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ABSTRACT 

This study presents the mathematical bases of the measurement of internal 
temperatures within flowing systems using chemically reacting tracers. It considers plug- 
flow (or piston-flow) systems. The differential equation for reactant conversion can be 
reformulated into a Fredholm integral equation of the first kind. In the Fredholm integral 
equation the unknown is the temperature distribution function, which characterizes the 
internal temperature profile of the flowing system. Due to nonlinearity of the kernel, the 
usual technique of regularization has been modified into an iterative approach. This new 
approach is employed to solve this Fredholm integral equation. The iterative approach 
successfully overcomes the usual difficulty of determining the optimal value of the 
regularization smoothing parameter. Advantages and disadvantages of this method are 
discussed, and the results are compared with those obtained by optimization of 
undetermined parameters in a postulated temperature distribution function. The insight 
acquired from this study can be used to determine temperature profiles for many existing 
systems, and can form a basis for analysis of the more complicated dispersed-flow 
systems. 

The iterative Fredholm integral equation method is tested to see what is required to 
discriminate between two models of the temperature behavior of Hot Dry Rock geothermal 
reservoirs. It is found that using as few as two reacting tracers can distinguish between the 
models and provide a reasonable approximation of the temperature profile within a 
reservoir. 
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INTRODUCTION 

There are many flowing systems whose internal temperature characteristics affect 
their behavior significantly. Some important examples are continuous chemical reactors, 
aquifers, nuclear waste storage sites and geothermal reservoirs. For example, in Los 
Alamos National Laboratory's Hot Dry Rock geothermal energy program (Murphy et al., 
1981), the measurement of temperature patterns in the regions between the wells will be a 
principal tool in predicting the life of the reservoir. The use of direct temperature probes 
within this system is impractical, and it would be beneficial if an indirect technique could be 
devised. It has been proposed to measure these temperatures using chemically reacting 
tracers (Brown et al., 1984; Robinson et al., 1984). A pulse of chemically reacting tracers, 
injected from one well, encounters different temperatures on its way to the other well(s). It 
is shown in this study that the temperam profile experienced by the pulse can be extracted 
from the extents of the conversions of different tracers. 

THE PRINCIPAL EQUATIONS 

For simplicity, in this paper it is assumed that the reacting tracers undergo fmt 
order reactions. The derivation of equations will need appropriate changes if the tracers 

follow a rate law different than the first order law. However, the general principles 
developed here can be used for other rate laws Without any major modifications, as long as 
the expression for the reaction rate consists of two separate parts, a temperature-dependent 
part and a concentrationdependent part. 

Consider a segment of fluid traveling along a particular flow path, and encountering 
different temperatures along its way. If chemically reacting tracers are added to the flow, 
the changes in the concentrations of the tracers are governed by 

dC. -E,/RT 
dv 1 

I q- = -A.e  ci 9 

for a constant density plug-flow system, where i denotes the i'th tracer (all symbols are 

defined in the nomenclature). The integration of this differential equation with appropriate 
limits yields the fotlowing equation : 

where 5 is the dimensionless volume fraction (V/Vs), similar to the dimensionless reactor 

length in chemical reactor theory. The dimensionless group which composes the LHS of 
eqn(2) is equivalent to the ratio of the system average of the reaction rate constant to the 



reaction rate constant which would exist if the temperature were infinitely high throughout 
the flowing system. 

From the inlet and exit values of the concentrations, the LHS of eqn(2) can be 
computed for each tracer. Let us denote this quantity by g(J2i). In order to determine the 
temperature profile, i.e., T as a function of 6 ,  from the observed values of g(Ei), the 
integral equation (2) has to be inverted. In its current form, however, eqn(2) involves a 
nonlinear term, exp[-Ei / RT(t)], which makes its inversion difficult. The problem can be 

made amenable to standard numerical methods by reducing eqn(2) to a Fredholm integral 
equation of the first kind, i.e. g(x) = K(x,y) f(y) dy, using the following method. 

