A. 2644 ORNL-5510

Irradiation Performance of HTGR Fuel in HFIR Capsule HT-31

- T. N. Tiegs J M Robbins R. L. Hamner B. H. Montgomery M. J. Kania
- T. B. Lindemer
- C. S. Morgan

ORNE-5510 Distribution Category UC-77 ÷.,

したのな

I.

Contract No W-7405-eng-26

METALS AND CERAMICS DIVISION

HTGR BASE TECHNOLOGY PROGRAM

Fueled Graphite Development (189a 01330)

IRRADIATION PERFORMANCE OF HTGR FUEL IN HFIR CAPSULE HT-31

T. N. Tiegs, J M Robbins, R. L. Hammer, B. H. Montgomery, M. J. Karia, T. B. Lindemer, and C. S. Morgan

Date Published: May 1979

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENELGY

ιt

1

1

CONTENTS

ABS	TRACT	1
1.	INTRODUCTION	1
2.	DESCRIPTION OF EXPERIMENT	2
3.	CAPSULE OPERATION	10
4.	THERMAL ANALYSIS	10
5.	POSTIRRADIATION EXAMINATION	18
	5.1 Disassembly and Visual Examination	18
	5.2 Dimensional Inspection	19
	5.3 Permeability Measurements	19
	5.4 Gas Pressure Measurements	21
	5.5 Driver Particle Examination	23
	5.6 Electron Microprobe Examination of Normal UO ₂ Particles	26
	5.6.1 Biso-Coated SoGel Particles	26
	5.6.2 Triso-Coated Sol-Gel Particles	35
	5.7 Gamma Analysis of Normal UO ₂ Particles	41
6.	CONCLUSIONS	43
7.	ACKNOWLEDGHENTS	44
8.	REFERENCES	44
APP	PENDIX: Analysis of Gauna Spectra from Individual Fuel Particles	
I	Irradiated in Positions U-16 and U-17 of HT-31	51

IRRADIATION PERFORMANCE OF HTGR FUEL IN HFIR CAPSULE HT-31

T. N. Tiegs, J M Robbins, R. L. Hammer, B. H. Montgomery,* M. J. Kania, T. B. Lindemer,† and C. S. Morgan

ABSTRACT

Irradiation capsule HT-31 was a cooperative effort between General Atomic Company, Los Alamos Scientific Laboratory, and Oak Ridge National Laboratory (ORHL). The present report describes the ORNL portion of the experiment only.

The capsule was irradiated in the High Flux Isotope Reactor at ORNL to peak particle temperatures up to 1600°C, fast neutron fluences (0.18 MeV) up to $9 \times 10^{25} \text{ n/m}^2$, and burnups up to 8.9% FIMA for ThO₂ particles.

The oxygen release from plutonium fissions was less than calculated, possibly because of the solid solution of SrO and rarc earth oxides in UO_2 .

Tentative results show that pyrocarbon permeability decreases with increasing fast neutron fluence.

Fission products in sol-gel UO₂ particles containing natural uranium mostly behaved similarly to those in particles containing highly enriched uranium (HEU). Thus, much of the data base collected on HEU fuel can be applied to low-enriched fuel. Fission product palladium penetrated into the SiC on Triso-coated particles. Also the SiC coating provided some retention of $110m_{AE}$.

Irradiation above about 1200°C without an outer pyrocarbon coating degraded the SiC coating on Triso-coated particles.

1. INTRODUCTION

Irradiation capsule HT-31 was a cooperative effort between General Atomic Company (GA), Los Alamos Scientific Laboratory (LASL), and Oak Ridge National Laboratory (ORNL). This report will describe the ORNL portion of the experiment only, while the GA and LASL portions of the experiment will be reported by them.^{1,2}

The capsule was designed as a four-cycle experiment in High Flux Isotope Reactor (HFIR) operating at graphite sleeve temperatures of 950 and 1250°C. The top half of the capsule contained loose coated inert particles from ORNL and bonded rods from LASL and ORNL. The lower half

*Engineering Technology Division. †Chemical Technology Divison.

1

.....

contained loose coated fertile ThO₂ particles from GA and particles from ORNL containing low-enriched uranium and designed for heat generation.

The ORNL objectives were as follows:

1. The primary objective of the ORNL bonded rods was to furnish supplemental data to replace that information lost when certain specimens from previous experiments (HT-20, -21, -22, and -23) were broken during disassembly. The purpose of these rods was to provide measurements of changes in thermal conductivity, electrical resistivity, thermal expansion, and dimensions as functions of particle volume loading and fast neutron fluence.

2. A secondary objective of the experiment involved furnishing coated $^{238}UO_2$ particles to more accurately determine the internal gas pressure of irradiated particles. This information is important to the design of HTGR fuel particles. Normal UO_2 particles were used instead of $^{235}UO_2$ particles because a larger supply could be irradiated in an HT capsule, and any enrichment above about 7% would result in excessive power production early in the irradiation and cause very high temperatures.

3. A peripheral experiment involved the irradiation of a small graphite crucible containing carbon-coated inert particles to supply neutron damaged particles for coating permeability studies.

2. DESCRIPTION OF EXPERIMENT

The design of this capsule was identical to that³ of capsule HT-28. A schematic of the capsule design is shown in Fig. 1. The loading scheme and heavy metal loadings are shown in Tables 1 and 2, respectively.

Crucible 1 contained loose coated inert particles for coating studies and 1.024 g Re as an additional gamma heat source to obtain the desired 950°C graphite sleeve temperature. The rhenium was in the form of foil disks distributed throughout the length of the crucible separated by layers of loose particles. The descriptions of these particles and partinent fabrication data are presented in Tables 3, 4, and 5.

Bonded rod ORNL-1 was an unirradiated slug-injected annular rod containing about 58 vol 7 inert Biso-coated particles. The central hole

· · · · · · · · · ·

Ta	ble	1.	Loading	Scheme ·	— Ca	psule	HT-3 1
----	-----	----	---------	----------	------	-------	---------------

Position ²	Type Specimen	Fuel (HM) ^b	Batcn ^o	Type Coating
	Low-Temper:	ature Zone - U	pper Half	
Crucible 1	Loose particles	Carbon	OR-2294-HT	Biso
ORNL-1	Slug-injected rod; 58 vol 2 coated particles	Carbon	0R-2305-FH	Biso
ORNL-2	Extrusion; 35 vol Z	Carbon	OR-2081~H	Biso
	coated particles		OR-2084-H	Biso
			0R-2085-H	Biso
			0R-2086-H	Biso
	<u> Magazine 16 – High</u>	-Temperature Z	one - Upper Half	
16	Loose particles	Sol-gel UO2	OR-2511-H	Biso
17	Loose particles	Sol-gel UO ₂	OR-2533-H	Triso
LASL-1		Uranium	OR-2257-H	Triso
		Thorium	GA-6291 - composite 3	Biso
LASL-2	Extrusions	Carbon	LASL 76-53HT	Triso (ZrC)
LASL-3		Carbon	LASL 76-54HT	Triso (ZrC)
	<u> Magazine 15 – High</u>	-Temperature Z	one - Lower Half	
Top end plug	Loose particles	Uranium	OR~2248-H	Triso
27	l l	Thorium	6252-05-0160-006	Ī
28		Uranium	0R-2248-Hd	
29		Thorium	6252-08-0161-002	
30	1	Thorium	6252-10-0161-002	
31		Uraníum	UR-2248-H ^d	
32		Thorium	6252-09-0161-002	
33	1	Thorium	6252-07-0261-002	
34		Uranium	OR-2248-H ^d	
35		Thorium	6252-07-0161-002	
36	[Thor ium	6252-06-0261-002	
37		Uranium	OR-2248-H ^d	
38	*	Thorium	6252-06-0161-002	4
39	V	Uranium	0R-2248-H ²	V
	Magazine 14 - Low	-Temperature Z	one - Lower Half	
Top end plug	Loose particles	Uranium	OR-2248-H	Triso
40	l l	Thorium	6252-10-0161-001	1
41		Uranium	0R-2248-H ^d	
42		Thor ium	6252-09-0163-001	
43	1	Thorium	6252-05-0160-005	
44		Uranium	0R-2248-H ^{Ci}	
45	1	Thoriu m	6252-07-0261-001	
46		Thorium	6252-07-0161-001	
47]	Uranium	OR-2248-H4	l l
48		Thorium	6252-06-0261-001	
49	1	Thorium	6252 -06-01 61-001	1
50		Uranium	0R-2248-H4	
51	↓	Tho rium	6252-0 8- 01 ₆ 1-001	•
52	V	Uranium	0 R-2248-H a	V

^aRefer to Fig. 1.

 b_{A11} heavy metal is in combined form; the thorium is 232 ThO₂ from GA.

^CKernel in OR-2257-H is (WAR) UC_{3.21}O_{1.26}; kernel in OR-2248-H is WAR UC_{5.86}O_{1.22}. ^COuter LTI burned off.

Devitien		Loading, g		Enrichment	Number of
POSILION	Uranium	^{2 3 5} U	Thorium	(at. %)	Particles
Ma	gazine 16 -	High-Tempe	rature Zone	e - Upper Half	
16	0.01	<0.0001		0.7	
17	0.01	<0.0001		0.7	
LASL-1	0.0192	<0.0012	0.0396	6.36	
LASL-2	0.0180	<0.0011	0.0587	6.36	
LASL-3	0.0187	<0.0012	0.0541	6.36	
Ma	gazine 15 -	- High-Tempe	rature Zone	<u>– Lower Half</u>	
Top end plug	0.0223	0.0014		6.5	-
27			0.0334		51
28	0.0223	0.0014		6.5	
29			0.0331		80
30			0.0333		79
31	0.0223	0.0014		6.5	
32			0.0332		78
33			0.0330		78
34	0.0223	0.0014		6.5	
35			0.0332		80
36			0.0326		77
37	0.0223	0.0014		6.5	
38			0.0334		78
39	0.0223	0.0014		6.5	
<u>1</u>	Magazine 14	- Low-Tempe	rature Zone	<u>- Lower Half</u>	
Top end plug	0.0159	0.0010		6.5	
40			0.0223		53
41	0.0159	0.0010		6.5	
42			0.0226		53
43			0.0222		34
44	0.0159	0.0010		6.5	
45			0.0224		53
4ó			0.0224		54
47	0.0159	0.0010		6.5	
48			0.0220		52
49			0.0227		53
50	0.0159			6.5	
51			0.0224	- 	54
52	0.0159	0.0010		6.5	

I.

Table 2. Heavy Metal Loadings - Capsule HT-31

Ł

Batch	Kernel Material	Uranium Content (wt %)	235 _U Enrichment (at. %)	Positions in Capsule
OR-2305-FH	SAR carbon ^b			ORNL-1
OR-2086-H	SAR carbon			ORNI2
OR-2511-H	sol-gel UO ₂	29.10	normal	17
0R-2533-H	sol-gel UO ₂	25.17	normal	16
OR-2248-H ^O	UC4.86 ⁰ 1.22	21.31	6.53	28, 31, 34, 37, 39, 41, 44, 47, 50, 52
OR-2248-H	UC4.8601.22	15.67	6.53	Top end plug magazines 14, 15
OR-2294-HT	SAR carbon			Crucible 1

Table 3. Compositional Characterization of Coated Particles for $HT-31^{\alpha}$

aCoated at ORNL.

1 Clark 1 1

bDesulfurized strong-acid resin (SAR).

^OWith outer LTI burned off.

9

.

