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ABSTRACT

We have investigated the dynamics of a three-dimensional classical Rydberg atom

driven by a sequence of pulses. Both the deterministic system with periodic pulses and

the closely related "noisy" system with random pulses have been studied in parallel. The

Lyapunov exponent is calculated as a function of pulse height and the angular momentum

of the initial state. We find differences between noisy and deterministic perturbations to be

most pronounced for small pulse heights. Low angular momentum orbits show enhanced

diffusion in agreement with recent experimental data for ion-solid interaction.

1. INTRODUCTION

The dynamics of simple, non-separable Hamiltonian systems with two or more (71 > 2)

degrees of freedom has gained considerable interest, both experimentally and theoretically.

In their pioneering work Henon and Heiles1 have found that two harmonic oscillators cou-

pled by a non-linear perturbation possess a divided phase space with intermingled regions

of regular and chaotic motion. Subsequent discovery of similar properties in a wide variety

of systems ranging from the kicked rotor2 to the hydrogen atom in a microwave field3 have

provided clear evidence for the universality of irregular dynamics4 in Hamiltonian systems.

Topologically, regular motion is confined to n dimensional submanifolds ("KAM tori5)

of the 2n dimensional phase space while chaotic motion explores regions of the (2n - 1)

dimensional energy hypersurface. The occurrence of chaotic motion is therefore possible •

for n > 2. For later reference we note that time-dependent Hamiltonian systems with
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n — I degrees of freedom are topologically equivalent to time-independent systems with n

degrees of freedom.

On a more intuitive level, chaotic motion is characterized by an extreme sensitivity

to initial conditions. Nearby initial conditions separate exponentially leading to an ex-

ponential growth of small uncertainties and rendering the evolution to be unpredictable

despite the deterministic nature of the motion. In general, the fraction of the phase space

filled by chaotic orbits grows with increasing strength of a non-separable perturbation. In

the limit of very strong perturbations almost all KAM tori disappear, allowing for a full

exploration of the energy hypersurface. The system is then a K system5, and in particular,

"mixing". The latter property is of fundamental importance for many different fields such

as statistical mechanics, plasma physics, and astronomy.

Small atomic systems provide an ideal testing ground for basic concepts of Hamiltonian

non-linear dynamics. With the aid of collisional and laser excitation to provide state-

selective preparation of atoms, it has become possible to accurately "tune" the relative

strength of the non-integrable perturbation (for example, by an external field) relative

to the intra-atomic Coulomb field. Theoretically, the structure of light atoms can be

calculated with a high degree of accuracy. The calculation of the chaotic dynamics is

therefore unaffected by uncertainties in the static structure or in the underlying forces.

Prime examples for the study of chaotic dynamics in atoms, both classically and quantum

mechanically, are the hydrogen atom in a strong static magnetic field6, and the microwave

ionization of hydrogen3.

In the following, we present a progress report on our study of the classical Rydberg atom

in the presence of <5-shaped pulses of an electric field with a time-dependent Hamiltonian



The amplitude of the pulse ("kick") is denoted by AP, and the time at which the pulse

occurs is denoted by <;. For the pulse heights AP; and the time between adjacent pulses,

At{ = f,-f.i — t{ we used two different models:

a) a stochastic sequence (Atf,-, P,). In this case the system is "noisy", i.e. indeterministic.

The perturbation itself is stochastic. We will refer to this type of stochasticity as extrinsic

stochasticity.

b) a strictly periodic sequence with

AP, = ( - l ) ' A P

and

At, = r/2, (2)

where T is the period of the sequence of alternating pulses. In this case the perturbation

is deterministic. The stochasticity observed in the deterministic system will be referenced

in the following as intrinsic. The limit of periodic pulses has been previously investigated

for the one-dimensional7'8'9 and three-dimensional 10 model.