An initial estimate of the temperature profde is assumed, L&), and a fkactional 
deviation of I.&) from T({) is denoted by &(e), Le., &(e) = [ T(5) - L&) ] / L&). The 
nonlinear term exp[-Ei / RT(c)], can be expanded in terms of I&) and E({) : 

r- l l  
-E. 'Ei 1 4- &(SI 

RT(5) RLo(S) RLo(s) 
~ rexp( -Ei ) I ~ ~ - ~ ( ~ ~  (3) expC-4  = [exp(-)I 

Expanding the exponential term in a Taylor series and neglecting all the terms higher than 
or equal to ~*(t) leads to 

After substituting eqn(4) into RHS of eqn(2). integration of eqn(2) leads to 

Eqn(5) is in the form of a Fredholm integral equation of the fmt kind, and can be solved. 
Thus,ifor an assumed temperature pmfie I&), solution of eqn(5) yields E((). Since ~ ( 5 )  
is a fractional deviation of T(5) from L&), the initial estimate of the temperature profile 
can be m&i& 

to obtain a new estimate of the temperature profile. This iterative procedure can be 
continued until the nom of &(e) becomes sufficiently s d .  

LAC) = Lo<!) [ 1 + E(5) I, 

SOLUTION PROCEDURE 

A Fredholm integral equation of the first kind has the foxm 
b 

g(x> = j W L Y )  f(Y) dy 9 c S x S d ,  
y = a  
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where g is a function of the experimental variable x, the kernel K is a known 

representation of the experimental system and procedure, and f is a distribution function 
of an inmnsic system variable y. In our application, the experimental variable is the 
activation energy Ei. For an assumed temperature profile, L&), the LHS of eqn(5) 
depends only on Ei, whereas the kernel in that equation is a function of both Ei and the 
intrinsic system variable, 5. The desired distribution function, &(e), depends solely on the 
intrinsic variable. 

The unknown in a Fredholm integral equation is usually the dismbution function 

I 

f(y). The solution minimizes locally the integral 
d b 

x =c y=a  

Unfortunately, when a Fredholm integral equation of the first kind is attacked directly to 
obtain f(y), chaotic solutions are obtained (e.g., Allison, 1979). This is due to the ill- 
posedness of the problem (cf. Wing, 1984), which tends to cause f(y) to change by a large 
margin when small variations occur in the experimentally observed g(x). One way to 

resolve this difficulty, known as regularization (Tikhonov and Arsenin, 1977), has been 
the addition to eqn(7) of a stabilizing term aG(f), where G(f) is a nonlinear differential 
operator on f(y) with nonnegative coefficients. This term has the effect of smoothing the 
solution for f(y). The value of a depends on the degree of smoothness desired. If the 
value of a chosen is too large, then the solution may be over-smoothed and valuable 
information may be lost. On the other hand, if the chosen a is too small, then spurious 
peaks may appear in the solution. In fact, choosing the proper value of a is critical to the 
success of the regularization approach (Miller, 1974). Unfortunately, no adequate criterion 
presently exists for choosing the optimal a (Brown and Travis, 1984). 

The iterative approach used in this study avoids the difficulty of choosing an 
optimal value of a in the regualrization process. In each iteration, a few values of a, 
significantly greater than the optimal value are used. This avoids spurious peaks in the 
solutions. Using this approach, the "best" solution is approached as a limit to the iteration 
process. This approach is computationally efficient; although it is an iterative process, at 
each iteration it solves the problem for only a few values of a 

In this study, a first order stabilizing term is employed, Le., G(f) is chosen to be 
b 

~ 

y = a  

In the regularization approach, the sum of the residual I [given by eqn(8)] and the stabilizer 
aG(f) is minimized. The necessary condition for this minimization can be obtained by 
calculus of variations (see Britten et al., 1983 for details). It may be noted that the use of 
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the first order stabilizer emphasizes continuity of f(y) as well as its fmt derivative in the 
final solution. 

