a 
constant impurity fraction). 

Figure 5 displays P0PC0N results with transport scaling given by 
Eqs. (4) and (5) with sawtoothing and a constant oxygen density of 6 x 
1 0 1 1 cm - 3. The minimum ignition point lies at n = 10 l i f cm"3 and T = 
9 keV, corresponding to P f = 150 MW [Fig. 4(b)], &_, = 5% [Fig. 4(c)], and 
3 = 0.5 [Fig. 4(d)]. The dotted contour in Fig. 4(a) corresponds to an 
ignition margin M of 1.05. As before, large auxiliary powers [Fig. 4(a)] 
at low n and high T are needed to overcome thermal ion losses due to TF 
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ripple. High powers at low T and high n are required to offset impurity 
radiation losses. The finite-beta enhancement to x E limits the ignition 
region [Fig. 5(a)] to P & s < 300 MW [Fig. 5(b)], ^ < 7.5% [Fig. 5(c)], 
and B < 0.7 [Fig. 5(d)]. There is a shallow saddle point in Fig. 5(a) 
P̂ ux •*» 5 MW); an auxiliary power of >5 MW would barely surmount this 
saddle point, corresponding to an infinite startup time. Applying 10 MW 
of ICRH-like auxiliary power results in a 10-s startup time from ohmic 
state to the minimum ignition point. There is a ±10 to 15% variation 
in the power to the divertor and ion source rate to the- plasma due to 
sawtoothing. A maximum auxiliary heating power of <25 MW therefore 
appears mors than adequate to start up and maintain the plasma over a wide 
range of operation points and confinement scaling. 

Figure 6 shows the performance of TFCX when q(a) is increased from 
2.4 to 2.6. Ignition lies inside the small closed contour [Fig. 6(a)] 
centered at T = 8 keV and n = 1.3 x 1011* cm - 3, corresponding to 
Pfus * 2 0 0 m [ F i g" 6( b)l' eT * 5 , 5 % t F i g* 6 ( C ) 1 * a n d 6p * C' 6 

[Fig. 6(d)]. Ignition occurs for 3 < 6%, which is somewhat lower than 
the previous case because 6 is inversely proportional to q(a) from 
Eq. (3b). 

Figure 7 illustrates the performance when the toroidal field is 
reduced from 4 T to 3.5 T. There is a plateau in the auxiliary power 
(P e q «u 7 MW) centered at T = 7 keV and n = 101** cm"3 [Fig. 7(a)]. >e£l au* 
There is no ignition region. 

Figure 8 illustrates the improved performance if the soft-beta 
limit B is raised by 33% consistent with ref. 13 for a TFCX plasma; 
that is, if the right side of Eq. (3b) is multiplied by 1.33. The 
ignition region is expanded [Fig. 8(a)] in comparison to Fig. 5 with a 
maximum ignition margin M of 1.25 as shown by the dotted contours in 
Fig. 8(a). The minimum in the ignition contour lies at T = 13 keV and 
n = 8.5 x 10 1 3 cm"3, corresponding to P f » 200 MW [Fig. 8(b)], 
6- = 7% [Fig. 8(c)], and 6 = 0.6 [Fig. 8(d)]. The auxiliary power to 
reach ignition is unchanged from Fig. 5. 
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3.2 SENSITIVITY OF RESULTS 