Table 4. Mean Dimensions and Densities^a of Coated Particles for HT-31 Coated at ORNL^b

1

	Kernel	Kernel Thickness, um					Density, g/cm ³			
Batch	Diameter (µm)	Buffer	Inner C	SIC	Outer C	Kernel	Buffer	Inner C	\$1C	Outer C
OR-2305-171	324 (18.1)	92.3 (12.7)			114.3 (7.2)	1.428	1.20			2.14
OR-2086~H	471.5 (24.6)	74			83.3 (5.5)	1.37	0,94			1.958 (0.011)
OR-2511-H	308.8 (2.9)	182.7 (16.5)			96.6 (4.3)	10.65	1.19			2.037 (0.006)
OR-2533-H	398.9 (2.3)	196.3 (18.2)	46.9 (3.0)	41.8 (3.7)	42.4 (2.4)	10.65	1.19	2.045 (0.016)	3,203 (0.003)	2.107 (0.006)
0R-2248-H	422.6 (33.9)	55.1 (11.1)	40.7 (4.8)	38.9 (1.7)	burned off	2.87	1.12	1,934 (0.008)	3,184 (0.011)	
OR-2248-H	422.6 (33.9)	55.1 (11.1)	40.7 (4.8)	38.9 (1.7)	46.8 (3.3)	2.97	1.12	1,934 (0,008)	3,184 (0.011)	2.02 (0.005)
OR-2294-HT	459.8 (29.3)	81.4 (9.6)			86.9 (4.3)	1.33	1.13			

alumbers in parentheses are standard deviations.

.

1

ball these particles were annealed at 1800°C for 10 min before insertion into the capsule.

ړ بور

.

	Buffer	Deposition Rate, um/min				
Batch	Coatingu Temperature (°C)	Buffer	Inner LTI ^b	SiC ²	Outer LTI ^b	
OR-2305-FH	1250	5.77			8.16	
OR-2086-H	1300	5.2 9			5 .9 5	
OR-2511-H	1125	21.24			32.50	
OR-2533-H	1125	21.24	33.03	0.25	24.33	
OR-2248-H	1125	9.18	6.26	0.26	9.85	
OR-2294-H	1250	5.09			3.34	

TRATE ALL AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Table	5.	Conditions	for	Coating	Particles	for	ET-31
--	-------	----	------------	-----	---------	-----------	-----	-------

^aDeposited from C₂H₂

^bDeposited from MAPP gas at 1275°C.

^CDeposited from CH₃SiCl₃ at 1550°C.

contained approximately 2.2 g W to provide gamma heat generation during irradiation. The rod was fabricated with 29 wt % Asbury 6353 graphite filler and 71 wt % Ashland A-240 pitch binder. It was injected at 185°C and 6.20 MPa (900 psi) and carbonized in packed natural flake graphite. Extruded annular rod ORNL-2 contained about 35 vol % inert Biso-coated particles that had been irradiated in experiment HT-23 for two cycles.⁴ It was fabricated with 58.7 wt % GLC*-1008 graphite powder (-60 mesh), 18.8 wt % raw Thermax† carbon black, 21.7 wt % Varcum‡ binder, and 0.8 wt % maleic anhydride (used as a catalyst). The rod was extruded at room temperature and 6.89 MPa (1000 psi). It was cured at 90°C for 16 h, carbonized at 1000°C, and heat-treated at 1800°C for 0.5 h. Properties of ORNL-1 and -2 are given in Table 6. Details on the particles used in the rods are presented in Tables 3, 4, and 5.

Small graphite holders designated U-16 and U-17 contained 10 mg each of loose coated sol-gel UO₂ particles using natural uranium. The

*Great Lukes Carbon Co.

[†]R. T. Vanderbilt Co.

[#]Allied Chemical Co.

Property	Slug-Injected	Extruded ORNL-2 (J1-179-4)		
• •	OKNE-1 (2-5)	Before HT-23	After HT-23 ²	
Dimensions, mm (in.)				
Average OD	10.155 (0. 3998)	10.165 (0.4002)	9.835 (0.3872)	
Average ID	3.30 (0.130)	3.33 (0.131)	3.23 (0.127)	
Average length	50.084 (1.9718)	50.813 (2.0005)	48.618 (1.9141)	
Matrix density, g/cm ³	0.41	1.62		
Particle loading, vol %	57.4	34.8		
Electrical resistivity at 295 K. A-m	79.26	29.46	40.15	

Table 6. Properties of ORNL Bonded Rcds for HT-31

 4After two cycles in HFIR capsule HT-23 and after graphite fixtures had been machined from bottom and top of specimen.

particles in U-16 were Biso-coated and in U-17 Triso-coated. The reason for using 238 UO₂ instead of 235 UO₂ was that a larger supply could be irradiated without excessive local heating.

ł

The three specimens from LASL are extruded rods and are described in ref. 2. Each of these bonded rods contained 13.9 kg/m³ of 6.5%-enriched uranium and 41.3 kg/m³ of thorium and had maximum dimensions of 9.78 mm in diameter by 21.34 mm in length (0.385 by 0.840 in.). The 6.5%-enriched uranium was for heat generation early in the irradiation.

The lower half of the capsule contained loose coated particles in graphite holders and in indicated end plugs. The uranium positions were occupied by ORNL weak-acid-resin-derived (WAR) particles (6.53% enriched) to provide heat generation early in the irradiation. Details on these particles are given in Tables 3, 4, and 5. The outer low-temperature isotropic (LTI) coating was burned off many particles (see Table 3), so a sufficient number of particles could be accommodated in the graphite holders to provide the necessary heat generation.

The thorium positions were occupied by loose coated ThO_2 particles (both Biso- and Triso-coated) fabricated by GA. Detailed descriptions of these particles are given in ref. 1.

3. CAPSULE OPERATION

Capsule HT-31 was inserted into HFIR target position G-5 on March 14, 1976, and removed on June 16, 1976, after 2146.56 h at 100 MW reactor power and delivered to the hot cells for postirradiation examination on June 18, 1976 (Table 7). The thermal and fast fluences and burnups for the capsule are presented in Tables 8 and 9, respectively.

01.	Begin		End		Irradiation Time $^{\alpha}$ (h)		
Cycle	Time	Date	Time	Date	During Cycle	Accumulated	
130	1732	3/14/76	2354	4/6/76	557.76	557.76	
131	2124	4/7/76	2312	4/30/76	552.48	1110.24	
132	2142	5/1/?6	0800	5/22/76	489.60	1599.84	
133	2211	5/23/?6	1240	6/16/76	546.72	2146.56	

Table 7. Irradiation History of HT-31

^aAt 100 MW Reactor Power.

4. THERMAL ANALYSIS

Time-temperature historic: for the GA loose ThO_2 particles irradiated in the lower two graphite magazines of HT-31 are shown in Figs. 2 and 3 for the high-temperature region, and Figs. 4 and 5 for the low-temperature region. Temperature histories were calculated with the HTCAP1 thermal modeling code (Modified version of the HTCAP code⁵). Each figure describes the maximum particle surface temperature, graphite holder annulus temperature, and power generated per particle as functions of time from the beginning of irradiation.

The above figures illustrate that the irradiation temperatures in this HT capsule were not constant. Only the last two cycles in the hightemperature magazine and the last cycle in the low-temperature magazine show any indication of constant temperature. Table 10 describes the average particle surface temperatures and power histories for each ThO₂ particle type, for both magazines, during the last irradiation cycle.

	Distance From HMP to Specimen		Flux,	n/m² s	Fluence, n/m ²	
Specimen	(mm)	(in.)	Thermal <0.414 eV	Fast >0.18 MeV	Thermal	Fast
			×10 ¹⁹	×10 ¹⁹	×10 ²⁶	×10 ^{2 5}
Crucible-1	246.38	9.700	1.33	0.482	1.03	3.72
ORNL-1	196.85	7.750	1.76	0.733	1.36	5.66
ORNL-2	139.70	5,500	2.15	0 .9 50	1.66	7.34
U-16	92.10	3.626	2.46	1.075	1.90	8.31
U-17	84.94	3.344	2.50	1.095	1.93	8.46
LASL-1	70.59	2.779	2.58	1.120	1.99	8.65
LASL-2	49.05	1.931	2.68	1.150	2.07	8.89
LASL-3	27.53	1.084	2.77	1.165	2.14	9.00
27	-20.35	-0.801	2.80	1.170	2.16	9.04
28	-27.53	-1.084	2.77	1.165	2.14	9.00
29	-34.70	-1.366	2.75	1.160	2.13	8.96
30	-41.88	-1.649	2.72	1.155	2.10	8.93
31	-49.05	-1.931	2.68	1.150	2.07	8.89
32	-56.24	-2.214	2.65	1.140	2.05	8.81
33	-63.40	-2.496	2.62	1.130	2.02	8.73
34	-70.59	-2.779	2.58	1.120	1.99	8.65
35	-77.75	-3.061	2.55	1.108	1.97	8, 56
36	-84.94	-3.344	2.50	1.095	1.93	8.46
37	· -92 · 10	-3. 626	2.46	1.075	1.90	8.31
38	-99.29	-3.909	2.41	1.060	1.86	8.19
39	-106.65	-4.199	2.36	1.040	1.82	8.04
40	-147.35	-5.801	2.10	0.930	1.62	7.19
41	-154.53	-6.084	2.06	0.909	1.59	7.02
42	-161.70	-6.366	2.00	0.880	1.55	6.80
43	-168.88	-6.649	1.94	0.850	1.50	6.57
44	-176.05	-6.931	1.90	0.820	1.47	6.34
45	-183.24	-7.214	1.86	0.790	1.44	6.10
46	-190.40	-7.496	1.80	0.760	1.39	5.87
47	—197 . 59	-7.779	1.74	0.730	1.34	5.64
48	-204.75	-8.061	1.68	0.695	1.30	5.37
49	-211.94	8.344	1.62	0.665	1.25	5.14
50	-219.10	8.626	1.56	0.640	1.21	4.95
51	-226.29	8.909	1.50	0.595	1.16	4.60
52	- 23 3.65	-9.199	1.44	0.560	1.11	4.33

.

1.1

х х 1 1

i

.

Table 8. Thermal and Fast Fluences for HT-31

	Burnups (Z FIMA)						
Specimen	235 _U	238 _U	²³² Th				
U-16	84.71	17.40					
U-17	84.73	17.60					
LASL-1	84.77	18.00	8.59				
LASL-2	84.80	18.30	8.75				
LASL-3	84.83	18.50	8.88				
27			8.91				
28	84.83	18.50					
29			8.85				
30			8.80				
31	84.80	18.30					
32			8.69				
33			8.62				
34	84.77	18.00					
35			8.49				
36			8.40				
37	84.71	17.40					
38			8.21				
39	84.67	17.00					
40			7.21				
41	84.50	15.19					
42			6.90				
43			6.70				
44	84.41	14.10					
45			6.30				
46			6.10				
47	84.32	12.90					
48			5.62				
49			5.40				
50	84.22	11.50	•				
51		• • •	4.90				
52	84.16	10.60					

Table 9. Capsule HT-31 Fuel Specimea Burnups (FIMA)

Fig. 2. Time-Temperature and Time-Power Histories for GA ThO₂ Particles Irradiated in the High-Temperature Magazine of HT-31. (a) Holder 27, batch 05-0160-006, 872 μm particle diameter. (b) Holder 29, 08-0161-002, 836 μm . (c) Holder 30, 10-0161-002, 824 μm . (d) Holder 32, 09-0161-002, 819 μm .

Fig. 3. Time-Temperature and Time-Power Histories for GA ThO₂ Particles Irradiated in the High-Temperature Magazine of HT-31. (a) Holder 33, batch 07-0261-002, 821 μ m particle diameter. (b) Holder 35, 07-0161-002, 823 μ m. (c) Holder 36, 05-0261-002, 812 μ m. (d) Holder 38, 06-0161-002, 823 μ m.

Fig. 4. Time-Temperature and Time-Power Histories for GA ThO₂ Particles Irradiated in the Low-Temperature Magazine of HT-31. (a) Holder 40, batch 10-0161-001, 829 μ m particle diameter. (b) Holder 42, 09-0161-001, 823 μ m. (c) Holder 43, 05-0160-005, 873 μ m. (d) Holder 45, 07-0261-001, 820 μ m.