RESULTS AND DISCUSSION 

All modeling reported in this study has been carried out in the following manner. A 
temperature profile T(6) is first postulated. The three temperature profiles employed in this 

analysis are : 
Profile A : T(5) = 500 + 150 [ 1 -exp(-56)] 
Profile B : T(6) = 500 + 150 [ 1 -exp( - [ O S  / (1-5)]4)1[ 1 - exp(-55)1 
Profile C : T(6) = 500 + 150 [Pi 6 exp(-P26)1. 

Profile A has the characteristic shape exhibited by an adiabatic tubular reactor with an 
exothermic reaction. It also reflects one type of temperature profile exhibited by a Hot Dry 
Rock geothermal reservoir. Profile B has characteristics of another type of Hot Dry Rock 
reservoir, with about half its potential thermal energy extracted. Profile C has the 
temperature characteristics of a tubular reactor with an exothermic reaction which also has 
cooling at the wall. This profile exhibits a peak, and it is mainly used to test the 
applicability of the proposed iterative method to such profiles. The values of and p2 

were appropriately chosen to provide reasonable profiles, each with a maximum 
temperature of about 650 K. 

After selecting the temperature profile, the RHS of eqn (2) is evaluated for n 
different activation energies in a given range. The experimental data vector consisting of 
g(Ei) is simulated by adding a specified degree of random error to each of these n data 
points. In all simulations in this study, a grid of 20 points of 6 is used to put the system 
equation into discrete form. Then the appropriate Fredholm integral equation is solved to 

obtain the desired temperature profde, which is compared with the originally assumed 
temperature profile. 

The main focus of this study is distinguishing between Profiles A and B. The 
numerical strategy discussed so far will be judged by its ability to distinguish between these 
two temperam profiles. 
Selection of Cherru 'callv ReactinP Tracers 
(a) Tracer Characte ristics : Among the requirements for suitable tracer reactants and 

products are those common to all tracers. They must be soluble in the system medium, 
neither reactants nor products should adsorb appreciably on the system surfaces, and the 
capability must be present for analyzing the effluent for reactant and product concentrations 
easily, quickly, and accurately. For this problem, in addition to these general tracer 
requirements, the reactions must also satisfy following requirements. As has been 

mentioned earlier, the rate expressions must be separable into two parts. one depending on 

. 
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temperature and the other on concentration. Also, the pre-exponential factors and the 
activation energies should be appropriate so that the tracers undergo sigrufcant, but not 
complete, conversions. 

Fortunately, such reactions do exist, e.g., the hydrolysis of organic esters to yield 
organic acids and alcohols (cf. Kirby, 1972). At any particular temperature, there usually 
can be found a number of such reactions with similar reaction rates but different activation 
energies compensated by different pre-exponential factors. Even though there might be 
many reactions which would be candidates for use as tracers for a particular situation, it is 
always desirable to reduce the number of reacting tracers to as few as possible. In this 
study this possibility is investigated. Also, since the reaction activation energy Ei is the 
only possible experimental variable for multiple-tracer tests, another important 
consideration is the determination of the range of activation energies that is best suited for 
chemical tracer experiments. 
(b) Activation Enerrria : In general, the required range of activation energies depends 
mainly on two factors, the kernel and the possible temperature profiles. In this particular 
case, it was found that g(Ei) decreases exponentially with Ei as the latter is changed from 
20 kJ/mol to 200 kJ for all three temperature profdes. It follows that the sensitivity of the 
tracer data to the activation energy, i.e. &(&)/aEi, also demases exponentially with the 
activation energy. Thus it is prudent to use the tracers undergoing chemical reactions of 
lower activation energies. However, once the range of activation energies is selected, the 
increase in the number of tracers within that range does not seem to be very important. 
These two observations are substantiated by simulations shown in Figs. 1 and 2. Fig. 1 
depicts the results obtained with a grid of 20 points from 5 = 0 to 1, using five different 
ranges of activation energies, each consisting of seven data points. The solid curve 
represents the true temperature profile (Profile B), the dashed line denotes the initial 
estimate of the temperature profile (a straight line between known inlet and exit 
temperatures). The two ranges covering relatively lower activation energies (viz., 20-80 
kJ/mol and 40-100 kJ/mol) give better results than the two ranges of higher activation 
energies (viz, 80-140 kJ/mol and 140-200 kJ/mol). Also, it can be seen that when lower 
activation energies in a narrow range (e.g., 40-46 kJ/mol) are used, the results suffer. The 
results obtained for Profile A, using the lowest range of activation energies (20-80 kJ/mol), 
but varying the number of data points from as high as 13 to as low as 2, are shown in Fig. 
2. The figure clearly shows that the number of reacting tracers used does not affect the 
final results. When only 2 reacting tracers are used, however, the number of iterations 
required increases significantly. Hence, in order to save computational efforts, throughout 
this study about 4 or 5 data points are used while studying the effects of other variables. 
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Effect o f E m x L e  vel intheExpe- 
In any experiment, a certain amount of error is inherent. The inversion of a 

