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Radial-pulse propagation and impedance characteristics of optically shuttered
channel intensifier tubes

J. L. Detch, Jr.
EGkG, Inc., Santa Barbara Operations

130 Robin Hill Road, Goleta, California 93017
and

B. W. Noel
LOS Alamos National Laboratory

MS 678, P. O. BOX 1663, LOS Allimos, t@W t4SXiC0 87545

Abstract

Electrically gated proximity-focused channel intensifier tubes are often used as optical
shutters. Optimum nanosecond shattering requires both understanding the electrical pulse
propagation across the device structure and proper impedance matching. A
distributed-transmission-1ine model is developed that describes analytically the voltage-
and current-wave propagation characteristics as functions of time for any point on the
surface. The optical gain’s spatial unifor~fiityand shutter-open times are shown to depend
on the electrical pulse width and amplitude, and on the applied bias. The driving-point
impedance is derived from the model and is expressed as a functi~n of an infinite sum of
terms in the complex frequency. The synthesis Ln terms of lumped-constant network elements
is realized in first- and second-Foster equivalent circuits. Experimental impedance data
are compared with the model’s predictions and deviations from the ideal model are
discussed.

Introduction

The basic active components of proximity-focused channel intensifier tubes**
glass faceplate on which a photocathode is formed, followe8 by a microchannel
fused bundle of 12.5-~m-diam hollow glass tubes, or microcapillaries) and
fiber-optic window on which a phosphor i~ formed. Biasing electrical connections
to the photocathode, the input and output ends of the microchannel plate (MCP)

include a
plate (a
alloutput
are made
, and the

phosphor anode. Photoelectrons emitt~d from the photocathod.e that enter the
microcapillaries are accelerated by the applied potential, strike the walls, and are
multiplied by secondary emission, producing an electron cascade, Electronic gains from a
few hundred to a few thousand ,maybe obtained in this manner. The electron gain of the MCP
varies as a function of the voltage applied across it. Upon exiting the MCP capillaries,
the electrons are further accelerated into the phosphor, thereby prod~cing the intensified
image. The intensifier may Le shuttered off by operating the MCP input at reverse bias
relative to the photocathode so that photoelectrons cannot reach the MCP input, The
intensifier can then be gated on by applying a forward-biasing pulse. We refer to the 8f2t

consisting of the photocathode, the MCP input, and the gap betwetn them as th? MCP gate.

Experimental evaluation of gated intensitter tubes has revealed several interesting
phenomena. First, when a fast turn->n pulse ie applied to the MCP gate, the gain of the
intensifier progresses radially inward at a nonlinear rate. Sec?nd, applied potential
differences that are sufficient to completely turn on the intensifier in the eteady state
may only partially turn it on in the pulsed fnode. Under this condition, the regjon having
optical gain progresses radially inward, but may not reach the center of the intensifier
before pulse extinction occurs. Third, the turn-on characteristic generally pzograsses
radially inward, followed some time later by a turn-off charactariotic that progresses
radially inward in a time that may significantly exceed the FwH14of the driving pulse.
Fourth, the rate of turn-off (radius vergus time) may not exhibit the same b~haviot as the
rate of turn-on,

A mathematical model in developed that dtacribes all of these turn-on phenomena.
describing equations are put into a form that,u~es dimensionless parameters.

Thc+
Thlu form

enables one to characterize and compare various int~noifiet confi$jurationa. We rntart.with
a distributed resistive-cepacitiv~model of the MCP gate ●nd derive from it,the dascriblng

*T~s work waa p-ormed under the aunpice.a of the U.S. Department of Energy. The EGkG
portion waa supported by Department of Energy contract no. DE-AC08-?6NVO)11)3for the LOIY
Alamos National Laboratory.

**Often called proximity-focused microchannel-plato image intan~ifiera.
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differ ?ntial equation. The differential equation is solved and matched to the boundary
conditions for a step-function input. A set of universal turn-on curves 1S generated for a
step-function input. The curves allow one to characterize any intensifier in terms of its
radius and a propagation constant that is determined by either the network’s sheet
resistance and capacitance or the turn-on time.