Fig. 5. Time-Temperature and Time-Power Histories for GA ThO₂ Particles Irradiated in the Low-Temperature Magazine of HT-31. (a) Holder 46, batch 07-0161-001, 816 μ m particle diameter. (b) Holder 48, 06-0261-001, 813 μ m. (c) Holder 49, 06-0161-001, 819 μ m. (d) Holder 51, 08-0161-001, 836 μ m.

GA	Particle Type	Diameter (µm)	Holder	Av. Surface Temperature (°C)	Av. Power Generation (W)
05-	-0160006	872	27	1600	0.80
80	-0161002	836	29	1520	0.50
10-	-0161002	824	30	1520	0.50
(19 -	-0161-002	819	32	1515	0.50
07-	-0261-002	821	33	1510	0.47
07-	-0161-002	823	35	1495	0.47
06-	-0261002	812	36	1490	0.47
06-	-0161002	823	38	1470	0.46
10-	-0161001	829	40	1310	0.39
09-	-0161001	823	42	1310	0.37
05-	-0160005	873	43	1350	0.55
07·	-0261001	820	45	1275	0.33
07 ·	-0161001	816	46	1265	0.31
06	-0261-001	813	48	1245	0.35
06·	-0161-001	819	49	1230	0.29
08 ·	-0161001	836	51	1200	0.26

Table 10. Operating History for GA ThO₂ Loose Particles During Irradiation Cycle 142 of Capsule HT-31

In each magazine the general trend is for the power generated per particle and temperature to follow the HFIR flux profile with the peak mearest the reactor horizontal midplane and decreasing to a minimum at the ends of the magazine.

One ThO₂ particle type, 6252-05-0160, contained a nominal 500-µm kernel (while all other particle types were $450 \ \mu\text{m}$ or less in diameter). Consequently this particle type generated more heat and thus had a higher surface temperature, 1600° C in the high-temperature region and 1350° C in the low-temperature region. These temperatures are illustrated in Table 10 for holders 27 and 43 and Figs. 2(a) and 4(c).

Time-temperature histories were also obtained for ORNL-produced fissile particles used as drivers in the lower magazines. These particles

were also irradiated loose in graphite holders similar to those used with the ThO₂ particles. In each magazine, five holders contained Trisocoated WAR driver particles, batch OR-2248. These particles were 6.52enriched uranium and were used for heat generation at the beginning of irradiation. Table 11 describes the operating temperature history of the uranium driver particles for each HFIR cycle.

Holder	Cycle 130	Cycle 131	Cycle 132	Cycle 133
28	1557-1387	1406-1402	1420-1409	1445-1415
31	1546-1377	13921391	1407-1399	1434-1402
34	1532-1363	137 9 1375	1393-1385	1418-1388
37	1513-1347	135 9- 1352	1371-1363	1398-1369
39	1476-1289	13061281	1293-1279	13051279
41	1356-1202	1214-1194	1208-1200	1221-1201
44	13301183	1189-1171	1182-1177	11971183
47	1297	1169-1148	1157-1152	11 661 155
50	1266-1143	1149-1123	11341124	11441130
52	122 9- 1107	1110-1074	10801069	10781064

 Table 11. 'aximum Particle Surface Temperatures for Driver

 Porticle Batch OR-2248 Irradiated in HT-31

Particle temperatures were high at the beginning of irradiation while ^{235}U was still present (cycle 130). As the ^{235}U was burned up the temperature range decreased as illustrated for cycles 131, 132, and 133. Here the primary source of heat for the driver particles was fissioning of plutoniwa produced from the ^{238}U .

5. POSTIRRADIATION EXAMINATION

5.1 Disassembly and Visual Examination

The capsule was sectioned and the contents were removed intact and in good condition.

Crucible 1 appeared normal and was prepared for removal to another facility for permeability measurements. Bonded rods ORNL-1 and -2 appeared sooty and were prepared for transfer to the Physical Properties Group for physical measurements. Holders U-16 and -17 and the LASL rods were removed in good condition. Further analysis of the results on the LASL rods is reported in ref. 2.

The loose coated ThO₂ particles from the lower half of the capsule were removed from their respective graphite holders without incident. A representative from GA was present during disassembly of these holders. Further analysis of the results on the GA fuel particles is reported in ref. 6.

The loose WAR driver particles were also removed from their respective graphite holders. (These particles did not have outer LTI coatings.) With the exception of the particles from holder 52, the particles appeared to be in poor condition. In many cases the particles had bonded to one another, and many could not be removed from the graphite holders. Broken coatings and fragments were observed, but no accurate failure count could be made because we could not remove all the particles. The surfaces of the particles appeared to be very rough and discolored (Fig. 6). Further discussion on these particles will be presented in a following section. The particles from holder 52 appeared to be in excellent condition with shiny surfaces (typical of SiC).

5.2 Dimensional Inspection

The bonded rods ORNL-1 and -2 were dimensionally inspected and the data are summarized in Table 12. The rods were transmitted to the Physical Properties Group at ORNL, where the thermal expansivities and conductivities of these rods were measured and reported.⁷

5.3 Permeability Measurements

The inert coated particles (batch OR-2294-HT) contained in Grucible 1 were used for measurements of the coating Ne/He permeability. This value gives a measure of the permeability of the pyrocarbon coating for inert

Fig. 6. Representative Appearance of Loose Coated Driver Particles (with No Outer LTI Coating) After Irradiation Sample is from Holder 41. 20×.

Table 12.	Dimensional	Changes	in Rod	s Irradiated	for
	Thermal Pro	operty Me	asuren	ent	

	Average Valu	Change,			
Uimens ion	ORNL 1	ORNL 2	ORNL I	ORNL 2 ¹	
Average OD	9.774 (0.3848)	10.053 (0.3958)	-3.88	-1.10	
Average ID	3.250 (0.128)	3.230 (0.127)	-1.5	-3.0	
Average length	48.077 (1.8928)	48.951 (1.9272)	-4.01	-3,52	

Changes given for OD and ID radial.

¹Total change from preirradiation values.

gases. The results, which are shown in Table 13, indicate that the permeability of the pyrocarbon coatings decreased with fast-neutron fluence (0.18 MeV). While tentative, these results have been confirmed in subsequent irradiation experiments for the pyrocarbon coatings of particles with inert kernels.⁸

Table 1	З. Р	ermeability	of	Irradiated	Inert	Fuel
		Particles	from	HT-31		

Haras.	Fast-Neutron Flueace,	Tenperature	Content, mol-	•1. 11.	
*#*3 & 1 *	(n/m ²)	(*C)	He L Lum	Sec.0	
0R-2294-HT (inerts)			1.07 - 10-19		1.22
GR-2294-HT (inerts)	••••	9 50	5 <u>- 1</u> 29	0.13	4.12
OR-2251-HT (included for comparison)	,		1.+2	10 ., 3. 8).21

5.4 Gas Pressure Measurements

Both Biso- and Triso-coated natural 00_2 kernels $(0.73^{-235}0)$ were irradiated to investigate the chemical effects of plutonium fissions on oxygen release in 00_2 . The kernels were 974-dense sol-gel 00_2 and were selected from a large batch by microsleving to give an average kernel diameter with a very small standard deviation. Tables 3, 4, and 5 describe the particles.

The theoretical fractions of 95_{Zr} , 106_{Ru} , 137_{Cs} , and 144_{Ce} left at the end of irradiation were calculated by taking into account the timedependent fission rates of 235_{U} , 239_{Pu} , and 241_{Pu} (Table 14). Contributions to the fraction of total fissions by each of these three isotopes were also calculated:

Isotope	Fraction of Total Fissions (%)
235 _U	4.7
239 _{Pu}	71.2
241 _{Pu}	24 . t

Based on these calculations and the results from gamma spectrometry of six particles from each batch, burnups were determined (Table 14). Details of

Isotope	Theoretical Fraction Left at End of	Burnup Based on Isotope Gamma Spectrometry (% FIMA)				
Isotope 95 ₂ r 106 _{Ru} 137 _{Cs} 144co	(2)	U-16, Biso-Coated (Batch OR-2511-H)	U-17, Triso-Coated (Batch OR-2533-H)			
95 _{2r}	0.676	11.68	11.88			
106 _{Ru}	0.929	12.71	13.18			
137 _{Cs}	0.998	13,17	13.68			
144 _{Ce}	0.910	11.36	11.50			

Table 14. Theoretical Fraction of Selected Isotopes Left atthe End of Irradiation and the Burnups based onGamma Spectrometry of These Isotopes

these type of calculations are given in ref. 9. One Biso-coated particle lost about 50% of the 137Cs content so that the 137Cs burnup is based on five particles. The results from the 137Cs indicate a higher burnup than do those from the other three isotopes, a phenomenon noted earlier in other ThO₂ irradiations.^{3,9}

The irradiated particles were individually heated at a given temperature, broken, and measured for CO and Kr + Xe contents.^{9,10} The experimental results are given in Table 15. It is clear from a comparison of the Biso-vs-Triso results for oxygen per fission (0/f) and Kr + Xe per fission [(Kr + Xe)/f] that the Biso-coated particles were permeable to CO, Xe, and Kr. The Triso-coated particles contained the gases with the observed (Kr + Xe)/f comparable to the theoretical value of 0.32.

The release of oxygen as a result of the plutonium fission is commonly expected to be higher than that for uranium fission.¹¹⁻¹³ However, the present experiments, as well as those of European measurements^{11,12} on irradiated low-enriched uranium, revealed an oxygen release that was usually well below the thermodynamically calculated minimum value of about 0.57 oxygen atom per fission (0/f). The present Triso-coated particle results approach that value at 1600°C (Table 15), but the lower temperature European results^{11,12} are for particles with considerably fewer total fissions. In general, one expects 0/f = 0.57 and finds 0.2 to 0.3 at

Equilibration	Equilibration	Gas Fo	uni (nmol)	Moles per Fission		
Temperature (°C)	Time (h)	co	Kr + Xe	0/f	(Kr + Xe)/f	
	U-16 (Batch G	R-2511-H	, Biso-Chate	<u>d)</u>		
870	163.0	34.2	35.6	0.216	0.226	
1000	143.3	45.8	36.7	0.290	0.232	
1200	92.6	58.8	36.9	0.372	0.233	
1400	89.0	56.7	35.6	0.359	0.226	
1635	19.5	68.9	36.8	0.436	0.233	
	U-17 (Batch OF	<u>-2533-н,</u>	T' iso-Coate	<u>d)</u>		
1400	6.8	67.4	55.2	C.422	0.350	
1600	7.3	88.5	52.1	0.554	0.331	

Table 15. Contents of CO and Kr + Xe in Irradiated Natural UO₂ Particles

7% FIMA. Thus, the difference of about 0.4 0/f is equivalent to a deficiency of $0.4 \times 0.07 = 0.028$ oxygen atom per metal atom; this could be accommodated by an equivalent increase in the 0/U ratio. This increase can be shown to be impossible with pure UO₂, but could possibly occur as a result of the known¹⁴ solid solution of SrO and the rare earth oxides in UO₂. However, no data are known on the effects of solid solution SrO on the 0/U ratio. Data on the rare-earth oxide solutions are summarized in ref. 10 but are not accurate enough to predict an increase of about 0.03 in the 0/U ratio. Thus the present results are inconclusive, but do agree with previous experiments.

1

5.5 Driver Particle Examination

Originally, the low-enriched uranium (LEU) driver particles did not represent an integral part of the experiment, but because of the new interest in LEU feul (prompted by recent government policy changes), examination of these fuels became important. However, these particles were irradiated without an outer LTI coating, which affected their performance. The outer LTI coatings had been burned off so that a sufficient number of particles could be accomodated in the loose particle graphite crucibles to obtain the necessary fuel loadings. However, it was hoped that successful irradiation of these particles would prove to be a scoping experiment for a new fissile particle design (i.e., Triso-coated without an outer LTI).