Fredholm integral equation of the first kind is an ill-posed problem. Thus a small level of 
error in the LHS can cause large changes in the solution if proper precautions are not 
undertaken. The success of the regularization method used in this study largely depends on 
how robust is the solution for different levels of error in the data values g(Ei). It is 
apparent from Fig.3a that the iterative method passes this test. Out of four different error 
levels used (O%, 1%, 5% and IO%), the first three give about the same results. More 
importantly, as can be seen from Fig. 3b, even at 10% error the proposed method succeeds 
in distinguishing between profiles A and B (the two alternative models for a Hot Dry Rock 
geothermal reservoir). Both temperature profiles have the same inlet and exit temperatures, 
so the same initial temperature profile has been assumed in both cases. Thus, using the 
same initial conditions and with up to 10% statistical error in observations, this method is 
able to dikrimhate between competing models for geothermal reservoirS. 
Comparison With the Traditional Methd 

In many modeling studies, a parametric functional form of the desired distribution 
function is assumed and the parameters are adjusted to best fit the experimental data. If the 
correct functional form is assumed, this traditional method gives excellent results. 
However, it can give misleading results when the assumed functional form is incorrect. 
This pitfall is illustrated in Fig.4. The actual temperature profile is assumed to be of the 
form of Profile B (with 1% emr), as shown with the solid line in Fig.4a. However, if a 
temperature profile similar to Profile A, viz. T(5) = 500 + 150 (l+xp(-p~)], is used to 
model the experimental data by the traditional method, then the value of 9 that fits the 
experimental data best is found to be 2.680. The resulting temperature profile is shown in 
Fig.4a by the dashed line. However, when the method of regularization developed in this 
study is used, where no assumption is made regarding the functional form of the 
temperature profile, superior results are obtained (shown in Fig.4a by squares). A similar 
analysis is shown in Fig.4b, where the actual profrle is of the form of Profile A and the 
traditional method wrongly assumes a'functional form of Profile B. 
Temperam Pro Nes Exhibiting a Maximum 

In order to test the solution procedure for temperature profiles exhibiting a 
maximum, Profile C is used for three sets of values for 91 and 92, which are reported in 
Table 1. 
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Profile 
number P1 P2 at which T a t t =  1 L*- 

Cl 3.398 1.25 650 0.8000 646.0 
c 2  5.437 2.00 650 OSOOO 610.4 
c3 16.31 6.00 650 0.1667 506.1 

Fig5 reports the results obtained for these thrce temperature profdes. For profiles C1 and 
C2, the method yields reasonably good results, which are depicted in Fig.5 by empty 
squares and partially filled squares, respectively. For Profile (33, the results from the 
regularization (shown by filled squares) do not agree with the actual profile, although the 
tolerance of 1 % is satisfied. The numerical details of the final results for this latter case are 
shown in Table 2. 

u2u 

Activation f Ei). g(Ei), datasimulatedfromthe 

(J I mol) 
energy, Ei wi outerror Wlth errof computed temperanrrc profile 

4oooo 2.5 1422E-4 2.430 14E-4 2.496 10E-4 
5m 3.4Q946E-5 3.42493E-5 3.38032E-5 . 
60000 4.730068-6 4.68331E-6 4.68022E-6 
7 m  6.68764E-7 6.77676E-7 6.59878E-7 
8oooO 9.60264E-8 9.78366E-8 9.44 147 E-8 