The knowledge of the potential everywhere across the MCP gate as a function of radius
and time after initiation of the step-function input is used to develop the equivalent
response to an impulse (delta-function) input. The MCP-gate response to an arbitrary
driving function is obtained from the impulse response by convolution.

Prtiper electrical impedance matching is required at the MCP gate in order to minimize
reflectad gating-pulse energy, to get the fastest risetime, and to have the btst waveform
in fast-pulse applications. To accomplish impedance matching will require a suitable
equalizing circuit between the pulse source and the MCP gate, because the intensifier alone
is not a good impedance match. To design equalizing networks requires detailed knowledge
of the driving-point-impedance characteristics of the FICP gatn The model permits
calculating the driving-point impedance. The current across and through the MCP gate as a
function of radius and time is calculated from the potential. The Laplace transforms of
the potential and current functions are calculated. The ratio of these two s-plane
fll;>ctionsyields an anlytical expression for the complex impedance of the MCP gate as a
function of radius and frequency. When the expression is evaluated at the perimeter
radius, one obtains the driving-point impedance.

The model shows excellent general agreement with the observed phenomena and is
consistent with the basic electrical behavior. At least one unexplained optical
characteristic has been observed. Under certain operating conditions, the turn-on radius
has been seen to propagate radially inward, reverse itself before reaching the center, or
complete tticn-on, and then return radially outward. The R-C model chosen for this study
produces only radially inwbrd-propaquting solutions in terms of integer-order Bessel
functions. The L-C model of a radial transmission linel gives both radially idward- and
outward-propagating ~olutions in terms of t9enkelfunctions. We believe that a combined
R-C-.L MCP-gate model would yield a descriptio,l of the observed outward-propagating
phanornenon. Unfortunately, the boundary conditions for such a model are difficult to
apply. Several electrical phenomena are riot now included in the R-C model. For some
intensifiers, there is an unexplained decreasing equivalent seriee resistance (esr) at 1Ow
frequency. There is also a ~eries resonance partly caused by lead inductance and a
parallel resonance from parasitic capacitance. The rest of the series resonance and the
usr may pertiapsbe partly explained with the proposed R-C-L model.

Distributed network model of the MCP gate.— .— —— -.

We ass~e that th~ MCP input and the photocathode are planar with circular symm$try and
that the perimeters of these elements are driv~n simultaneously and aymhetrically. As a
pulse propagates radially inward, we examine a symmetric ring, of rudial thickne~tidr,
located at the radius r. Th@ resistance between the inner and outer edgt’sof the ring it!

o(r)dr ● ~idr , (1)

where II in the combined @!]eetresistance of the photocathode and MCP input,
the ren?atance per ur)itwidth.

and o(r) is

we th@n connider the elemental parallel-platn capacil.orformed by t:hephotocathode rinq,
the mdjacont ring on the MCP input uurface, and the gap. We obttiina capacitance that ia
proportional to the carllux:

C(r)dr = 2wCaclr , (2)

~ro ●ppear
.—..——

t~-~omo corrdicir)nmwhero the latter a~surnptiun does not hold, but wo do
not con8ider them here.



%x
where C8 in the capacitance per unit area ammociated with the photocathode 9aP~ Note that
thio quantity may be experimentally eptimated by ● aauring the gap capacitance ●nd dividing
by the photocathode surface area. mull, c 9= c /a * ~ where Co ia the (measurable) total
capacitance between the photocathocle and t~e HCB input leada,

With this model for the distributed reaiatance and dintributr~ shunt capacitance of
the HCP-gate structure, we then examin? & differential hection of radial tranem~naion line
located between r and r + dr, ae shwn in Pig. 1. The change in voltage acroba the element
ia given by Ohm’s law,

Similarly, the change in the current is given
by

~dr. - C(r) dr ~. (4)

The differential radii may be removed from
Eqa. (3) and (4) to provide

avm
ac

-p(r)i

and

(5)

I I
I I

Fig. 1. Differential distributed
tranmzniasion line representing
two adjacent elemental rings on
the MCP gate 8tructure.

