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ABSTRACT

The plasma performance is assessed for two tokamak reactor

. experiments, the Tokamak Fusion Core Experiment (TFCX) and the Joint
European Torus (JET). Both machines appear ignitable for a reasonuble
range of tra.nsport assumptions.




1. INTRODUCTION

In this report we assess performance for the Tokaamak fusion Core
Experiment (TFCX) and the Joint European Torus (JET). We use both the
Plasma OPeration CONtour (POPCON) analysis and dynami: startup simulations
using the WHIST transport code.! For a given set of transport assumptions
and machine parameters, we find there is a significant operating regime
in density-teaperature space. The performance and auxiliary heating
requirements are altered substantially by variations in the transport
assumptions, so flexibility and robustness in the performance have also
been assessed.

2. PHYSICS MODEL

Plasma simulations are based on the work of Houlberg et al.l
Previous work and details of the model are described in ref. 2; a
summary of the model follows. The noncircular plasma equilibrium
{consistent with particle, temperature, and current profiles) is treated
using the Lac moments method.2:3 By using flux-coordinate lateling, the
noncircular (two-dimensional) transport provlem is reduced to one
dimension. Evolution of the various profiles is followed in flux
coordinates using conservation of particles (five ion species plus
electrons), energy (ioms and electrons), and poloidal flux. The model _
includes simple edge/divertor physics and fixed impurities (five species)
with coronal radiation losses using the model of Post et al.* Ohmic
heating and 1local, instantaneous alpha particle deposition are supple-
mented by Gaussian heating {Nexp[-(r/ro)zl}, which is strongly peaked in
the local minor radius (r) similar to ion cyclotron resonance heating
(ICRH) . The rf-like power is split between ions (75%) and electrons
(25%) with r, = 0.8 m. Fueling of the deuterium-tritium (D-T) plasma
is by gas puffing with a 95% recycling fraction.

Sawtoothing is an important aspect of these simulations that occurs
when the on-axis safety factor q(0) drops below one. The strong central
heating lowers the plasma resistivity and restricts the current channel.
The centrally peaked current density rises, lowering 4q(0) bLelow unity
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and initiating the sawtooth instability. The density, temperature, and
current profiles are flattened by turbulence inside the sawtoothing
region, which is consistent with conservation of particles, energy, and
helical flux. Further poloidal flux diffusion allows this cycle to
periodically repeat with an expected period of 400 ms in TFCX® as compared
with an energy confinement time >1 s. The resulting central turbulence
typically extends to three-fourths of the minor plassa radius; this is
consistent with ¢ -periments.® The profile for q is flat for r/a < 0.75,
rising abruptly to q(a) for r/a > 0.75. Consequently, plasma losses are
dominated by confinement in the outer plasma, where gradients are large
and the typical temperature is low, resulting in a current relaxation
time ~30 s. Plasma parameters are time averaged over each sawtooth
period to obtain the quasi-static POPCON performance. Without saw-
toothing, q(0) < 0.4 is typical with a well-confined co.e plasma, lower
gradients, ana higher temperature that result in a resistive decay time
250 s. The performance with sawtoothing is much poorer than without
sawtoothing.

The transport assumptions include neoclassical losses that are

twice those given by Hinton and Hazeltine.’ The Hastie-Hitchon model®
is used for the thermal ion conduction loss by toroidal field ripgle,
assuming an edge ripple of 1.5% and 16 tovnidal field (TF) coils.
Ripple losses increase as the magnetic axis shifts outward during
evolution of the magnetohydrodynamic (MHD) equilibrium. Anomalous
electrcn energy confinement and particle diffusion (D = x/5) are a
version of neo-Alcator (NA) scaling,®

y (c-?/s) [ 1.5 x 10!7 T 250 (cm)]? ’ a)
NA n, (cn73) | |43 (cm) R,

and a modified form of ref. 10 (GMS),
XGuiS (cm?/s) = 65[1 + 4(r/a)?] aI c:lA)\/; . (2) .
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Here, ne is the iocal electron density, I is the plasma current, and r
is the local minor radius on the midplane. A finite-beta enhancement of
the GMS scaling is included:

£(8) = 0.384 exp[(8/8)2] . (3a)

a 1+ k2
be =[Skoq(a)]( ) ) , | (3b)

so that f(B = Bc) ~ 1, with Bc generalized from ref. 11 for a non-
circular plasma. An anomalous electron conduction coefficient is taken
as

Xe = XNA + 0.72xGHS x £(8) 4)

to model the ohmic confinement (XNA) together with the high-beta,
auxiliary heating scaling [0.7xGMS x £(8)]. The anomalous particle
diffusion coefficient is taken as D = er/S.