The motivation for the present study is threefold: firstly, the model of the "kicked" Ry-

dberg atom provides an approximate description for the evolution of excited states around

swift ions penetrating solids. The momentum transfer AP, by the "kicks" results from

two-body collisions between the Rydberg electron and the ionic cores or the conduction

electrons of the solids. Scattering processes in a solid are in general strongly stochastic

unless very special conditions like channeling are met. Even in this case scattering at

conduction electrons lacks strict periodicity and low-level noise will persist. The approxi-

mation of <5-shaped pulses is justified if the orbital period T = 2TTUJ~1 is large compared to

the collision time tc = d/vp where d is the static screening length of the medium. Secondly,

Eq. (1) provides in the case of periodic pulses a simple model for the microwave ionization

problem. While in detail quite different9 the kicked hydrogen atom shares many features



with the sinusoidally perturbed hydrogen atom. In particular, its classical dynamics pos-

sesses a region of intrinsic chaoticity. Thirdly, Eq. (1) is computationally simple enough

to study the long-time evolution of a three-dimensional system which permits the possible

occurrence of Arnold diffusion11, i.e. the slow diffusion due to the "Arnold web" connect-

ing ail stochastic regions in phase space. Little is known about the speed and quantitative

significance of Arnold diffusion in a realistic physical system.

In the following, we report on first results of the numerical study of (1). Our primary

focus here is on the comparative study of extrinsic and intrinsic stochasticity, both simul-

taneously present in (1) and on the angular momentum (£) dependence of the stochastic

motion. The latter is of importance for the understanding of the £ "diffusion" observed

in ion-solid collisions12-13, Rydberg atom-gas collisions14'15, the £ mixing in strong fields3

and in plasmas. Atomic units are used unless otherwise stated.

2. METHOD

The equation of motion generated by the Hamiltonian (1)

«.•) (3)

can be cast into the form of a discrete mapping connecting the phase space coordinates

between adjacent kicks. This follows from the fact that the perturbation is 6-shaped, i.e.

the evolution between adjacent kicks proceeds on an unperturbed Coulomb orbit. Denoting

the phase space coordinates just before the ith kick by fi = r\(tf = <, — c), Vi = v(t = <; — e)

the non-linear mapping T,

(4)

can be constructed through a sequence of mappings

(5)



where T&,p effects the change of momentum due to the kick.

and T&t denotes the evolution on the unperturbed Coulomb (Kepler) orbit16 between <, + e

and fi+i— e. In the case of the periodic pulses, the two-fold application of (4) corresponds *o

the evolution of the phase space coordinates during one period. The mapping (6) allows for

a simple intuitive interpretation: The electron describes a (not necessarily random) "walk"

in Coulomb state space (Fig. 1). The walk will be random when the dynamics becomes

stochastic. The equation of motion (3) possesses axial symmetry, i.e. the azimuthal angle (f>

is cyclic and the conjugate momentum, the angular momentum component Lz, is conserved.

Upon a canonical transformation, Eq. (6) can be rewritten as a four-dimensional non-linear

mapping

where n,- is the classical action corresponding to the principal quantum number, r̂  is the

conjugate angle variable (the mean anomaly), £,- is the total angular momentum and V"j is

its conjugate angle variable. For simplicity we use for the mappings (6) and (7) the same

symbol. For later reference we note that the mapping (7) involving action-angle variables

is applicable only to finite motion (i.e., bound states).

The mapping (7) can be easily iterated for a large number of kicks (> 10s). The

most time consuming part is the solution of the transcendental equation for the eccentric

anomaly10 of the Kepler orbit. In the limiting case of periodic pulses the Hamiltonian

(Eq. 1) closely resembles the Hamiltonian for the microwave ionization problem. Fourier

expansion of (1) leads to

p2 1 4AP 4 A P ^
= y - - -z-^cosut-z—^-2^cos{2s + l)u>t. ' (S)



The first three terms in (S) represent the Hamiltonian for the hydrogen in a microwave

field where the 4AP/T corresponds to the effective field amplitude. The presence of higher

harmonics suggests that a large number of additional first-and higher order resonances will

make the pulsed system11 more unstable and more chaotic than the monochromatically

perturbed system. The increase of stochasticity means that the threshold value of the

field strength for global stochasticity is lower than for the microwave Hamiltonian. This

hypothesis is in line with results for the ID hydrogen with impulsive perturbation9.