(6)

We then take the radial partial derivative of Eq. (5) and combine the result with Eqk!. (5)
and (6). Substituting the ●xplicit forma of the distributed reaiataoce and capacitance
from Eqs. (1) and (2), and their derivatives, 9iVe8

which reduces to

(7i

(b)

where K - l/poca is a propaqatlon conmtant ●nd ● is the perimeter radium of the RICP gute.
The particular solution of Eq, (t3) nsy be ohown to be of tha form

2
v(r,t) - A Jo(mr) ●“”Ra ‘, (9)

wher~ J ~ i- the Beaael function of the rirat kind of order sero.



Solution for a ateP-function input

Assme that we apply a t3tep-function voltage of amplitude V to the perimeter of the MCP
:a;:.at a time t = O and maintain the perimeter voltage v(a,?) = V.

Then Eq.
for all subsequent

9 must be modified by an additive constant (or constants) determined from
the roots of

Je(ana) = O.

The general solutien becomes

-Ka:t
v(r,t) = V. + ; An Jo(onr) s .

n. 1

(lo)

(11)

Examining the boundary condition at t = Q, when the potential elsewhere acroas the HCP gate
is assumed to be zero, we obtain the relationship

~ AnJo(anr) = - V. (for O < r < e). (12)
n-l

The orthogonality relations for the J o Bessel functions are given by

1
a

rJo(amr) Jo(anr) dr = /

This relationship
across the MCP gate

f .

( 1 azJ2 (aan) for m = n I
z]

(13)

may be exploited to solve for the factors An to yield the potential
as a function of the radiua and time,

(14)

For comparing gated MCP image inteneifi?rs having different phyeical parameters, it haa
been found convenient to expreaa Eq. (14) in a dimensionleasT(:n;:;:;al) form in terms of
the fractional radiua, r/a, and a universal time parameter, where t lo the
laboratory time. Using these dim~nsionleos parameters, Eq. (14) may be’written as

where I)n = aan, The reader nhould note the ●imllsrity betwean this solut on and that for
radial h~at flow in an infinite cylinder, ● s solved by Carslaw ●nd Jaeger. 4 The internal
r iae of potential of the 14CP gate following ●pplication of a stsp function is shown in
Fig. 2 in terms of fractional potential vs fractional rsdius for var ioum
universal

Valuea of the
timo parameter, Note that fin ●rbitrary bias may be added ●nd the time required

for ● given radius to reach ● cpecified potential may be readily det~rmined.



Solution for a delta-function input

Applying Duhamel’s theorem allows one to differentiate Eqs. (141 or {15) with respect to
time to produce the corresponding Unpulse response for a delta ?unction of potential
applied at t = O. The response may be ●%presaed in terms of laboratory or dimen8ionlean
time, respectively, by

9 -Ka~t Jo(ran)
H(r,t) ●+ 1 ane —.

n-l Jl(aan)

or

9

~ One
-J9~T Jo((r/a)Sn)

H(r/a,T) = 2
n-1 J1(t3n) “

(16)

(17)

The dimensionless form, Eq. (17), of the impulee retaponl]e is shown in Fig. 3 for the same
values of the universal time parameter ae shown in Fig. 2 for a oteF-function input. Note
in particular that an impulse does not readily propagate flcrosa the HCP gate without
serious degradation.

0.00
0,00 0.20 a40 0.80 o.eo-ib

R1A

Fig. 2. Universal turn-vn curvee for
mtep-function input, showing fract~onal
potential excursion V8 fractional
radiue for valuea of the time param-ter~
T, between 0.006 and 0.00.

o.

Y
; 00.0}

I
I

<
E

o.m4

; 0.000
40.0 “ O.o1

oDO 0.20 0.40 0,60 0,00 Lco
RIA

Fig. 3. Universal turn-on ●nd turn-
off curves for impulse input for
valuee of T between 0.002 and 0.05.
Vertical scale is normalized to unit
area under curve at T-O.