During unloading of the graphite crucibles from the high-temperature region, many of the particles were stuck in the crucibles and could not be removed. The particles that were removed showed extensive degradation of the SiC coating, similar to that shown in Fig. 6. The particles contained in the low-temperature crucibles were more easily removed (with the exception of crucible 41) but also showed some degradation of the SiC coating. The particles from crucibles 50 and 52 showed no apparent SiC degradation.

Examination of graphite crucible 41 (with particles stuck in it) using the shielded scanning electron microscope (SEM) showed that the particles were bonded to the graphite, and a well-defined crystal structure was observed on the graphite surface (Fig. 7). Other studies¹⁵⁻¹⁷ have shown that in a neutral or reducing atmosphere, bare SiC can degrade through the evaporation of silicon, leaving a porous carbon layer. Measurements of the sublimation of SiC under equilibrium conditions have shown that the most important gaseous species is silicon. The decomposition rate of β -SiC crystals (the type deposited on HTGR fuel particles) was measured and fitted to the following equation:

$$k = 2.95 \times 10^{13} \exp(-56, 252/T)$$
, (1)

where k is the decomposition rate in $\mu g/m^2$ s and T is the temperature in K. Particles from crucible 41 (shown in Fig. 6) operated at a time-averaged particle surface temperature of about 1215°C, and with Eq. (1) a rate of J.:3 ng/m² s can be calculated. This products to an effective decrease in the SiC thickness of about 0.01 μ m. However, the appearance in Fig. 7 would indicate that more SiC was degraded. This discrepancy can be partially accounted for by the particle surface temperature having reached as high as 1350°C early in irradiation, and considerably more SiC degradation should have occurred. However, at 1350°C the decomposition rate is 2.62 ng/m² s, which would amount to an effective decrease in the SiC thickness of about 0.2 μ m provided that 1350°C was the average temperature

ALL CAR

Fig. 7. Particle Adhering to Crucible 41. (a) 13, (b) 70, and (c) 340×. At 340× crystal growth from the graphite surface is easily observed. Reduced 68.5%.

during the irradiation. The amount of degradation observed in crucible 41 appeared to be about 0.5 μ m, which would indicate a time-averaged temperature of about 1390°C. Evidently, either the particle surface temperatures were higher than we had calculated or the decomposition rates were higher than predicted by Eq. (1).

Examination by the SEM of one of the particles removed from crucible 28 (Fig. 8) showed extensive SiC degradation. One area shown (b) is believed to have been where two particles were in contact and the SiC sublimation rate was lower than over the rest of the particle. Using the time-averaged particle surface temperature for crucible 28 (\sim 1415°C), a SiC decomposition rate of 99.3 ng/m² s can be calculated with Eq. (1). This amounts to an effective decrease in SiC thickness of about 0.8 µm. However, the particle surface temperature was as high as 1555°C early in irradiation. The calculated decomposition rate at this temperature was 1.28 µg/m² s. The amount of SiC decomposition was not estimated.

These results showed that the performance of the driver particles without an OLTI coating was questionable because of SiC sublimation. Consequently, further examination of these LEU driver particles was stopped. This decision was also based on the availability for examination of other HT-capsules (e.g., HT-33)¹⁸ containing LEU driver particles that were irradiated with OLTI coatings. Although SiC sublimation was evidently a problem in the capsule, the particles from crucible 52 appeared to be in excellent condition, with no apparent SiC degradation, and may be used in future testing of LEU fuel. (In fact, particles from crucible 52 were given to GA for tests on plutonium volatility in LEU fuel particles.)

5.6 Electron Microprobe Examination of Normal UO₂ Particles

5.6.1 Biso-Coated Sol-Gel Particles

The sol-gel 10_2 particles were irradiated as loose particles, so we could mount them individually and metallographically polish them. A cross-section of a Biso-coated particle is shown in Fig. 9. The particles appeared to be in good condition, but, as discussed in Sect. 5.5, the coatings on these particles were probably permeable to gases during

Fig. 8. Single Particle from Crucible 28 Showing Severe Degradation of SiC. (a) $200\times$. (b) $365\times$. Area shown in (b) is probably where this particle rested against another. Reduced 88%.

Fig. 9. Single Biso-Coated Sol-Gel Particle. (a) Bright field. (b) Polarized light. (c) High magnification of kernel, showing numerous phases present.

irradiation. Observations on the kernel [Fig. 9(c)] revealed numerous phases at the grain boundaries; these included fission gas bubbles, bright metallic inclusions, and gray ceramic inclusions. Close examination of the OLTI coating showed a thin layer of bright material (not optically active under polarized light), which covered nearly the entire outer surface (Fig. 10).

The shielded electron microprobe showed that the thin layer of material was zirconium (Fig. 11). The only source of zirconium in the capsule (besides the fission products) was the wafers inserted between the graphite crucibles, which are included as oxygen getters during irradiation. In a previous HT-capsule, ¹⁹ chemical attack of fuel rods by zirconium had been observed and a similar situation could have occurred.

Also shown in Fig. 11 is the cesium distribution in the particle. It had migrated out of the kernel and into the buffer and LTI coating. Cesium was the only fission product in the pyrocarbon coatings in sufficient concentration to produce an appreciable x-ray display.

Close examination of the kernel showed that uranium, plutonium, and the rare earth fission products Nd, La, and Pr (Nd representative of La and Pr) were evenly distributed in the residual kernel matrix presumably as oxides (Fig. 12). Similar results have been reported²⁰ with highly enriched uranium (HEU) sol-gel UO₂ particles.

Cerium, which usually behaves like the other rare earth fission products in HTGR particles,^{20,21} was observed in the residual kernel matrix and heavily concentrated in the gray ceramic phases (Fig. 13). Associated with the cerium in the ceramic phases were strontium and barium. Similar inclusions have been observed²² in mixed uranium-plutonium fuel pellets irradiated in a fast neutron flux. The zirconium, which is sometimes present in the ceramic inclusions,^{21,23} was found distributed throughout the residual kernel matrix without any apparent concentration in the inclusions.

The metallic inclusions were composed of Mo, Ru, Pd, Rh, and Tc (Fig. 14). In addition, minor concentrations of each of the elements were distributed in the redisual kernel matrix. Similar inclusions have been observed in HTGR fuel particles with high oxygen contents^{21,24} and mixed uranium-plutonium fuel pellets.²² Palladium recently has become of major

front of a foot of • · • • Fig. 11. Shorrow Microprofe Xaria and Anti-And Anti-And Particles as Direonium. (1) Successful to a state of a state of a

. .

Fig. 13. Electron Microprobe X-ray Displays of Rernel of Biso-Coated Sol-Gel Particle. Same orientation as Fig. 12. (a) Ce L., (b) Ba L., (c) Sr L., (d) Cr L.,

Fig. 14. Electron Microprobe Displays of Kernel of Biso-Coated Sol-Gel Particle. Same orientation as in Fig. 12. (a) Backscattered electron image. (b) Pd Lat. (c) Mo Lat. (d) Ru Lat. (e) Rh Lat. (f) Tc Lat.

concern because of its adverse effect on SiG corrosion. $^{25+26}$ Interestingly, with these dense sol-gel kernels some palladium is present in the metallic inclusions, whereas in low-density WAR particles palladium is not readily apparent in the metallic inclusions (of particles with conversions $<15^{\circ}$). $^{25+26}$ Obviously, some of the palladium in the dense kernel's metallic inclusions is attributable to the decay of 106 Ru into stable 196 Pd. Also, some contribution to the Pd Li x-ray display is caused by interference from the Kh Li x-ray. Selective microprobe analysis did show palladium in the inclusions.

5.6.2 Triso-Coated Sol-Gel Particles

A metallographic cross-section through a Triso-coated sol-gel particle is shown in Fig. 15. As with the Biso-coated particles, the Triso-coated particles appeared to be in good condition with no broken SiC coatings. The outer LTI coating on some of the particles was probably broken, because of the high anisotropy of the coating.²⁷ This is most easily seen under polarized light illumination [Fig. 15(b)] as high optical activity. No outer layer of zirconium was observed with these particles. However, close examination of the SiC coating revealed small bright inclusions at the interface between SiC and the inner LTI and in the SiC [Fig. 15(c)].

The shielded electron microprobe identified these inclusions as palladium (Fig. 16). Evidently the palladium was free to migrate out of the Biso-coated particles, while in the Triso-coated particle the SiC coating slowed further migration. This penetration into the SiC coating is of major concern when dealing with LEU fuel particles because of the increased production of fission product palladium from ²³⁹Pu fissions.

Examination of the kernel showed the actinides and the fission products to be distributed identically to the Biso-coated particle just discussed (Figs. 17, 18, and 19). Again, some of the palladium appears to be tied up in the metallic inclusions.

Cesium (not pictured) was located in the buffer and inner LTI coatings. The SiC coating appeared to provide an adequate barrier.

j J

Ж

Fig. 16. Metallic Inclusions in SiC Identified as Palladium. (a) Backscattered electron image. (b) Optical, bright field. (c) Si La x-ray display. (d) Pd La x-ray display.

Fig. 18. Electron Microprobe X-ray Displays of Kernel of Trisord-Afed solution for the letter of the second solution of the second soluti

Fig. 19. Electron Microprobe Displays of Kernel of Triso-Coated Sol-Gel Particle. Same orientation as in Fig. 17. (a) Backscattered electron image. (b) Pd La. (c) Mo La. (d) Ru La. (e) Rh La. (f) To La.

5.7 Gamma Analysis of Normal UO₂ Particles

The individual normal UO_2 particles were scanned by the Irradiated Microsphere Gamma Analyzer system²⁸ before their metallographic examination. The complete results are presented in Appendix A. The quantitative analyses have been corrected for absorbtion by the coatings, and the activities have been calculated back to the date the capsule was removed from the reactor. Table 16 compares various fission products with one another. These comparisons can be used to deterwine the behavior of volatile and immobile fission products, such as cesium and zirconium, respectively.

The ratios of the 137Cs to 95Zr indicate that some cesium was lost from two Biso-coated particles during irradiation (contained in U-16) as compared with the Triso-coated particles (in U-17). Similar behavior has been observed in other Biso-coated fissile fuel and is the reason

Sample	134 _{Cs} /137 _{Cs}	137 _{Cs} /95 _{Zr}	110m _{Ag} /95 _{Zr} 5	144 _{Ce} /95 _{Zr}
U-16-1	1.791	0.014		0.258
-2	1.831	0.014		0.273
-3	1.764	0.010		0.270
-4	1.797	0.012		0.273
av	1.796	0.013		0.269
U-17-1	1.819	0.014		0.273
-2	1.722	0.015	0.002	0 .276
-3	1.802	0.015	0.002	0.279
-4	1.834	0.014		0.281
-5	1.860	0.014	0.002	0.269
av	1.807	0.014		0.275

Table 16. Comparisons of Selected Product Gamma Activities² With Each Other from the Norman UO₂ Particles

 $^{\alpha} The ratios were calculated by use of all the gamma peaks detected for each isotope except <math display="inline">^{110m} Ag$, where just the 884-keV peak was used.

^bRatio calculated only when ^{110m}Ag was detected.

why all fissile particles are now Triso-coated.^{29,30} The cesium loss may be related to the permeability of the Biso-coated particles (Sect. 5.4).