3. RESULTS FOR TFCX
3.1 PLASMA PERFORMANCE

The nominal copper TFCX designl? was chosen as a representative

example having the following parameters:

Parameter Value
Major radius, Ro (m) 3 3.25
Minor radius, a (m) 1.30
Elongation, «x | 1.6
Triangularity, ¢ : 0.3
On-axis field, B (T) | 4.00
Safety factor, q(a) ‘ 2.4

Othor TFCX devices have similar performance parameters.
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Using the method of ref. 1, Fig. 1 shows the Plasma OPeration
CONtours (POPCONs) assuming neo-Alcator confinement [Eq. (1)] with
sawtoothing. There is 10% u,drogen to simulzte dilution of the fusion
source during ICRH H-minority heating. The auxiliary power at quasi-
static equilibrium (P:Ex) is required to maintain the operating point in
density (ne) and temperature (T) space {Fig. 1(a)] against confinement
losses. Ignition corresponds to *he contour of zero auxiliary power
“’:31 = 0) in Fig. 1(a). The minimum ignition demsity lies at
ng =7 x 1013 cm™3 and T = 16 keV, corresponding to a fusion power
Pfus of 200 M [Fig. 1(b)], a toroidal beta Br of 7% [Fig. 1(c)], and a
poloidal beta Bp of 0.7 [Fig. 1(d)}. Large auxiliary powers [Fig. 1(a)]
at low density and high temperature are needed to overcome thermal ion
losses due to TF ripple. Increasing auxiliary power allows this ripple
loss to be surmounted as fusion power becomes dominant. An ignition

margin M of 1.5 is denoted by the dotted contour in Fig. 1(a), where

(fusion power from alphas) P
M= (power lost) - (ohmic heating power) = PL - POH ’

and indicates the depth of the superignited domain. Ignition is the
same as M = 1, The performance for neo-Alcator scaling is optimistic,
making a large extrapolation from ohmically heated experiments.

Figure 2 shows POPCONs, assuming GMS scaling [Eq. (2)] with saw-
toothing and 10% hydrogen. The minimum ignition density lies at
n, =7 x 1013 cm~3 with 14 kev < T < 18 keV [Fig. 2(a)], corresponding
to 200 MW < Peus < 300 MW [Fig. 2(b)], 6% < Br < 8% [Fig. 2(c)], and
0.6 < Bp < 0.7 [Fig. 2(d)]. Since GMS scaling is more optimistic than
neo-Alcator for auxiliary heating, lower powers are necessary to over-
come the thermal ion TF riprle losses. At low BT values, the shift in
the magnetic axis is small, requiring less plasma current than at high
BT with fixed q(a) = 2.4. There is a corresponding reduction in con-
finement since XeMs ™ 1/1 [Eq. (2)], thus requiring somewhat larger
auxiliary powers [Fig. 2(a)] to maintain operation at high density and

low temperature. There is a saddle point in the intermediate region

1
i
i
}
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Fig. 1. Plasma OPeration CONtours (POPCONs) for (a) auxiliary

power, (b) fusion power, (c) toroidal beta, and (d) poloidal beta,
assuming neo-Alcator confinement.

o e i

e o




Y e L

6
ORNL—-DWG 84-3082 FED
T T T T T T T T 7T T T T T T T T 1
(a) P (MW) (b) Prs (MW)
- 15L 600
5 NN
(]
210 \,§ 4 F :::::E
X \ 0 .~
012 3 4 §
ol U 1 1 4L 4qy I T B A T B
0T T 1T T T T T 11 T 1T 1T 1T 1T 177171
(c) (Br) (%) (d) (By)
&
5 sl 4 6 8 10 12 14 4 L 0.5 1.0 |
5 , \
9 [
Qw0 — 3
X
~ 1 0.1
S5 \ - \‘
0 | T A O T ] | S A A | | {
) 4 8 12 18 20 0 4 8 12 168 20

(T) (keV)
Fig. 2.

(T) (keV)

POPCONs assuming GMS scaling.




[Fig. 2(a)] neat n_ = 4 x 10}3 cm™3 and T = 10 keV. The performance for
GMS scaling alone is also optimistic because ohmic losses (i.e., neo-
Alcator scaling) are not included.