Solution for an arbitrary inPut function

The propagating pctential acroeo the MCP gate for an arbitrary input function X(t), ia

given by the causal convolution integral

6

t
vx(r~t) ~ X(I) ~(r,t-1) dl. (18)

h an example of this operation, conoidtr ●a ●n input function the caus~l first-moment
●xponential puls~ given by



H
o t<o

X{t) . #

Ate-yt O 6 t

(19)

+a; t
.2KJ ; le(Ra:-y~t[(Ka:-y,t.l]+l1.Jo(ran) ●

Vl(r, t)
a an Jl (aan) (Ka~-T)2n.1

(20)

As an example of the behavior of Eq. (20), assue that a WY gate has a radius of
a = 0.5 cm, ia biaaed off at -4o v, turns on when the potential across the gap exceeds
s. [0, and is completely turned on in 1 ns after a step-function excur6ion to +160 V is
upplicd. T%is corresponds to a value of the propagation cons+.ant, K = 2.d2 x 10-2 cm2/ns.
ASSLSIM the driving pulse is of the form of Eq. (19), haa a FWHMof t = 1 ns, and reaches
a peuk pctential of +160 V (200 V above the assmed -40-V biaa). Th~~tiEq. (20) gives the
reeults shown in Fig. 4. Note the initial inward-propagating rise in potential until the
entire intensifier is turned on, followed by an inwa~d-propagating
that subsequently turns

decreaee in pote~tial
off the tube. The time between adjacent curves is 0.2 ns. The

times of creasing-zero potential and the corresponding radii for turn-on and
shown in Fig. 5.

turn-off are
Note in part~cular that the central portion of the inten~ltier ia turned

on for significantly greater time than is the perimeter, and that both of those times
●xceed the FWHMof the driving pulse.

Vmomleo,o

Jl

RIA

Fig. 4. HCP gate voltage as func-
tion of time ●nd position aa
ealculat@d from Eq. (20) with
parameter described in text.

‘“T-T-7
0,80.

~ 0,60
m
m

‘s
: 0.40 -

0.20 “

0.00 0,00 1,80 z .40 Uo 4.00

Tlmo (no)

Fig. 5. Turned-on and turnwl-off
radji ve time for the same para-
meters used in Fig. 4 ●nd dincrbad
iP text.



calculation of the impedance

The voltage acroas the UCP gate aa a function of radius and time is given by Eq. (14) .
By combining Eqs. (1) and (3) and taking the radial pa”tial derivative of Eq. (14i , we
obtain the current aa a function of radium and time:

2=1 av(z,t) 4srVo -
i(r,t) - ~e

-Ka:t Jl(ran)
.— -—
Po ar POa n-1 -“

(21)

The impedance of the radial tranemiesion line an a function of radiua itI found by taking
the ratio of the Laplace-transformed veltage and current,

12mo 1——

V(r,s) poa ~
Z(r,s) - — - —

I(r,a)

4’%+%]”

(22)

The driviilg-point impedance io obtained by ●valuating Eq. (2z) at the ●dge of the HCP gate,
where r = a. Thus,

where kn m XOJ = w13zp co. The functional dependence on the radiua will henceforth be
understood, an!l W* wI1? write Z(a) only.

In this form, z(e) appears to be difficult to interpret in terms of fmiliar
driving-point-impedance concepts that involve lumped circuit elemente. Consequently, we
search for ways to nyntheaize it in terme of ●uch ●lemente.

As a firet step in the mynthesia, it a straightforward to ehw that Z (n)
real by, fOr ●xample, Talbot’s toot. i in positive

have chosen to develop first..
It is thus ayntheaiaable in a numbar of waya. We

●nd second-hater R-C mynthesec.

Eocond-?oater ●ynthesia

Equation (23) may be rearranged ●aaily into the form

Z(a) - 1
9 (24)

and then the ●econd-roster R-C kynthasia follows by inspection (Pig. 6) . In the figure,

4C0

cn”fi-~
n

(25)



00
R.

z“

MS

(26)

Note that Cn+l < Cn,
the first s-plane 6 islocated a~~~”-ll~!!s=~?~~. ‘~~~

‘or all “ becau;e ‘n 1 ‘,~n ‘or all n and 8
zero of the circuit In Fig.