The 134Cs/137Cs ratios are practically identical for both the Bisoand Triso-coated particles. We had hoped that the ratio could be used to indicate pyrocarbon permeability by inert gas fission products.³¹ This is because 134Cs is an activation product of 133Cs, which has 5.27-d 133Xe as its precursor. Ideally, with permeable pyrocarbon coatings the 133Xe would be able to escape from the particle faster than the 137Cs and the final result would be low 134Cs/137Cs ratios. Internal gas pressure measurements (Sect. 5.4) had shown that Biso-coated particles were permeable compared with the Triso-coated particles; however, no real differences in the 134Cs/137Cs ratios are observed. These preliminary results indicate that the time required for 133 xe release, particularly from the kernel, is significantly longer than 5 d (i.e., the half-life of 133Xe). Thus it seens that, at least for dense kernels, interpretation of the 134Cs/137Cs ratio may be difficult. Indications are that the 134Cs/137Cs ratio is still a good measure of performance of low-density fissile particles made from weak-acid resins.³¹

Cerium migration and subsequent SiC corrosion is of concern in HTGR fuel particles. The present results of the 144Ce/95Zr ratio in both the Biso- and Triso-coated particles confirm what was observed by the electron microprobe; that is, all the cerium is retained in the kernel. Similar results have been observed previously with UO₂ containing highly enriched uranium.²⁰

An interesting observation was the presence of 110 Mag in three of the five Triso-coated particles. (None was detected in any of the fiso-coated particles.) Silver is extremely volatile at the irradiation temperatures in these particles and is the major contributor to the radioactivity of the primary circulator in an HTGR. Thus its behavior is important especially when dealing with an LEU cycle for the HTGR because of the enhanced production of silver from plutonium fissions. Previous results³² have hypothesized that silver can diffuse through pyrocarbon and SiC and escape from the particle. Studies are now under way to correlate SiC properties

with fission product release.³³ In any event, the presence of 110mAg in some Triso-coated particles indicates that the SiC provides some barrier, but retention is variable.

6. CONCLUSIONS

lrradiation capsule HT-31 was successful from the standpoint that original objectives were met. It furnished (1) irradiated inert fuel rods for thermal conductivity experiments, (2) irradiated natural UO_2 particles for internal gas pressure measurements, and (3) irradiated inert particles for pyrocarbon permeability studies besides irradiating material for GA and LASL.

The results on the thermal conductivity experiments were combined with other results and reported elsewhere.⁷ Unexpectedly, the internal gas pressure measurements showed that oxygen release from plutonium fissions was less than calculated. The discrepancy may be due to a change in the O/U ratio as a result of the known solid solution of SrO and the rare earth oxides in UO_2 . The permeability studies, although tentative, indicate that the pyrocarbon permeability decreases with increasing fast neutron fluence. While these objectives (coupled with GA's and LASL's) were the justification for the test, the additional work on LEU fuel tests may prove to be the most important results in the long run.

These additional tests were a direct result of the recent interest in using low-enriched uranium (LEU) in the fuel particles. Examination of sol-gel UO₂ particles $(0.77 \ ^{235}\text{U})$ with both Biso- and Triso-coatings revealed that most of the firsion products (i.e., Nd, La, Pr, Ba, 2r, Sr, Cs, Mo, Ru, Rh, Tc) behaved similarly to those in particles containing 93Z-enriched uranium. Thus, much of the data base that has been developed for the HEU fuel cycle can be applied to the LEU particles. Of interest with the LEU particles was the behavior of palladium and silver because of their enhanced production in LEU fuel due to 239 Pu fissions. Palladium penetrated into the SiC layer on Triso-coated particles. Silver, on the other hand, was not observed in the particles when examined with the electron microprobe. But gamma analysis showed that some retention of ¹¹⁰MAg (activation product of fission product 109 Ag) was provided by the Triso-coated particles, although it was variable. No 110 MAg retention was observed with the Biso-coated particles.

The results also showed that Triso-coated particles should not be irradiated above approximately 1200°C without the outer pyrocarbon coating because the SiC coating degrades.

7. ACKNOWLEDGMENTS

The authors wish to acknowledge the efforts of many people who made significant contributions to the planning, execution, and interpretation of this experiment. First, we wish to thank F. J. Homan and W. P. Eatherly for their many efforts in planning this capsule and for guidance and direction throughout the total effort. Also acknowledged is the assistance of J. A. Conlin, K. R. Thoms, and B. H. Montgomery, who participated in the planning, design, construction, and irradiation of the capsule. G. W. Weber, C. Hamby, and J. F. Willmering assisted in producing the pyrolytic carbon coatings on the test particles, and the silicon carbide coatings were supplied by J. 1. Federer and J. W. Geer. R. L. Hammer, D. E. Rosson, and H. Keating fabricated and characterized specimens, and M. D. Allen, W. J. Mason, L. G. Shrader, and E. R. Boyd performed metallography and radiography. The capsule was disassembled by E. L. Ryan and the staff of the High Radiation Level Examination Laboratory. Gas permeability and gamma spectroscopy were measured by G. L. Powell and G. A. Moore, respectively, and postirradiation microprobe work was done by T. J. Henson. The authors also wish to thank R. J. Lauf and G. W. Weber for their critical review and most helpful comments. Finally, we wish to acknowledge the efforts of those who helped in the preparation of this report -S. Peterson for technical editing and Shirley Frykman for word processing and makeup.

8. REFERENCES

 W. J. Kovacs, C. A. Young, and D. P. Harmon, Preirradiation Report of TRISO and BISO Coated ThO₂ Particles for Irradiation in Capsules HT-31 and HT-33, GA-A-13923 (November 1976).

- 2. P. Wagner et al., Irradiation Test HT-31: High-Temperature Irradiation Behavior of LASL-Made Extruded Fuel Rods and LASL-Made Coated Particles, LA-6785-MS (April 1977).
- E. L. Long, Jr., P. Krautwasser, R. L. Beatty, M. J. Kania,
 C. S. Morgan, R. L. Hammer, and C. S. Yust, Characterization Studies and Performance of Biso-Coated Fertile Particles Irradiated in Capsules HT-28 Through HT-30, (report in preparation).
- J. P. Moore and T. G. Godfrey, "Capsules HT-20 Through -23," HTGR Base-Technology Program Prog. Rep. July 1, 1975-Dec. 31, 1976, ORNL-5274, pp. 221-26.
- 5. M. J. Kania, HTCAP-A FORTRAN IV Program for Calculating Coated-Particle Operating Temperatures in HPIR Target Irradiation Experiments, ORNL/TM-5332 (May 1976).
- 6. "Capsules HT-31 and HT-33," HTGR Fuels and Core Dev. lopment Quart. Prog. Rep. Feb. 28, 1977, GA-Al4298, pp. 9-38-9-42.
- 7. J. P. Moore, T. G. Godfrey, R. S. Graves, F. J. Weaver, W. P. Eatherly, and E. L. Long, Jr., Experimental Determinations of the Pre- and Postirradiation Thermal Transport and Thermal Expansion Properties of Simulated Fuel Rods for an HTGR, ORNL-5414 (July 1978).
- C. S. Morgan and G. L. Powell, "Inert Jas Intrusion as a Characterization Procedure for Pyrocarbon Coatings," (Summary) Trans. Am. Nucl. Soc. 28: 182-83 (June 1978).
- 9. M. J. Kania, T. B. Lindemer, M. T. Morgan, and J M Robbins, Irradiation Performance of HTGR Fertile Fuel in HPIR Target Capsules HT-12 through HT-15: Part I - Experiment Description and Pission Product Behavior, ORNL/TM-5305 (February 1977).
- T. B. Lindemer, "Measurement and Interpretation of CO and Kr + Xe in Irradiated ThO₂ Containing HTGR Fuel Particles," J. Am. Ceram. Soc., 60: 409-16 (1977).
- R. H. Flowers and G. W. Horsley, The Influence of Oxide Kernels on the Manufacture and Performance of Coated Particle Fuel, AERE-R-5949 (1968).
- G. W. Horsley et al., "Influence of Irradiation Temperature, Burnup and Fuel Composition on Gas Pressure (Xe, Kr, CO, CO₂) in Coated Particle Fuels," J. Am. Coram. Soc. 59: 1-4 (1976).

14

- T. B. Lindemer and H. J. de Nordwall, An Analysis of Chemical Failure of Coated UO₂ and Other Oxide Fuels in the High-Temperature Gas-Cooled Reactor, ORNL-4926 (1974).
- 14. P. E. Potter, "Some Phase Equilibria and Thermodynamic Considerations for Irradiated Oxide Nuclear Fuels," pp 115-55 in Behavior and Chemical State of Irradiated Ceramic Fuels, International Atomic Energy Agency, Vienna, 1974.
- J. Drowart, G. DeMaria, and M. G. Ingraham, "Thermodynamic Study of SiC Utilizing a Mass Spectrometer," J. Chem. Phys. 29: 1015-21 (1958).
- P. Grieveson and C. B. Alcock, "The Thermodynamics of Metal Silicides and Silicon Carbide," p. 183 in Special Communics, P. Popper, ed., Academic Press, Inc., New York, 1960.
- R. J. Price, "Properties of Silicon Carbide for Nuclear Fuel Particle Coatings," Mucl. Technol. 35(2): 320-36 (September 1977).
- R. L. Hammer, "Capsule HT-33," HTGR Base-Technology Program Prog. Rep., July 1, 1975-Dec. 31, 1976, ORNL-5274, pp. 257-70.
- 19. T. N. Tiegs, A. J. Caputo, E. L. Long, Jr., and B. H. Montgomery, Irradiation Performance of HTGR Puel Rods in HPIR Experiments HT-26 and -27, ORNL/TM-5404 (August 1976).
- K. H. Valentine, F. J. Homan, E. L. Long, Jr., T. N. Tiegs,
 B. H. Montgomery, R. L. Hauner, and R. L. Beatty, Irradiation Performance of HTGR Fuel Rods in HFIR Experiments HRB-7 and -8, ORNL-5228 (May 1977).
- 21. T. N. Tiegs and T. J. Henson, Fission Product Behavior in HTGK Puel Particles Made from Weak-Acid Resins, (report in preparation).
- D. R. O"Boyle, F. L. Brown, and J. E. Sanecki, "Solid Fission Product Behavior in Uranium-Plutonium Oxide Fuel Irradiated in a Fast Neutron Flux," J. Mucl. Mater. 29: 27-42 (1969).
- C. A. Friskney and K. A. Simpson, "The Behavior of Fission Product Barium and Strontium in Irradiated UO₂," J. Nucl. Mater. 57: 121-22 (1975).
- 24. H. Kleykamp, Microprobe Study of Fission Product Behavior in High-Burnup HTR-Fuels, KFK-2213 (Sept. 1, 1975).
- 25. T. N. Tiegs and K. R. Thoms, Operation and Postirradiation Examination of ORR Capsule OF-2: Accelerated Testing of HTGR Fuel, ORNL-5428 (in press).

- 26. T. N. Tiegs et al, Irradiation Performance of HTGR Fuel in HPIR Capeule HT-33, (report in preparation).
- T. N. Tiegs, E. L. Long, Jr., M. J. Kania, K. R. Thoms, and E. J. Allen, ORR Irradiation Experiments OP-1: Accelerated Testing of HTGR Fuel, ORNL-5324 (August 1977).
- K. H. Valentine and E. L. Long, Jr., "Fuel Particle Inspection with an Irradiated Microsphere Gamma Analyzer," *Trans. Am. Mucl. Soc.* 22: 213-14 (November 1975).
- 29. F. J. Homan and E. L. Long, JL., Irradiation Performance of HTGR Recycle Piesile Fuel, ORNL/TM-5502 (August 1976).
- T. N. Tiegs and E. L. Long, Jr., Postirradiation Examination of Recycle Test Elements from the Peach Bottom Reactor, ORNL-5422 (December 1978).
- Personal communication, M. J. Kania, Oak Ridge National Laboratory, May 1978.
- 32. H. Nabielek, P. E. Brown, and P. Offermann, "Silver Release from Coated Particle Fuel," *Nucl. Technol.* 35(2): 483-93 (September 1977).
- Personal communication, G. W. Weber, Oak Ridge National Laboratory, May 1978.