The quantitative analysis of (7) can be simplified due to scaling properties of the

classical dynamics. Results for one given set of (n, £, u>, AP) are generic for a family of orbits

(n' ,f ' ,w' ,AP) generated by a mechanical similarity transformation. For an initial state

with energy e = —l/2n2 all elements of the family generated by a continuous similarity

transformation with 0 > (9,

(6/p,^Pe,AP/y/0,U,/03'2) (9)

are equivalent for identical phase and Euler angles. It is, therefore, sufficient to investigate

the dynamics for one given value of n(or e). The strength of the perturbation can be

characterized by its scaled pulse height

AP = AP/p a = rzAP, (10)

where pa — l/n is the characteristic momentum of the orbital motion and

u> — Lo/u}a = n u (11)

is the scaled frequency of the kicks. The atomic frequency is denoted by u>a = n~3. Finally,

it is convenient to introduce a scaled angular momentum £ = C/n which varies between

0 and 1. For a noisy system the characteristic perturbation parameters refer to their

respective ensemble averages < AP > and < u >.



The frequently invoked method of Poincare surface of sections for analyzing the dy-

namics in time-dependent systems with one degree of freedom4 is not directly applicable

to (7) since the stroboscopic snapshots taken after each time step lie on a four-dimensional

manifold. Projecting out one coordinate results in a three-dimensional manifold rather

than a plane (i.e., a "surface of section"). However, a qualitative insight can be gained

from a simultaneous projection of this four-dimensional manifold onto two perpendicular

planes. Fig.2 shows the projection onto the (», r) and (£, ip) planes for the initial conditions

no = 100, £Q = 67.4, r0 = 1.233,^0 = 4.349 and a periodic perturbation with frequency

u = 3/2. Note that the azimuthal angle of the £ vector is cyclic while the polar angle

6 = 0.4466 is determined by the conserved value of £z = 60.79. For a scaled amplitude

AP = 2. x 10~2 corresponding to AP = 2 x 10~4 (Fig. 2a) the evolution over 1000 periods

(k=2000) produces topologically simple structures which reflect the existence of KAM tori

in the low-dimensional manifold. A slight increase of the amplitude to AP = 3.5 x 10~2

(Fig. 2b) leads obviously to a break-down of the torus and to a chaotic motion.

A quantitative measure for the chaoticity can be found by an analysis of the eigenvalue

spectrum of the linear tangential mapping defined through the Jacobian matrix Ak of the

k-fold iterated mapping Tk,

Since the Hamiltonian mapping is symplectic5 the eigenvalue spectrum of Ak is reflexive,

i.e. the spectrum consists either of a quadruple of eigenvalues

(a,a',I/a,I/a*) (13a)

if a is complex or of two pairs of eigenvalues

(a , , l / a , , a 2 , l /Q 2 ) (13ft)

if the eigenvalues are real.



The motion is stable if all eigenvalues lie on the complex unit circle and becomes

unstable if at least one a leaves the unit circle (|a| > 1). According to Krein's theorem5

this occurs if two eigenvalues rotating on the unit circle in the opposite direction undergo

an "avoided crossing" pushing one eigenvalue inside (\a\ < 1) and the other outside the

unit circle (|a| > 1). For the latter we can define a positive Lyt-punov exponent of the

k-fold iterated tangential mapping Ak,

* n | a | (14)

In the special case k=l, we call A^ the local or one-step Lyapunov exponent. The

long-time behavior of the orbit is determined by the asymptotic value of the Lyapunov

exponent,

i < f c ) (15)fc_oo/n|

Clearly, an accurate numerical determination of (15) is in many rases prohibitively com-

plicated. The best one can hope for is that the exponents A**) for large k(k % 105) are

close to their asymptotic values.

According to (13b) the four-dimensional mapping Ak permits two positive Lyapunov

exponents (A,-,i = 1,2). The extraction of all positive Lyapunov exponents is compli-

cated by the fact that in high-dimensional systems usually the largest positive Lyapunov

exponent Ai dominates the exponential separation of nearby orbits, since

limk^ooe
Xik/eXlk -> 0. (16)

We, therefore, restrict ourselves in the following to the largest exponent A]. Work is in

progress to determine the complete set of exponents in the limit it >> 1.