frequencies from zero tc the b“icirtityof l/2TIRC~,

z(s) =
~o 1 1—— -—

4US -
1

Cos
T
L

n=l q

because

; ~=1,
n-l ~: 4

The low-”frequ?ncy (or first-order)
capacitance, Cm, as expecce.~ for

(27)

(28)

impedance
a correct

Eq. (23) becomes
a 88

Fig. 6. Second-Foster synthesis
of the driving-point impedance.

is simply that of the low-frequency
model. - BY examining

equivalent circ~it, we see that the low-frequency capacitance is that due
n~ber of lumped cap<scitorstaker; in parallel; i“.e.,

:cn-4co ;L -co .
n=l n=~ B;

the second-~oste~
to the infinite

(29)

For an 18-mm-diam ITT intensifier, the manufacturer specifies a
square. We meesure the low-frequency capacitance to be typically
these values, the first zero is located at the break frequency fl
the reaion near this freauencv, but well below the second break freauencv, tfie circuit is

nominal p = 2000 n per
c = 30.? pF.

= ?/2 RC1 M 47 UHZ:S’;:

shwn in Fig. 7. For t~~s ~econd-order case, the impedance ii the;”simply l/sCl+R in
~~rallel with l\sCrl, where

0

Crl - i Cn-cl - co(l- A) Y 0.308 Co
n=l Bf

(30)

and Crl * 6.5 pF for our 18-rnnl-diamintensifiers. The foregoing procedure can be repeated
to as many ●lements as are required to cover the bandwidth of the ~riving circuit. At that
point, the lumped-constant circuit should be an ●xcellent approximation to the ideal
intensifier with respect to any important properties of the drivin(3 source or matching
c ircuits.

The driving-point impedance of ●ny circuit containing only lirear lumped ●lamenta can be
writtor @s the complax srmI of ●n esr and ● series reactancti, The resiatancr ●nd reactance
~re, in general, frequency-dependent, but obviously reduce to constnnt value~ at ● fixed
frequency. For sufficiently low frequencies, the secorld Poster 8quivaler?tctecuit reduces
to a single capacitor of value C . The series-equivalent components for
frequencies can be found

intermediate
by ?ombining the circuit elemerta in the usual way. FOr

swfficiontly high frequency, s + -, all the capacitors become short circuits and
●quivalent

the
network contains only ●ll the ●qual-valu~d reoiatora in parallel. The infinite

pa~dlel combination thus reduces to zero resistance and the ●quivalent series resistance
approaches zero ●s u + -.
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PULSE
SOURCE

INTENSIFIER

Fig. 7. Second-order version of
the second-Foster synthesis.

Fig. 8. Properly terminated circuit
in frequency region where first-order
synthesis is valid.

Consir!~ driving the circuit with
below th~ first breakpoint,

a pulse whose r~set~m:i:::::swnds to a frequency
In this case, the first-order is an appropriate

representation of the intensifier. It is possible to optimize the risetime and waveshape
very simply by using a stl i~line, between the driver and intensifier, whose characteristic
;m edance

\
equals the .;utpct=resistance of the driving source. The appropriate stripline

te rnination is shown in Fig 8.- It is also possible to impedance-match by, for example,
bridged-tee networks. For >pera:ion above the first breakpoint, more-complex matching
networks that include equalizers are needed. we note that gating pdses of the order of
l-ns FWHM require op~ration :hove :he fourth breakpoint. We shall not discuss appropriate
matching circuits for such ca~{esL&re because, as it turns out, parasitic and leakage that
are not accounted for in the present model preclude applying them directly.

First-Foster synthesis

The exact form of the firs{:-Fostersynthesis cannot be carried out easily. The basic
eqUat10t7 for performing it is obtained by observing that, upon collecting terms over a
common denominator,

so that
9

.,
m

n (s+kn)

n=l

n (S + kr,)
nm ]

z(s) - PC 1 .. -
z; .—

9

Ml
.

i=l rl;
(a+kn)

i

(31)

(32)

The impedance haa a pole at s - 0 t,ldzeros ●t ●ach s - - k The first zero ia at = 47
MHz, ●s is expected, because this form of the impedance mus! have the same frequency
dependence as that which led to the second-Foster synthea,s. The pole at zero can be
removed by writing Eq. (32) as

z(s) =: [;+ Us)], (33)

so that, by the theory of residues,

—



m

n (s + !(n)

A=n:l _ ,-

m (s+kn) ~=o
i=l n-l

n*i

Thus

.

z(s) =++ :F (s) .
0

(34)

(35)

(36)

The pole at s w O comes from a capacitor of value Co. The numerator of F(s) is one
lower than that of

order
the denominator, so there IS no remo-’ableseries resistor. This is

expected since, as we ahowed earlier, the value of the esr approaches zero as s “ -.