Figure 3 shows POPCONs assuming a combination of GMS scaling with 2
soft-beta enhancement [Eq. (4)], sawtoothing, and neo-Alcator scaling of
the form:

- (cn?/s) = [1.5 x 10171 a vk ] [zso (cm)]Z . (s)

n, (cm™3) [83 (cm) R,

The mininun ignition demsity lies at n_ =7 x 1013 with T = 12 keV

[Fig. 3(a)], corresponding to pfus = 150 MW [Fig. 3(b)], By = 5.5%

[Fig. 3(c)], and Sp = 0.5 [Fig. 3(d)]. The finite-beta enhancement to
XEe limits the ignition region [Fig. 3(a)] to Pfus < 300 MW [Fig. 3(b)],
B < 8% [Fig. 3(c)], and Bp < 0.7 (Fig. 3(d)]. These results are
optimistic at low temperature because impurity radiation lcsses are not
included.

Figure 4 illustrates POPCON results assuming a combination of neo-
Alcator and 6T-enhanced GMS scalings (Eqs. (4) and (5)] with sawtoothing
and 1.5% oxygen. There is no ignition region. The minimum power near
ignition is <2 MW at n_ = 0.9 x 10!* cm~3 and T = 10 keV [Fig. 4(a)],
corresponding to Pfus = 150 MW [Fig. 4(b)], By = 5% [Fig. 4(c)], and
Bp = 0.5 (Fig. 4(d)]. The large auxiliary powers required to operate at
low temperature and high density are due to oxygen impurity radiation
loss. This result is probably pessimistic because experiments can
obtain a constant impurity density with increasing n, (rather than a
constant impurity fraction).

Figure 5 displays POPCON results with transport scaling given by
Eqs. (4) and (5) with sawtoothing and a constant oxygen density of 6 x
10}! cn™%.  The minimum ignition point lies at n_ = 10! em-3 and T =
9 keV, corresponding to Pfus = 150 MW [Fig. 4(b)], BT = 5% [Fig. 4(c)], and
B = 0.5 [Fig. 4(d)]. The dotted contour in Fig. 4(a) corresponds to an

P
ignition margin M of 1.05. As before, large auxiliary powers [Fig. 4(a)]

at low n, and high T are needed to overcome thermal ion losses due to TF

e et 2z F i
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ripple. High powers at low T and high n, are required to offset impurity
radiation losses. The finite-beta enhancement to XEe limits the ignition
region [Fig. 5(a)] to Pfus < 300 MW [Fig. 5(b)], 81.< 7.5% [Fig. S5(c)],
and Bp < 0.7 [Fig. 5(d)]. There is a shallow saddle point in Fig. 5(a)
(ngx ~ 5 MW); an auxiliary power of »5 MW would barely surmount this
saddle point, corresponding to an infinite startup time. Applying 10 MW
of ICRH-like auxiliary power results in a 10-s startup time from ohmic
state to the minimum ignition point. There is a *10 to 15% variation

in the power to the divertor and ion source rate to thz plasma due to
sawtoothing. A maxim.. auxiliary heating power of <25 MW therefore
appears mor2 than adequate to start up and maintain the plasma over a wide
range of operation points and confinement scaling.

Figure 6 shows the performance of TFCX when q(a) is increased from
2.4 to 2.6. Ignition lies inside the small closed contour [Fig. 6(a)]
centered at T = 8 keV and n_ = 1.3 x 101* cm~3, correspondiag to
Peis ™ 200 Mw [Fig. 6(b)], By v 5.5% [Fig. 6(c)], and Bp ~ (.6
[Fig. 6(d)]. Ignition occurs for BT < 6%, which is somewhat lower than
the previous case because Bc is inversely proportional to q(a) from
Eq. (3b).

Figure 7 illustrates the performance when the toroidal field is
reduced from 4 T to 3.5 T. There is a plateau in the auxiliary power
(p:f}x " 7 MH) centered at T = 7 keV and n_ = 10!* cn™3 [Fig. 7(a)].
There is no ignition region.

Figure 8 illustrates the improved performance if the soft-beta
limit Bc is raised by 33% consistent with ref. 13 for a TFCX plasma;
that is, if the right side of Eq. (3b) is multiplied by 1.33. The
ignition region is expanded [Fig. 8(a)] in comparison to Fig. 5 with a
mayimum ignition margin M of 1.25 as shown by the dotted contours in
Fig. 8(a). The minimum in the ignition contour lies at T = 13 keV and
fus * 200 MW [Fig. 8(b)],

Br = % [Fig. 8(c)], and Bp = 0.6 [Fig. 8(d)]. The auxiliary power to
reach ignition is unchanged from Fig. 5.

ng = 8.5 x 1013 cm-3, corresponding to P
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3.2 SENSITIViTY CF RESULTS