We note parenthetically that the four-dimensional mapping allows for "Arnold

diffusion"11. The KAM tori do not topologically separate different regions of chaotic



motion in phase space for time-dependent Hamiltonian systems with > 2 degrees of free-

dom (or time-independent systems with > 3 degrees of freedom). Therefore, all stochastic

islands are connected by the Arnold web leading to slow global stochastic diffusion. We

are presently investigating Arnold diffusion for the periodically kicked hydrogen atom.

While the evolution of individual trajectories such as the one shown in Fig. 2 gives a

qualitative insight into the dynamics, a comparison with the experiment or a quantum me-

chanical description requires the investigation of classical ensembles. Different ensembles

should be distinguished:

a) the average over the angle variables r and ip which allows to approximately simulate

a quantum state (n, I, m) by a classical ensemble. Note that xj> corresponds to the Euler

angle 7 in Rose's notation17,

b) the average over the remaining Euler angles which corresponds to a isotropic statistical

mixture of all m substates,

c) the average over all £ states which corresponds to the microcanonical ensemble and

d) in the case of a noisy system an ensemble average over "heat bath" variables, i.e.

fluctuating forces.

3. RESULTS

The local stability of the orbit (or an ensemble of orbits) can be measured by the one-

step Lyapunov exponent A*1). The dependence of the largest exponent A*j for an isotropic

ensemble and k=400 is displayed in Fig. 3. The ensemble average extends over the phase

angle r and tp and the Euler angles of n = 100 orbits with different fixed I values. The t

values are chosen such that the squared eccentricity

e2 = l - ( £ / n ) ~ (17)

takes the approximate values ss \{i = l),0.5(<? = 67.4) and 0(C = 99). For small kick

amplitudes AF << 1 the power law dependence of A j ,

9



(IS)

shows a "critical" exponent close to S = 1/2 irrespective of £. This value of S can be easily

understood by the following simple (non-rigorous) argument: For small perturbations the

maximum Lyapunov exponent Aj can be assumed to be small, i.e. the corresponding

(real) eigenvalue of the stability matrix is close to unity,

ori % 1 -f Aai (18)

We can furthermore neglect the deviation of the second eigenvalue from unity (Ac*2 « 0).

The trace of the stability matrix, therefore, becomes

Tr A(1) 2 + (l A ) \
1 + Aor,

~ 4 + Ac** + 0(Act?)

On the other hand, a power series expansion of the mapping (7) in AP leads to

TrA ( I ) = 4 + C 2AP + O(AP2) (20)

where the expansion coefficient C2 depends on £,w, the Euler and phase angles. Combining

(19) and (20) gives

Aa, = CAP 1 ' 2 (21)

and consequently,
X\x) = en(l + Aax)

(22)
- C A P 1 ' 2 ,

in agreement with (18). The expansion (20) becomes invalid for larger AP. We observe

deviations from (22) for AP > 0.1. We have also found a strong dependence of C on t.

10



Low £ states with e2 close to 1 show a significantly enhanced instability. The origin of the

nonmonotonic £ dependence of AJ displayed in Fig.3 is not yet fully understood.

The strong local instability of low £ states has important consequences for the evo-

lution of Rydberg atoms under the influence of multiple collisions. Primary production

processes of Rydberg atoms such as laser and collisional excitation tend to prefer low £

states18. Their enhanced instability suggests that interactions with the environment will

lead to rapid I diffusion to higher I states. Such a rapid I redistribution has been recently

observed in doubly excited C2+(2p5£) states produced in ion-solid collisions19 and have

been quantitatively explained in terms of stochastic t diffusion20.

Since the collisional perturbations which can be realistically modelled by ^-shaped

pulses (e.g., transport of excited projectile states through solids) are stochastic, the ob-

served t diffusion may be due to either extrinsic or intrinsic stochasticity. In order to

delineate the contributions to transport due to intrinsic instability and due to "noise" we

have performed a comparative calculation of X[ for both periodic and stochastic per-

turbations under otherwise identical conditions. We have chosen a fixed scaled frequency

u> = 3/2 and introduced amplitude-modulated noise with a Gaussian distribution in AP,-

with the variance Var(AP,) = AP 2 identical to that of the periodic perturbation. For an

isotropic ensemble of £ — 67.4 states and 400 kicks (Fig. 4) we find that for "mall pulse

heights A P < 10~2(AP < 10~4) the stochasticity is predominantly extrim z Lya-

punov exponent is almost one order of magnitude larger for stochastic perturbations than

for periodic perturbations. For larger AP > 10~2(AP }Z 10~4) the relative weight shifts

toward intrinsic stochasticity. The difference between the two A values becomes small. In

other words, the random amplitude modulation loses its importance compared to the effect

of intrinsic stochasticity. The present calculation of Aj employing action-angle variables