It does not appear to be possible to evaluate F(s) exactly in the ~orm of the
partial-fraction expansion needed to complete the synthesis. TO do so requires Iactoring a
denominator containing an infinite riumbeLof terms in order to find the poles. Each of
these gives ri.Se to a parallel R-C element pair. However, we do know the location of all
the zeros of 2[s) from Ea. (32). rt can be shown that the Doles and zeros of this function
alternate,
say, taking
of the form

so’we may be”abie to make a useful approximatio~ to the location of any pole by
the logarithmic average of the two adjacent zeros. The final network will be
shown in Fig. 9.

Approximate fitst-Foster synthesig

An approximate first-Foster R-C synthesis can be realized. The main advantage of it is
that one can calculate the exact values of che components. The disadvantage is that the
approximation improves only as the number of components increases, and the latter increase
causes a manifold increase in the algebraic complexity of the calculations.

The procedure used is to
algebra required to put the
The results are illustrated

tr~ncate the series in Eq. (32) after n terms and perform the
truncated Z(s) into the proper form for fir:;t-Fostersynthesis.
in Fig. 10. In this figure,

’37’‘“m----cl-,
and

Fig. 9. Fir.st-Fot3tersynthesis of the
driving-point impedance.

(38)
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Note that Rn + O as n + -, as it should, baa:d
03 Our earlier discussion. Similarly,
increasea toward a con~tant value, namely Co?
for n ● =.

The parallel components for n = 2 are

P. klz + k22

‘P-= (kl+kz)z

and

16w kl + k2

cP”—
.

‘O kl2 + k22

(39)

(40)

The expression for the values of the parallel
elements is extremely complicated for n > 3.
For n = 3, the element values are

n81

i

R,

T
c,

ns~ W93 ------ ”ml---

1
Qo

R3-~#
(41)

-Fig. 10. Approximate first-Foster
networks for the truncated driving-
point impedance.

4X BC30—-,
P. c

‘O (AB-9C) (=-A) +6(B2-3AC)
Rpl “ ~

6B(AAP=B - (A2 -3B)) ‘

(42)

Cpl - II lEB=
t

‘O (AB-9C) (~-A) + 6:B2 -3AC)

‘O (AB-9C)(fii~+A) -6(B2 -3ACJ ,
~p2 m ~

6B(AmB +(A -3B))

and

CP2 -
4n 18B~0— —.. —. f
‘O (AB-9[”),fi2~D +A) -6(BZ -3AC)

(43)

(44)

(45)

(46)

;;;;; l;~k~h~tk2R~ ~3;3B~~1;~ : ;&~~a~:~~~~~l~n~ c~~c~~~~;~~m=F~ ~:~~~::~n~~e:f~ ;r;: a:
c2-
!i

34.6 p~. For this case, each n value, as
● petted, becauae tne capacitors are in Sorioe. The thtee time constants ●re R C3 u 1.4
na..

%E
lC 1 = 1.2 n.e, and RP.CP2 - 0.35 no. i timeSince ●ny additional component pairs h ve

connt nt shorter than R3~3t and since we are intercatod in gatLng on the tubes for times
-1 na, it appeara that the given three-time-cofistant Circuit may be ●dequate ●o an
approximation to the ideal MCP-gate equivalent circuit.
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Electrical measurements

The driving-point impedance was measured by one or more of several methods for each of
six ITT tubes. Impedance data were obtained at various frequencies. Our intent was to
compare the measured impedance with that predicted by the model as a function of frequency.