APPENDIX

Analysis of Gamma Spectra from Individual Fuel Particles Irradiated in Positions U-16 and U-17 of HT-31

ī.

APPENDIX

Analysis of Gamma Spectra from Individual Fuel Particles Irradiated in Positions U-16 and U-17 of HT-31

The analysis for each particle is presented as a printout in the pages that follow. The top of each printout gives the date and time (24-h) that the gamma spectrum was acquired and the identification of the spectrum.

The meanings of the column headings in the printouts are as follows: F. P. The chemical symbol and isotope number of all emitters in the isotope table that are identified with the peak.* Isotopes listed without any peak number are really contributors to preceeding peak.

ENERGY The energy (in keV) that corresponds to the peak centroid. (KEV)

PEAKThe channel number of the peak centroid (not the channel con-
cHNL,CHNL,taining the peak number of counts, as the name would imply).CPSThe rate, in counts/s, at which all characteristic gamma rays

having the centroid energy are detected.

GAMMA/SEC The rate at which characteristic gamma rays at the centroid energy are emitted by the source.

- ERR This number is an estimate of the statistical uncertainty (due (7) to the random nature of the radioactive decay process) that should be associated with the measurement of CPS (and therefore with GAMMA/SEC as well). The best interpretation is to assume that the probability is 687 that the true value of CPS deviates from the listed value by less than the listed error.
- BW The number of histogram channels involved in the calculation of CPS.
- MU The order of the multiplet of which the listed peak is a member. This number includes all local maxima that were detected in the base width even though some of them may not have satisfied the necessary criteria for being listed as a separate peak.

^{*}The following exceptions apply to the printed identification of the fission products: (1) the unknown at 74 keV and the 233 Pa at 85 keV are really fluorescent x rays from Pb; (2) the 233 Pa peaks at 94, 98, and 114 keV and the 125 Te at 111 keV are really fluorescent x rays from U.

FWHM The peak's full width at half maximum (in keV). This number is (KEV) useful for spotting unresolved multiplets, which often have abnormally high FWHMs. If it is not possible for the program to calculate the FWHM (which, for example, sometimes occurs for the central peak of a triplet), a zero will be printed in this column.

115.09

PK # A sequential number assigned to each peak.

11 HT-21, U-16, PHPTILLE #1

F P	ENERGY (REV)	PERK UHNL	LP's	GHMMA/SEL	993 12	ен	MŲ	FMHM (KEV)	₽K ₩
	74-10	104	44. 28	2 MIRE+MR	1 27	48	5	- 89	1
CE144	79-94	11 ± 15	146 81	5 500E+05	2 60	43	5	2. 41	2
PA233	85 25	1.20 30	2010 62	6 570E+05	2 W2	48	5	3 34	<u>ث</u>
EU155									
PA233	94 31	124 51	152 08	4 208E+H5	2-51	43	5	2 95	4
PH233	98 SZ	1.29 SH	257 4.	6 822E+US	1 73	48	ŗ.	2.64	5
TE125	111 11	157, 92	75 741	1 819E+05	4 91	16	2	2,58	6
Pfi232				_					
FH233	114 54	162 86	10 168	14-E+14	8 8 6	16		1. 22	<i>.</i>
EU154	122 98	174 99	19 527	5 MAAF+04	11 22	<u> </u>	1	1 83	8
CE144	1 4	196 65	1.061	2. 983E+06	0.67	- 19	1	236	- 14
58125	427 82	612 87	19 165	1 192E+05	11 02		1	2.21	19
PU106	511 89	61	10.98	/ 831E+06	0 45	16	1	2 56	11
US1:4	ెండ్ చిన	30, 49		4 9/8E+05	2.4	24	2	2.77	12
US124	569.45	316 27	118 4	а <u>аальни</u> а	2		2	2.03	1.5
US134	604 (9	84 / 192	555 11	5 267E+M5	и ки Te u	1	1	4.4	14
EN 14 142	515	8 N. 30	28 22D 444 40	2 387E793	0.10	(اے دارے	<u> </u>	2 20	17
RU106	622 12 774 20	071 72	411 48	3 (746705) 3 Suteade	0 51	20	2	2.00	10
CEAAA	551 50 292 55	243 (Z 990 94	470 BZ 20 440	A OBIETOS	979 299	25	1	2.50	17
		- 220, 24 1629, 52	50 110 68 111	2. 232570J 2. 232570J	2.77 2.70	4.2	4	2 20	10
EU154	127 21	10.00 32	00.010		2.10	75	*	2.19	1.2
2895	256 85	1.085 28	21, 98.2	8 077E+05	> 14	22	2	2.69	261
EU154				0.0126.00		•	-		20
NB95	265-69	1098-08	282 77	2 207E+06	1 99	27		2 77	21
RG110M							-		
CS134	795 93	1141 49	449 34	5. 292E+86	0, 65	22	2	2 76	22
CS134	802 04	1159, 27	50 485	5 9916+05	2 56	23	2	2.75	22
RU106	873 56	1252.96	15, 936	1 937E+05	7.19	9	1	2.39	24
EU154		1							
EU154	1064 00	1449 24	2 1114	3 102E+04	18 69	7	2	1, 25	25
EU154	1005 24	1442.01	2, 9898	4. 398 E+04	14 10	7	2	1 63	26
RU106	1050 51	1507-01	34, 6 56	5. 313 E+05	2, 97	11	1	2.67	27
EU154	1128, 16	1618, 47	9 0300	1. 479E+05	7, 74	9	1	2.54	28
RU106		L							
CS134	1168 14	16/5 06	5150	5 9490+94	10 45	Э	1	e e	29
EU154	1274 50	1828 3	9, 5450	1. 752E+05	5.86	Э	1	2 63	30
CS134	1365.20	1958 70	9 5975	1 878E+05	5, 55	11	1	2, 67	31
222	1497. 39	2019 14	1 8925	3 630 E+04	17, 13	6	1	1, 69	22
CE144	1489, 29	2136. 89	3 1112	6.611E+04	9, 94	7	1	2.41	33
333	1561, 98	2241 11	2 1825	4.853E+04	13.61	9	1	2, 50	34
???	1988 86	2853.59	27500	7.751E+03	38 62	5	1	1 40	35
CE144	2185.77	3136.05	6. 5912	2 047E+05	4 60	17	1	3. 71	36
???	2405.18	3450.72	<u>:00000</u>	1 031E+04	24 15	19	1	1 57	37

11 -16 -1977 - 1258 29 HT-31, U-16, PARTICLE #2

FΡ	ENERGY	FERK	CPS	GRMMH. SEL	EPF	Ен	HU	FHHM	PK
	KE∀.	CHNL			(3 .)			• ¥ E¥ >	
222	74-28	105 02	433-29	1 946E+06	1 38	54	6	3 83	1
CE144	80.15	113 43	148.60	5. 502E+05	2.68	54	6	2,76	2
PA233	85 86	120 58	290-84	6 538E+05	2.13	- 54	6	3 22	ڏ
EU155									
PA233	94, 52	134 09	152.76	4. 218E+05	2.59	54	ń	2 25	- 4
PA2 33	98.36	139.61	258 79	6. 814E+05	1 82	54	6	2 58	5
TE125	111.21	158.08	88 820	2 1206+05	6. 21	16	1	2 97	6
PA233									
CE144	133. 54	190.15	940.62	2.768E+06	0.62	15	1	2 37	7
58125	428.00	613 . 1 3	21. 995	1 361E+05	9, 49	7	1	2 95	8
C5134	475-86	681.87	16 590	1.149E+05	12 51	8	1	2 19	9
KR85	512.15	733 98	970-30	7. 267 E+0 6	0.46	15	1	2 55	10
RU106									
CS134	563. 57	897 84	55. 944	4. 557E+05	3, 68	19	2	2.71	11
CS134	569, 60	816, 50	99. 234	8. 206E+05	2, 56	19	2	2.58	12
CS134	685. 86	867.42	624. 87	5. 566E+96	0.61	16	1	2.74	13
58125									
RU106	616. 47	883. 80	23. 487	2. 132E+05	6.48	22	2	2.78	14
RU106	622, 42	892.34	381.60	3. 499E+0 6	0.92	22	2	2. 65	15
CS137	662, 07	949. 28	416 69	4. 067E+06	0, 74	15	1	2. 62	16
CE144	696, 90	999. 3 0	34, 332	3. 527E+05	4. 73	10	1	2.78	17
ZR95	724 43	1038.83	59. 960	6. 402E+05	2. 84	11	1	2.76	18
EU154									
2R95	756. 69	1085.15	63. 430	7.069E+05	2. 50	33	3	1. 99	·19
EU154									
NB95	766, 29	1098.94	262. 57	2. 962E+06	1. 23	33	3	3.00	20
CS134	796. 15	1141. 81	425. 90	4. 987E+06	0.73	27	2	2.74	21
CS134	802.20	1150. 50	49. 586	5. 8 50E+05	2.65	27	2	3.30	22
RU106	873. 99	1253. 58	12 585	1. 612E+05	10 88	13	1	2, 39	23
EU154									
EU154	1005 53	1442.43	4. 3500	6. 362E+04	16 62	8	1	2, 86	-24
RU106	1050.85	1507.49	32. 917	5.017E+05	3. 09	11	1	2. 93	25
EU154	1128 60	1619. 11	6 . 233.7	1.031E+05	10.62	9	1	3. 91	26
RU106									
EU154	1274 97	1829.20	7 6725	1. 400E+05	6. 95	9	1	2.63	27
???	1333 48	1913.18	1, 5475	2.945E+04	28.59	10	2	1.80	28
C5134	1365.46	1959.08	6200	1.483E+05	5.97	8	1	3.36	29
???	1408.25	2020.51	3, 5937	7 20RE+04	10. 78	9	1	3.47	30
UE144	1489.66	2137.33	2.0512	4. 333E+04	12.32	5	1	1 39	31
???	1563.41	2243.16	2, 2190	4. 888E+04	12.47	8	1	2, 93	-32
???	1927 40	2765.42	40500	1.099E+04	28.58	5,	1	1 27	33
CE144	2186 49	3137.08	5 9925	1 850E+05	4 82	14	1	3 33	- 34