Several modeling parameters introduce variability in these results,
arthough the qualitative features of the POPCONs ar. as shown above. A
somewhat different device [with Rb =3.75m,3a=1.07m, x =1.6, § = 0.3,
Bo = 4.3 7T, and q(a) = 2] was chosen for these studies assuming GMS
scaling with sawtoothing; the results are representative. The fractional
change in the minimum ignition density (A) is the most important result.
When the sawtoothing period Tor is varied, the change is A(TST = 0.75 s) =
+8% and A(tsT = 0.1 s) = -5%. If sawtoothing is triggered instead by
q(0), then, in going from q70) = 0.98 to q(0) = 0.999, the change is
A < 1%. Quasi-static performance during sawtootbing has been obtained
by time averaging the various plasma quantities over each sawtooth
period. The parameters associated with the best (worst) confinement are
also obtained corresponding to the lowest (highest) auxiliary power
during each sawtooth. An ignition contour based on this maximum
(minimum) auxiliary power has A = +33% (-9%). For the larger device
discussed in Sect. 3.1, this variation is A = *10%. This sensitivity
indicates the importance of using time-averaged values for quasi-static
performance. The feedback time (800 ms) for the auxiliary heating
response was chosen to be longer than the sawtooth period (400 ms) but
shorter than an energy confinement time (>1 s). A shorter feedback time
(400 ms) yields bumpier contours, indicating the importance of proper
feedback time. Thus, the quasi-static POPCON analysis is relatively
insensitive to details of the sawtoothing transients but sensitive to
experimental parameters like feedback time and plasma size. The A value
is -8% when the Gaussian width of the ICRH-like deposition is narrowed
from ro/a = 0,5 to 0.3, and A = 2% if rO/a is broadened from 0.5 to 0.6.
The narrow ICRH deposition is spread over the entire sawtoothing regiom,
yielding performance that is insensitive to the Gaussian width. There
is very little sensitivity to the fruction of rf powe— to the ions (fi)
and electrons (fe) because the fusion power is completely dominant at
ignition, However, the power to surmount the saddle point in P:ﬁx is
33% lower for fi/fe = 100/0 than for fi/fe = 75/25 due to the hotter
ions below ignition. This simple rf model seems adequate; sophisticated

|
‘
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ICRH modeling of mode conversion and ray tracing may not be needed in
the presence of sawtoothing. Raising q(a) to 2.5 yields A = 23% because
xG"S increases [« q(a)] faster than the effective decrease in transport
due to the smaller sawtoothing region. The value of minimum ignition
density rises rapidly for an edge ripple, §(a) » 1.8%; when §(a) > 3%,
more than 100 MW is needed to reach ignition, which lies well above

1.6 x 10!* cm™3. Therefore, the plasma performance modeling is
insensitive to the details of sawioothing and ICRH; edge ripple and q(a)

have an important impact.

4. RESULTS FOR JET

The plasma performance of JET has also been examined for both a
base case and a smaller bore plasma.

Parameter Base Smaller
Ro (m) 2.96 2.71

a (m) 1.25 1.00

K 1.6 1.6

8 0.3 0.3

Bo (T) 3.45 3.77

These simulations assume a high-current (7-MA) plasma, making the
results optimistic. The nominal current is <5 MA. Without sawtoothing,
GMS scaling yields optimistic ignition comtours for both the basic
(curve 1 of Fig. 9) and small-bore JET (curve 2). With sawtoothing
(curves 3 and 4 in Fig. 9), ignition is less optimistic but attainable.
A soft-B modification!" can be made to GMS scaling of the furm

= x™ x 0.5 exp(e8,/0.4)
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to fit present experiments without sawtoothing. Curve 5 in Fig. 9 is
the resulting ignition contour for the basic JET; the smaller-bore JET
has no corresponding ignition curve for n, < 2 x 101* cm3. The
associated plasma parameters for the minimum-density ignition points are
summarized in Table 1. JET appears ignitable using transport assumptions
similar to TFCX.

Table 1. Ignition parameters for JET

Curve Sawtoothing n T B

e T p fus

aol* em™3)  (kev) %) (MW)

1 No 0.51 9.0 3.8 0.28 50

2 (small) No 0.63 9.5 4.0 0.28 40

3 Yes 0.52 17.1 7.9 1.05 130

4 (small) Yes 0.67 19.0 8.7 0.90 150
S5 (soft

beta) No 1.45 12.3 15.0 3.20 530

5. PERFORMANCE SUMMARY

TFCX appears ignitable with sawtoothing and a reasonable range of
electron thermal diffusivity scalings. Transport simulations show that
<25 MW of ICRH is adequate for heating in TFCX. Ignition appears

inaccessible if Xe = 2 x xGMS

with sawtoothing, but performance at the
nominal burn point would be unchanged. The model is insensitive to the
details of sawtoothing transients and ICRH deposition. Edge ripple and
q(a) have a large impact. For optimistically high currents, JET appears

ignitable using transpcrt scalings similar to TFCX.
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