Measurements were made at 1, 4, and 10 MHz with a Hewlett-Fackard model 4275A LCR meter.
A Hewlett-Packard model 3042A Automatic Network Analyzer was configured to measure
reflectance. The data were taken quasi-continuously over the range from 1 to 13 MHz. The
devices were measured exter.sivelyat selected spot frequencies from 1 to 500 MH? with a
Hewlett-Packard model 4191A rf Impedance Analyzer, It was found generally that the
measurements made below 10 MHz by the first two methods, and below 3 MHz by ~he third, were
too noisy to permit accurately evaluating the erir, The data obtained by the three methods
generally agrsed well. A summary of the data at 10 MHz is given in Table I.

TABLE I

Summary of Equivalent Series Resistance
and Capacitance Data on ITT Intensifier Tubes at 10 MHz

Intensifier
Serial
Number cm CA Cz %

788/1 29.7 31.7 31.3 64
787/1 -. 3~.1 30.7 --
787/3 -- 26.7 30.2 --
7~7/l(J 29.6 30.5 29.8 4.1
780/7 -- *20 -- .-
788/6 -.. 34.3 -- -..

RA

54
43
4a,5
10.’!
610
12.5

RZ

64.3
59.7
50.9
10.1
--
--

- ——
cm, Rm = data measured with LCR meter
CA, RA = data measured with automatic network analyzer
CZ, RZ = data measured with rf impedance analyzer

The best data are thought to be those from the 4191A. Using this instrument, the
measured capacitance t’ot four of the tubes was 30.5 i 0,8 pF. The small spread verifies
that th? device dimensions vary little in manufacturing; the tested t~hes came from two
different batches.

‘vc measured esr varies greatly among t~bes, Inde;~ncll:~turn-on measurements ehoti
that ,thoztiwith the lowest esr tend to turn on fastest. 80 far been unable to
tiitfctlyrelate the measured esr to the calculated value. The idea! model shows a constant
esr in the region below the firfit breakpoint. Experimentally, for some devices, the eMr is
constant over - wide frequency range below the first calculated b~~akpoint, For other, it
is inversely proportional to frequency. Sev@ral facturs could contribute to this and other
observed anomalien. First, we know that the photocathode resistivity varies among
intensifie~s for several reasone, Second, the measured esr includes contributions from the
parallel ac-l@akage resirrtance and other parasitic not included in che model, such as
stray capacitance and lead inductance. Third, it may be necessary to include the effects
of distributed inductance to account fully for the obRerved esr as well aa for thm turn-ori
anomalies diocussed ●arlier.

~l[)e~6r for five inten i iera iRIplotted in Flg Il.
pfop~rtional to about f-?.$. The relationship would be f

-jr aev~ral cases the esr is
for a purely resistive leakage

in patallel with the tube. !3ucha leakage would have to have a value of 4.6 khl to agree
with typical nfeasured valueu of ear, wherman we estimate the low-frequency le&kage
resistance to be 300 Mfl.

The broadband data obtained with the rf impedance analyzer chow additional ●ffects that
are not ●ccounted fot’ by the idealized model. Figure 12 is a plot of the magnitude of the
impedance an e function 0’ frequency for a tube exhibiting conetant @#r below the
breakpoint.

first
A series remonance occurs at 175 MHz, Its effect over & broad range of

frequencies masku evl!enc~, if there in ●ny, of the breakpoint that should occur at ~ 47
MHZ if the entimated D is the correct value,

?
The rreriesresonance is caus~d partly by the

lead inductan~’eresona ing with the device capacitance. The required inductance l& 27 nH.



The estimated maximum lead inductance, given the physical layout and dimensions, is about
16 nH. The proposed refinements to the model will have to account for this effect.

There is a small parallel resonance at about 350 MHz. It is caused by the
aforementioned inductance resonating with the stray capacitance.

n ,, , , r T , 7

L__1’ ~— ——u J
I 10 100 moo

=roquonuy(MHd

Fig. 11. Measured equivalent series
resistance for five intensifier tubes.

10 U)o 1000
Froquoncy(MHz)

Fig. 12. Amplitude of tha impedance vs
frequency for one intensifier tube.
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