1 i i

F. P. FNF RGY PERK CPS GRMMA/SEC 699 MI 1 FMMM PK RU (KEV) CHNL. (%) (KEY) . ??? 74. 92 105.94 460. 56 2. 900E+06 1. 31 5. 29 36 4 1 **CE144** 80.40 113.82 157.71 5. 630E+05 2. 58 36 4 3. 08 2 2 15 120.07 4 PR233 84.76 206.00 6. 585E+05 2.14 36 3 EU155 PR233 94.85 134. 58 3. 142E+05 2. 59 117.69 16 2 2.49 4 PR233 98. 53 139.85 200.19 5. 111E+05 2. 41 5 1.84 16 2 1. 594E+05 5. 05 **TE125** 111. 11 157.94 68. 715 9 1 2.46 6 PR233 **CE144** 133.56 190.18 992.22 2. 836E+06 0.63 18 2. 32 7 1 176. 62 1. 75 58125 252. 03 9. 1750 2. 385E+04 26.82 7 8 1 58125 428. 40 613. 69 19.975 1. 201E+05 9. 68 7 1 2.13 9 11R85 512.12 733.94 1028.5 7. 482E+06 2.43 10 0.43 16 1 RU106 CS134 563. 58 807.85 44. 786 3. 601E+05 4.48 22 2 2.34 11 CS134 569. 58 816.46 77. 998 6. 342E+05 3. 18 22 2 2.72 12 685. 99 867.33 439. 02 3. 798E+06 0.74 C5134 15 2.46 13 1 SB125 RU1.06 616. 54 28. 998 2. 557E+05 4. 57 883.90 2 2.35 21 14 892. 89 405. 98 3. 615E+06 2. 58 15 RU106 622. 24 0.78 21 2 2. 956E+86 2. 55 661. 90 5 19. 03 311. 91 **6**. 83 14 1 16 CS137 999.25 38. 410 3. 833E+05 **CE144** € '6. 86 4. 32 12 1 2. 52 17 65. 665 2. 52 2. 57 ZR95 7_4.49 1038.91 6. 811E+05 12 1 18 EU154 ZR95 756. 99 1085.58 69. 582 7. 536E+05 2 2.77 2.03 26 19 EU154 NB95 766.06 1098. 61 276. 51 3. 829E+86 6. 94 2 2. 65 20 26 CS134 2. 65 796. 89 1141.73 310.92 3. 537E+86 0.77 21 2 21 C5134 802. 16 1150.44 30. 561 3. 502E+05 3. 42 2. 86 21 2 22 13. 360 RIMAS 873. 63 1253.06 1. 661E+05 6. 58 8 1 2. 26 23 EU154 1. 6550 EU154 996. 42 1429.35 2. 331E+04 31. 39 6 1 2.00 24 **RU106** 1050. 79 1587.40 37. 955 5. 619E+85 2. 60 12 2.86 25 1 9. 1750 8. 06 EU154 1128.49 1618. 95 1. 452E+05 12 1 2.64 26 RU106 EU154 1274. 71 1828.84 9. 3575 1. 658E+05 5. 92 11 1 2.72 27 3. 566E+04 1912. 07 18. 21 ??? 1. 9300 2.98 1332. 71 8 1 28 C5134 1365. 76 1959. 51 6. 2687 1. 185E+05 6. 69 9 1 2. 33 29 2020. 46 3. 6108 ??? 1408. 23 7. 025E+04 9.26 8 1 2.72 30 2. 19 **CE144** 1489. 61 2137. 25 3. 4487 7. 077E+04 9. 16 9 1 31 ??? 1562. 08 2241. 25 1. 3675 2. 936E+04 16. 82 6 1 1. 40 32 **CE144** 2186.36 3136.89 7. 0275 2. 100E+05 4.38 14 1 3. 08 33

「「「「「「」」

1

11 -16 -1977 1403.31 HT-31, U-16, PARTICLE #3; 30 CM GEOMETRY (ALSO FOR #1 AND #2).

11 -16 -1977 1505.53 HT-31, U-16, PARTICLE #4; 30 CH GEOMETRY.

F. P.	ENERGY	PERK	CPS	GRMMR/SEC	ERR	EH	MU	FHHM	PK
	(KEV)	CHINL			(%)			(KEV)	#
<u> ???</u>	74. 29	105.03	399. 58	1. 767E+06	1. 35	48	5	3. 92	1
CE144	80. 13	113. 42	1.38. 48	5. 854E+85	2. 71	48	5	2.71	2
PR233	85 86	120.51	178.33	5. 743E+05	2. 21	48	5	3. 20	3
EU155									
PR233	94. 53	134. 11	140.66	3.827E+05	2.67	48	5	2 12	4
PR233	98. 35	139. 60	241. 84	6. 275E+05	1.82	48	5	2. 53	5
TE125	111. 37	158. 30	95. 832	2. 233E+05	5. 13	14	1	2.83	6
PR233									
CE144	133. 53	198. 14	924. 70	2. 681E+06	0. 66	17	1	2.34	7
581.25	428. 47	613. 80	19. 510	1. 191E+85	9. 25	6	1	1. 51	8
KR85	512. 14	733. 97	9 51 . 98	7. 025E+06	0. 51	19	1	2. 53	9
RU1.06									
C5134	562. 61	807.89	46. 816	3. 754E+05	4. 25	20	2	2. 58	10
CS134	569. 59	816. 48	83. 998	6. 928E+85	2. 96	28	2	2.72	11
CS134	605. 06	867.42	523. 86	4. 598E+06	0.69	16	1	2.73	12
58125									
RU106	616. 57	88 3. 9 5	26. 097	2. 335E+05	5 59	21	2	2. 13	13
RU106	622. 41	892. 33	366. 81	3. 314E+86	6 . 89	21	2	2. 65	14
CS137	662. 06	949. 27	354. 00	3. 404E+06	0.82	15	5 .	2. 66	15
CE144	696. 90	999 . 30	37. 265	3. 773E+85	4. 17	10	1	2.82	16
ZR95	724. 53	1038. 97	58. 575	6. 163E+05	2. 95	12	1	2. 51	17
EU154									
ZR95	757. 04	1085.66	64. 443	7. 080E+05	2.30	27	2	2.78	18
EU154									
NB95	766. 11	1098. 68	253. 34	2.816E+06	1. 07	27	2	2.73	19
CS134	796. 13	1141. 78	357. 47	4. 125E+06	0.74	22	2	2.76	20
C5134	882. 58	1150.93	38. 28 7	4. 443E+05	3. 13	22	2	2. 63	21
RU106	873. 68	1253. 13	15. 845	1. 898E+05	7. 19	10	1	2. 44	22
EU154									
RU106	1050.83	1507.46	32. 285	4.837E+05	3. 33	13	1	2.84	23
EU154	1128.74	1619. 30	8. 6375	1.386E+05	7.36	9	1	2.89	24
RU1.06									
CS134	1168. 54	1676. 43	2. 7612	4. 578E+84	14. 94	5	1	1. 44	25
EU154	1275. 12	1829.42	8. 5950	1. 546E+05	G. 39	10	1	3. 30	26
CS134	1365. 79	1959. 56	6. 6950	1. 284E+05	6.48	9	1	2. 42	27
777	1562. 75	2242. 22	1. 6312	3. 554E+84	14. 82	7	1	2. 17	28
CE144	2186. 41	3136. 9 6	5. 7675	1. 754E+05	4. 97	14	1	3. 67	29

and the second of the

11 -16 -1977 1535.28 HT-31, U-17, PARTICLE #1; 30 CM GEONETRY.

1

2.

F. P.	ENERGY	PERK	CFS	GAMMA/SEC	ERR	BH	HU	FHHM	PK
	(KEV)	CHINIL.			(%)			(KEV)	
 ,,,,	74 87	184 71	436 52	2 008E+06	1 32	49	5	3.90	1
CE144	79.90	113 10	148 87	5 6795+95	2 69	49	5	2 39	2
P8233	85.99	129 43	197 74	6 575E+05	2.98	49	5	3 85	2
ELH155	00.00		-21.14	0.0102.00	2.00		Ŭ	2. 00	
PB273	94 49	134 85	147 88	4 1295+05	2 69	49	5	2 22	4
P9233	98 79	179 57	275 74	6 3405-05	1 97	49	š	2 49	5
TE125	111 99	157 77	45 957	1 1155+05	8 59	10	1	2 45	š
PR233		100.00	40. 201		0.03		-	2. 40	Ŭ
FIM 54	127 12	475 49	24 879	6 921 6404	14 31	9	4	2 71	7
CE144	177 46	198 84	1957 7	2 149E+94	A 54	14	1	2 37	ė
SR125	428 82	613 15	26 479	1 662E+05	9.75		4	2.86	ă
RHAS	511 87	733 58	1871 2	8 1365-06	9 44	16	1	2.69	10
C5134	567 29	997 47	68 576	5 0025405	7.45	20		2.00	44
C5474	569 45	916 27	119 49	1 014E+05	2 79	20	2	2.41	42
CS174	694 76	966 99	694 76	5 272E+06	0.56	15	4	2.02	47
PIMAG	616 74	997 62	26 994	2 4775405	5 55	20	2	2.30	14
RIMAS	622 99	991 74	419 69	2. 411E-00	0.91	26	2	2 57	45
CS177	661 92	040 97	469 94	3. 501E+00	0.01	20	2	2.01	16
222	677 56	974 57	2 7242	2 7595+04	76 19	5		4 27	17
CE144	696 49	999 71	79 596	4 1245-05	4 47	44		2 54	40
7995	724 29	1039 49	64 729	7 0005405	2 90	12		2.51	19
FIN SA		2030. 45		1.0002+05	2. 50	46		2.04	13
7095	756 79	1085 30	74 197	0 7006-05	2 12	27	2	2 64	20
FIM S4	1.50.1.5	1000.00	14. 101	0. 300E+03	C. 16	4 . 1	•	2. 01	20
NDQ5	765 97	1099 74	296 67	7 2706-06	1 91	27	2	2 77	24
801188	100.01	10 <i>3</i> 0. <i>3</i> 4	200. 03	3. 21 32100	1 . U 1	E 1	~	2.13	61
CS134	795 90	1141 46	476 94	5 6645406	9 61	24	2	2 76	22
CS134	891 79	1149 91	51 241	5. 1004E406	2 65	24	2	2.0	22
PIM 96	877 44	4252 74	16 745	2 1746405	7 04	40	4	3. 17	23
FIM 54	013. 41		10. 145	2. 1146400	7. UI	10	*	2.03	24
FIM 54	1994 65	1441 16	6 2975	9 4945-104	17 97	10	4	7 99	25
PIMAS	1959 35	1506 77	79 156	5 9975405	2 79	14		3.03	25
FIN S4	1127 89	161 09	9 9600	1 6205-05	10 92	16	5	4 90	20
RIMOS		AGAC 07	5. 0000	1. 020E+0J	10. 04	40	~	1. 30	.
CS1 34	1167 74	1675	5 2912	9 1965-04	10 65	7	4	2.05	20
EIM SA	1274 54	1929 59	0.3712	4 640EA08	6 63	10	- 7	2.00	20
CS174	1765 19	1952 69	9 9525	1 Q44E405	5.02	10	4	6.70 2.00	27
22237	1400 15	2020 25	A 0000	A 2005104	9.77	70	4	2.70	30
CE444	1499 44	2476 62	7 7000	7 264 5404	2.13 G 24	7	4	2.02	27
222	1961 04	2241 04	2 1225	1. 201E-04	11 49	É	4	2.05	22
CE444	2195 KK	7475 77	2. 102J 7 7977	7. 9765707 2 4705-05	4 40	43	1	2.10	ک ک
	ELOJ. JJ			6. 737E700	7.10		1	< M2	< 6

11 -16 -1977 1541 10 HT-31, U-17, PARTICLE 02; 30 CM GEOMETRY.