By observing the computed data values in Table 2, it is obvious that in this situation there 
are several temperature profiles that can be obtained fiom the same experimental data Thus 
in the cases where multiple solutions are possible, the solution obtained by the 
regularization wi l l  largely depend on the initial temperature profile assumed for the first 

iteration. In fact, it was numerically observed that by varying the initial estimate, many 
significantly different solutions can be obtained. 

It can be analytically shown that infinitely many temperature profiles can be 
consauctcd that yield the same experimental observations [ i.e., the vector g(E) or LHS of 
eqn(2) 1. However, most of these profiles would not be valid solutions to the problem, 
because either the boundary conditions would not be satisfied or the temperature profile 
would not be continuous. Apparently, multiple solutions exist which are both continuous 
and match the boundary conditions if the actual temperature profde (a) exhibits a sharp 
profile and, (b) the values of temperature at both boundaries are not far apart. Under these 
conditions, it is possible to reassemble segments of the profile and still satisfy the boundary 
conditions and continuity. While multiple solutions arc possible when the profiles are 
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monotonic, such as Profrles A and B, the different solutions may not be widely different. 
Thus an approximation to the m e  profile is achieved. 

It must be noted that in this study a plug flow model has been assumed for the fluid 
flow. A more complex model including additional information of the flow process might 
be able to resolve this issue of multiple solutions. However, there are many systems for 
which the plug flow model is sufficient. The developments presented here form a basis for 
the moxt complicated dispersed-flow situation. 

CONCLUSIONS 

It is possible to determine the temperature profde in a flowing system with the use 
of chemically reacting tracers. An iterative form of regularization method can be 
successfully employed to solve the resulting Fndholm integral equation of the h t  kind. 
This iterative method eliminates the need of determination of the optimal value for the 
regularization parameter. 

Using reactions with lower activation energies enables mure sensitive detumination 
of temperature profiles, Also, the wider range of activation energies in the macer reactions, 
the more sensitive the profile determination. 

For geothermal rcsavoirS, it is possible that as few as two reacting tracers can give 
an adequate measurement of the tcqmatm profile within the rcscrvoir. 

The method can successfblly discriminate between two rival models for a Hot Dry 
Rock type geothermal nscwokwith 8s large as 10% MOT in data. 

The method presented in this paper gives excellent results for monotonic 
temperanrrt profiles. The h o d  dots not give a unique solution for a temperature profile 
exhibiting a sharp maximum, however, in this case, the solution is dependent upon the 
initially assumed profile. 
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Subscripts 

f =  
- 1 

m a x =  
o =  
s =  

NOMENCLATURE 

lower limit for the system variable 
pre-ex nential term, used in eqn( 1) 

lower limit for the experimental variable 
concentration 
upper limit for the experimental variable 
actlvation energy of a chemical d o n  
distribution function of the system variable 
function representing the experimental observations 
a nonlinear diffmnaal operator on f(y) 
objective function defined by eqn(7) 
kernel of the integral equation 
initial estimate of the function T(u 
new estimate of the function T(S), derived from &, 
dimension of the grid used to discrctize the range of system variable, y 
number of experimental observations 
volumetric flow rate 
coefficient of fly) in the s t a W  
coefficient of (df/dyp in the stabilizer 
Universal gas constant 
temperatun 
volume 
generic experimental variable 
generic intrinsic system variable 

upper p" unit for the system variable 

regulanzationjmmctcr 
a parameter used to define a t e w  pro& 
a parameter used to defim profile C 
a parameter used to define profile C 
hctional deviation of L,,@ h T(5) 
dimensionless volume M o n ,  V/Vs 

pertaining to i'th chemical tracer 
pcrtaining to exit conditions 
pertaining to the maximum value 
pertaining to inlet conditions 
pertaining to system, as a whole 
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