Several modeling parameters introduce variability in these results, 
although the qualitative features of the POPCONs ar« as shown above. A 
somewhat different device [with R = 3.75 u, a = 1.07 », K * 1.6, 6 « 0.3, 
B - 4.3 T, and q(a) = 2] was chosen for these studies assuming GMS 
scaling with sawtoothing; the results are representative. The fractional 
change in the minimum ignition density (A) is the most important result. 
When the sawtoothing period Xg-, is varied, the change is £(•!__ = 0.75 s) = 
+8% and Mtg-, = 0-1 s) = -5%. If sawtoothing is triggered instead by 
q(0), then, in going from q(0) = 0.98 to q(0) = 0.999, the change is 
A < 1%. Quasi-static performance during sawtoothing has been obtained 
by time averaging the various plasma quantities over each sawtooth 
period. The parameters associated with the best (worst) confinement are 
also obtained corresponding to the lowest (highest) auxiliary power 
during each sawtooth- An ignition contour based on this maximum 
(minimum) auxiliary power has A = +33% (-9%). For the larger device 
discussed in Sect. 3.1, this variation is A = ±10%. This sensitivity 
indicates the importance of using time-averaged values for quasi-static 
performance. The feedback time (800 ms) for the auxiliary heating 
response was chosen to be longer than the sawtooth period (400 ms) but 
shorter than an energy confinement time (>1 s). A shorter feedback time 
(400 ms) yields bumpier contours, indicating the importance of proper 
feedback time. Thus, the quasi-static POPCON analysis is relatively 
insensitive to details of the sawtoothing transients but sensitive to 
experimental parameters like feedback time and plasma size. The A value 
is -8% when the Gaussian width of the ICRH-like deposition is narrowed 
from r /a = 0.5 to 0.3, and A = 2% if r /a is broadened from 0.5 to 0.6. 
The narrow ICRH deposition is spread over the entire sawtoothing region, 
yielding performance that is insensitive to the Gaussian width. There 
is very little sensitivity to the fraction of rf powe- to the ions (f.) 
and electrons (f ) because the fusion power is completely dominant at 
ignition. However, the power to surmount the saddle point in P 6^ is 
33% lower for f./f = 100/0 than for f./f = 75/25 due to the hotter 
ions below ignition. This simple rf model seems adequate; sophisticated 
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ICRH modeling of mode conversion and ray tracing may not be needed in 
the presence of sawtoothing. Raising q(a) to 2.5 yields A = 23% because 
GMS X Increases [« q(a)] faster than the effective decrease in transport 

due to the smaller sawtoothing region. The value of minimum ignition 
density rises rapidly for an edge ripple, 5(a) > 1.8%; when 6(a) > 3%, 
more than 100 Mf is needed to reach ignition, which lies well above 
1.6 x 10 l l f cm - 3. Therefore, the plasma performance modeling is 
insensitive to the details of sawtoothing and ICRH; edge ripple and q(a) 
have an important impact. 

4. RESULTS FOR JET 

The plasma performance of JET has also been examined for both a 
base case and a smaller bore plasma. 

Parameter Base Smaller 

R (m) 
o v ' 

2.96 2.71 
a (ra) 1.25 1.00 
K 1.6 1.6 
5 0.3 0.3 
B (T) 

0 v J 

3.45 3.77 

These simulations assume a high-current (7-MA) plasma, making the 
results optimistic. The nominal current is <5 MA. Without sawtoothing, 
GMS scaling yields optimistic ignition contours for both the basic 
(curve 1 of Fig. 9) and small-bore JET (curve 2). With sawtoothing 
(curves 3 and 4 in Fig. 9), ignition is less optimistic but attainable. 
A soft-3 modification114 can be made to GMS scaling of the form 

X e = x®* x 0.5 exp(eep/0.4) , 
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to fit present experiments without sawtoothing. Curve 5 in Fig. 9 is 
the resulting ignition contour for the basic JET; the smaller-bore JET 

ii«» .-3 has no corresponding ignition curve for n < 2 x 1 0 1 H cm - 3. The 
associated plasma parameters for the minimum-density ignition points are 
summarized in Table 1. JET appears ignitable using transport assumptions 
similar to TFCX. 

Table 1. Ignition parameters for JET 

Curve Sawtoothing n 
e 

T *T 6 P 
P-fus 

(1011» cm"3) (keV) (%) (MW) 

1 No 0.51 9.0 3.8 0.28 50 
2 (small) No 0.63 9.5 4.0 0.28 40 
3 Yes 0.52 17.1 7.9 1.05 130 
4 (small) Yes 0.67 19.0 9.7 0.90 150 
5 (soft 
beta) No 1.45 12.3 15.0 3.20 530 

5. PERFORMANCE SUMMARY 

TFCX appears ignitable with sawtoothing and a reasonable range of 
electron thermal diffusivity scalings. Transport simulations show that 
<25 MW of ICRH is adequate for heating in TFCX. Ignition appears 

GMS 
inaccessible if x, s 2 x x with sawtoothing, but performance at the 
nominal burn point would be unchanged. The model is insensitive to the 
details of sawtoothing transients and ICRH deposition. Edge ripple and 
q(a) have a large impact. For optimistically high currents, JET appears 
ignitable using transport scalings similar to TFCX. 
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