(Eq. 7) could not be extended beyond AP > 0.1(AP > 10~3) since for larger A P all

orbits have ionized after 400 kicks.

11



The ionization probability for these ensembles as a function of A P are shown in Fig.5,

together with the fraction of regular orbits (i.e. orbits with vanisliing Lyapunov exponent).

Because of numerical uncertainties we have set a threshold value of Ai •> 10~5 for the

Lyapunov exponent to be non-zero. For A P < 2 x 10~4 all orbits remain bound after

400 kicks. In this domain the periodic perturbation allows a significant fraction (~ 20%)

of orbits (i.e. of the phase space) to be regular while the noise destroy almost all regular

orbits even at small values A P ^ 10~5(AP ~ 10~3). Note that the increase of the average

value of Ai seen in Fig. 4 is due to both to the increase of the fraction of chaotic orbits

shown in Fig. 5 as well as to the increase of the numerical value of Ai for the chaotic orbits.

For A P > 2 x 10"* we observe a rapid increase of the fraction of ionized orbits. Choosing

the 50% level as a threshold, the kicked hydrogen atom in a n = 100, £ = 67.4 state

ionizes at a periodic amplitude AP = 6 x 10~4 and at a Gaussian randomly distributed

amplitude A P = 3 x 10~4, i.e. the noisy perturbation reduced the ionization threshold

by approximately a factor 2.

The observation of complete ionization of the impulsively driven Rydberg atom raises

the question as to the underlying ionization mechanism. More specifically, is the ionization

"chaotic" — is it the result of a "random walk" in bound Coulomb states space which

finally reaches the continuum? For ionization by a monocliromatic microwave field it is

well-known that the ionization mechanism is partially chaotic19'20. A preliminary answer

to this question for the impulsively driven hydrogen atom can be deduced from a study

of the time reversal symmetry of the mapping (Eq. (7)) in a computer experiment. The

eq' lation of motion of a Hamiltonian system, and therefore the resulting mapping, satisfies

time reversal symmetry, i.e.

T(-k)oT(k) = 1 ( 2 3 )

where T^~^ denotes the evolution operator for k kicks backward in time. The ubiquitous

numerical noise in a computer experiment will break the exact time reversal symmetry.

12



Random fluctuations accumulated during the forward evolution T^ will not cancel out in

the subsequent backward evolution. Consequently, the system will not exactly return to

this initial condition. The deviation D,

D = |T (~4) o T( t )(A'o) - Xo\ (24)

where A"o denotes the vector of phase space coordinates of the initial state, is a measure

of the chaoticity of the orbit. If the orbit is regular and A] = 0 numerical noise leads only

to a slow growth of D which is related to the numerical precision within each iteraction.

In our case, numerical errors result predominately from the solution of the transcendental

equation 16 for the Kepler orbit with a typical accuracy of « 10~10. On the other hand,

for chaotic orbits errors will grow exponentially with the rate of the largest Lyapunov

exponent, destroying any memory of the initial state and precluding the return to the

initial state.

We have tested the extent of the breakdown of time reversal symmetry for a micro-

canonical ensemble of n = 100 Rydberg atoms driven by a periodic impulsive force with

scaled frequency w = 3/2 and scaled amplitude AP = 0.1 (Fig. 6). The fraction of orbits

in continuum states, W{E > 0), and those in states higher than n = 150, W{n > 150),

show only a weak breakdown of time reversal symmetry. While after the forward evolution

of it = 120(60 periods) more than 50% are in very high Rydberg states and 7% are already

ionized, all orbits are bound again and only 5% are still above n = 150 upon completion

of the backward evolution. We note that our results for W(n > 150) resemble those of

Ref. 10. The complete reversibility of the ionization curve, W(E > 0), strongly indi-

cates that the underlying ionization mechanism is regular and non-chaotic. The physical

interpretation is as follows: For kicks with amplitude comparable to the internal orbital

momentum a few kicks are sufficient to reach the continuum, in particular, if one on several

of them occur near the nucleus where the energy transfer is maximal21. This situation is

similar to that of multi-photon ionization where a relatively small number of absorption

13



processes suffice to reach above threshold states. lonization is in this case not the termina-

tion point of a "random walk" in the space of bound states but rather the result of a short,

directed few-step excitation process. Therefore, ionization of the impulsively driven hydro-

gen cannot be taken as an indicator of chaotic dynamics. This is in sharp contrast to the

ionization by monochromatic microwave where the chaotic pathway to ionization has been

clearly established19'20. The marked difference is an obvious consequence of the difference

between Fourier spectrum of the perturbation (Eq. (8)) and a monochromatic perturba-

tion. The high-frequency components of the ^-shaped pulse allow direct transitions to the

continuum and therefore overshadow the stochastic pathway to ionization.

4. CONCLUSIONS

The motion of the classical three-dimensional hydrogen atom driven by a sequence of

puises is chaotic. The observed stochasticity is due to both intrinsic stochasticity of the de-

terministic system with strictly periodic pulses and due to extrinsic stochasticity of a noisy

spectrum of random pulses. The relative importance of the two mechanisms for chaotic

motion, as measured by the Lyapunov exponent, changes as a function of the amplitude

of the kicks. For very small amplitudes stochastic dynamics is predominantly extrinsic

while for larger amplitudes (AP > 10"2) the Lyapunov exponent for the periodically and

randomly driven system become comparable. For amplitudes AP > 0.1 where the mo-

mentum transferred in a single kick becomes comparable to the orbital momentum rapid

excitation to very high-lying bound states and continuum states takes place, thereby sup-

pressing stochastic motion. These findings suggest the existence of a chaotic n "window"

for the periodically kicked hydrogen atom with fixed amplitude AP: For low n the scaled

amplitude A P is sufficiently small such that the motion remains predominantly regular.

For higher n the scaled amplitude A P is so large that rapid transitions to near-threshold

states lead to regular motion. In between a window of chaotic n states exists where A P is,

14



large enough to result in a strong perturbation but also small enough to prevent rapid ion-

ization. In this regime the electronic motion resembles that of a random walk in Coulomb

state space.

Further work is needed along different lines: In the present numerical investigations, we

have restricted ourselves to a few hundred iterations of the mapping. In order to determine

the long-term stability of classical orbits it is necessary to extend the calculation to much

larger numbers of kicks. Futhermore, the modification of the dynamics of chaotic systems

due to quantum effects are presently under intensive investigation3•6-7«22. For the kicked

hydrogen atom a detailed analysis of quantum dynamics of a classically chaotic three-

dimensional system should become possible.
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Fig. 1

Random walk in the e — C plane of the phase space for an impulsively driven Rydberg atom.

Fig. 2• © •

Projection of the phase space evolution according to Eq. (7) projected onto the (n, r ) and

(£,i/>) planes (see text), a) AP = lO"4; b)AP = 3.5 x 1(T4

Fig. 3

Local one-step Lyapunov exponent A*j' averaged over an isotropic ensemble of n = 100

orbits as a function of AP. o : £ = 1; • : £ = 67.4; A : £ = 99.

Fig. 4

Lyapunov exponent Â  j ' averaged over an isotropic ensemble of n = 100, t = 67.4 orbits

as a function of AP. « : periodic pulses A : Gaussian amplitude-modulated noise.

Fig. 5

Fractions of regular (•, k.) and ionized (o, A) n = 100 £ = 67.4 orbits after 400 pulses.

(«,o): periodic pulses;(A, A): Gaussian amplitude-modulated noise.

Fig. 6

Fraction of highly excited, W(n > 150) and ionized orbits, W( " • ) for the periodically

kicked Rydberg atom. Initial conditions: n = 100 microcanonical ensemble, Co = 3/2,

and AP = 1.06 x 10~3. The ensemble is propagated backward in time after 60 periods

(k = 120).
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