F. P.	ENERGY	PERK	CPS	Griffia/SEC	ERR	BM	MU	FHHM	PK
	(KEV)	CHINL.			(\mathbf{x})			(KEY)	
???	74. 06	104. 71	493. 50	2. 273E+06	1. 17	31	3	3.86	1
CE144	89. 95	113. 31	172.56	6. 514E+85	2.35	31	3	2.49	2
PR233	84. 97	120.38	223. 26	7.435E+05	1. 95	31	3	3. 81	3
EU155									
PR233	94. 57	134.18	113. 44	3. 183E+05	2.72	15	2	2.36	4
PR233	98 . 32	139. 55	188. 32	5. 044E+05	1. 94	15	2	2. 51	5
TE125	111. 12	157. 94	165. 69	2. 551E+85	4, 78	14	1	2. 43	6
PR233									
EU154	122.91	174.88	19. 410	6. 121E+04	16 12	8	1	2.48	7
CE144	133. 45	190.03	1054. 9	3. 154E+06	0. 56	15	1	2. 29	8
581.25	427. 90	612. 98	22. 370	1. 405E+05	12.48	10	1	2.40	9
CS134	475. 52	681. 38	12. 371	8. 699E+04	15 . 86	7	1	1. 98	10
RU106	511. 87	733. 58	1968.8	8. 125E+06	0.45	16	1	2. 55	11
CS134	563. 30	807. 45	61. 9 9 5	5. 209E+05	3. 39	20	2	2. 59	12
CS134	569. 32	816. 09	117. 90	1. 001E+06	2.32	20	2	2.50	13
CS134	604. 75	866. 97	674 81	6. 101E+06	0.66	38	3	2. 45	14
RU1.06	616. 26	883. 50	23. 554	2. 171E+05	6.08	38	3	2.36	15
RU1.06	622.10	891.88	410.44	3. 819E+06	0. 81	38	3	2. 47	16
CS137	661. 82	948. 93	490.1 6	4. 856E+06	0.76	20	2	2.86	17
CE144	696. 57	998. 83	39. 952	4. 166E+05	4. 21	10	1	2. 40	18
ZR95	724. 21	1038. 52	66. 485	7.206E+05	2.84	12	1	2. 64	19
EU154									
<u></u>	745. 46	1069 . 0 3	1. 9862	2. 215E+04	42. 58	5	1	0.70	20
2R95	756.82	1085 . 33	72. 596	8. 216E+05	2. 14	27	2	2. 60	21
EU154									
NB95	765. 87	1098.34	292. 23	3. 346E+86	1.00	27	2	2. 58	22
AG110M									
CS134	795. 90	1141. 45	467. 74	5. 560E+06	0.62	21	2	2. 68	23
CS134	801. 99	1150 20	52. 501	6. 287E+05	2. 47	21	- 2	2. 74	24
RU1.06	873. 66	1253. 10	15. 138	1. 968E+05	10 . 63	15	2	2. 74	25
EU154									
AG110M	884. 77	1269. 05	9. 4612	1. 245E+05	9. 47	7	1	2. 30	26
AG110M	937. 60	1344. 91	3. 7125	5.161E+04	16 . 9 3	5	1	1. 89	27
RU1.06	1050.47	1506.95	35, 980	5.566E+05	3. 91	17	2	2.89	28
<u>.;;</u>	1112.58	1596. 11	2. 6875	4. 386E+04	33. 61	13	1	2.46	29
EU154	1128.18	1618. 50	8. 4300	1. 393E+05	7.86	8	1	2. 51	30
RU106						_		_	
EU154	1274. 49	1828. 52	9. 4800	1. 755E+05	5.95	9	1	2.79	31
CS134	1365. 18	1958. 69	10. 570	2.087E+05	5, 57	12	1	3.00	32
77?	1399.52	2007.96	. 64000	1. 293E+04	42.84	6	1	1. 16	33
777	1407.87	2019.95	2.9875	5. 911E+04	11.95	7	1	1.28	34
UE144	1488.82	2136. 12	2, 5862	5. 543E+04	10. 55	5	1	1. 51	35
UE144	2185. 70	3135. 95	6. 6337	2.078E+05	4.38	11	1	3.33	- 36

57

Married Contractor

11 -16 -1977 1547. 17 HT-31, U-17, PARTICLE #3; 30 CH GEONETRY.

•

1

1

Т

I.

T.

I.

F. P.	ENERGY	PERK	CPS	GAMMA/SEC	ERP	BH	MU	FHHM	PK
	(KEV)	CHNL			(%)			(KEV)	۲
???	74. 18	104. 76	428. 18	1. 947E+86	1. 30	48	5	4. 10	1
CE144	79.93	113. 14	149.36	5. 597E+85	2.68	48	5	2.48	2
PR233	85. 83	120.46	194.72	6. 405E+05	2. 10	48	5	3. 18	3
EU155									
PR233	94. 52	134. 10	130.37	3. 620E+05	2. 90	48	5	2.11	- 4
PA233	98.34	139. 58	229. 83	6. 087E+05	1. 91	48	5	2. 62	5
TE125	111.13	157. 95	58. 627	1. 407E+05	6. 10	9	1	2. 67	6
PR233									
CE144	133. 51	190. 11	941. 21	2. 783 E+06	0. 59	- 14	1	2. 40	7
KR85	512.15	7 33. 98	968. 64	7. 227E+06	0. 52	19	1	2. 57	8
RU106									
CS134	563. 49	807. 71	60. 869	5. 060E+05	3. 53	20	2	2.68	9
C5134	569. 63	816. 53	100. 31	8. 434E+05	2. 61	20	2	2.73	10
C5134	685. 87	867.43	617. 92	5. 528E+86	0. 63	16	1	2.78	11
58125									
RU106	616. 61	884. 01	21. 951	2. 002E+05	6.89	19	2	2. 37	12
RU106	622.41	892.33	364. 48	3. 3 56E+06	0. 89	19	2	2. 71	13
CS137	662. 08	949. 29	418. 37	4. 101E+06	0.78	16	1	2. 72	14
CE144	696. 95	999 . 37	35. 320	3. 645E+85	4. 66	10	1	2.87	15
ZR95	724. 54	1038. 99	56. 961	6. 189E+85	3. 84	11	1	2.75	16
EU154									
ZR95	757.05	1985. 67	63. 282	7. 006E+05	2.44	27	2	2. 74	17
EU154									
NB95	766. 12	1 898 . 69	256. 15	2. 902E+06	1. 12	27	2	2.83	18
CS134	796. 27	1141. 99	415.34	4. 885E+06	0.76	27	3	2. 75	19
CS134	882. 58	1 1.50 . 93	47. 261	5. 601E+05	2.82	27	3	18 . 0	20
RU106	873. 95	1253. 52	13. 897	1. 787E+05	7. 71	9	1	2. 49	21
EU154									
AG110M	885 . 27	1269. 77	7. 8425	1. 021E+05	11. 13	7	1	2. 26	22
AG110M	937. 32	1344. 50	5. 0950	7. 884E+84	19. 16	10	1	2. 93	23
RU186	1858. 92	1 50 7. 5 9	30. 655	4. 692E+85	3. 58	12	1	2. 90	24
CS134	1168.66	1676. 61	2. 796 7	4. 729E+04	23. 27	9	1	2. 78	25
EU154	1275. 82	1829.28	7. 6600	1. 403E+05	6. 75	8	1	2. 91	26
CS134	1365. 83	1 95 9. 61	7. 2050	1. 400E+05	6. 63	9	1	3. 09	27
CE144	1489. 50	2137. 11	2. 1575	4. 575E+04	11. 88	5	1	1. 39	28
???	1 562 . 93	2242. 43	2. 1662	4. 889E+84	12. 64	7	1	3. 10	29
CE144	2 186 . 66	3137. 33	5. 0625	1. 569E+05	5. 60	13	1	3. 20	30

т П П

ш

.....

П

....

1

п. Т.

п. т.

1

I I.

I I

I I I

11 -16 -1977 1552.37 HT-31, U-17, PARTICLE 04; 30 CH GEONETRY.

F. P.	ENERGY	PERK	CPS	GRIMA/SEC	ERR	BH	MU	FHHM	PK
	(KEV)	CHINE			(%)			(KEV)	۲
???	74. 91	105. 93	468. 98	2. 064E+06	1. 34	57	6	5. 64	1
CE144	79.88	113. 07	166. 81	6. 241E+05	2.49	57	6	2.54	2
PA233	84, 73	120.03	217. 06	7. 168E+85	2. 85	57	6	2. 65	3
EU155						-	-		
PR233	94. 50	134. 07	151.68	4. 201E+05	2.68	57	6	2. 47	4
PR233	98. 57	139. 91	244. 99	6. 453E+05	1. 92	57	6	3. 19	5
TE125	111.14	157. 98	70.744	1. 693E+05	4. 32	43	3	2.75	6
PR233									
CE144	133. 46	190.04	1845. 1	3. 082E+06	1. 07	43	3	2. 29	7
58125	428. 82	613. 16	17. 265	1 070E+05	18.03	12	2	2.32	8
RU106	511. 96	733. 72	1021.8	7. 663E+06	8. 44	15	1	2. 57	9
C5134	563. 33	887.48	62. 855	5. 143E+05	3. 39	20	2	2. 66	10
CS134	569. 55	816. 42	110.83	9. 291E+05	2.38	20	2	2. 66	11
CS134	684. 96	867. 27	663. 12	5. 915E+06	0. 60	17	1	2. 66	12
SB125									
RU106	616. 40	883. 78	26. 791	2. 436E+05	5. 51	21	2	2. 97	13
RU106	622.19	892. 01	408. 33	3. 748E+06	0.83	21	2	2 58	14
CS137	661. 86	948. 99	447. 44	4. 372E+86	0.70	15	1	2. 61	15
CE144	696. 65	998, 94	38. 400	3. 950E+95	4. 23	10	1	2.39	16
ZR95	724. 29	1038. 62	67.733	7. 041E+05	2. 67	12	1	2.95	17
EU154									
ZR95	756. 94	1065, 51	69. 784	7. 791E+05	2.18	25	2	2.72	18
EU154							_		
NB95	766. 82	1098. 54	279. 58	3. 157E+06	0.97	25	2	2. 76	19
C5134	796. 82	1141. 63	455.77	5. 344E+06	0.65	24	2	2.80	20
CS134	801. 93	1150. 11	50. 993	6. 022E+05	2.53	24	2	3. 24	21
RU106	873. 55	1252. 94	14. 600	1. 872E+05	6. 74	8	1	2. 42	22
EU154									
???	964. 28	1383. 21	2. 3888	3. 351E+04	29. 17	7	1	2. 89	23
RU1.06	1050.78	1507.40	36. 227	5. 528E+05	2.83	11	1	2.88	24
EU154	1128.54	1619. 82	8. 8988	1. 319E+05	7.87	8	1	2.72	25
RU106								_	
CS134	1167. 64	1675. 14	2. 5925	4. 213E+04	19.44	6	1	1. 63	26
EU154	1274. 80	1828.96	9. 9350	1. 815E+95	6.45	12	1	3. 17	27
CS134	1365.56	1959. 23	9. 5350	1. 858E+05	5. 29	10	1	2.96	28
CE144	1489. 51	2137. 12	2. 8400	6. 006E+04	10. 11	6	1	2.45	29
???	1562. 53	2241. 91	2. 8900	6. 396E+04	9.85	8	1	3. 55	30
???	1948. 66	2795. 92	, 27000	7. 418E+03	39. 95	5	1	1.76	31
CE144	2186. 12	3136. 54	6. 9525	2. 148E+05	4. 39	14	1	3. 15	32

11 -16 -1977 1602.25 HT-31, U-17, PARTICLE \$5; 30 CH GEONETRY.

F. P.	ENERGY	PERK	CPS	GANNA/SEC	ERR	BH	HU	FHHM	PK
	(KEV)	CHNL			(%)			(KEV)	
???	74. 26	104. 98	444. 88	2. 010E+06	1. 68	80	9	3. 86	1
CE144	89. 19	113. 39	151. 81	5. 636E+85	2. 95	80	9	2. 45	2
PR233	85. 82	128.45	284. 49	6. 735E+85	2. 40	80	9	3.08	3
EU155									
PR233	94 . 83	134.54	158. 31	4.161E+85	2:87	80	9	2.78	4
PR233	98. 33	139. 57	253. 19	6. 713E+85	2.11	80	9	2. 59	5
TE125	111. 16	158. 61	94, 969	2. 282E+85	4. 01	80	9	2.98	6
PR233									
CE144	133. 49	190. 09	991. 89	2. 936E+06	0. 56	14	1	2.32	7
58125	427. 96	613. 87	23. 823	1. 482E+85	10. 62	9	1	2.82	8
RU103	497. 77	713. 33	6. 9625	5. 088E+84	20.68	5	1	1. 38	9
RU1.66	511 . 96	733. 71	1026. 4	7. 728E+86	0.46	17	1	2. 52	10
CS134	563. 39	807. 57	60. 239	5.012E+05	3. 45	20	2	2.78	11
CS134	569. 54	816 40	113. 0 3	9. 51.2E+05	2.36	28	2	2.73	12
CS134	684. 84	867. 10	668. 30	5. 983E+86	0.58	16	1	2. 55	13
58125									
RU106	616 . 36	883. 64	27. 446	2. 505E+05	5.35	20	2	2.34	14
RU1.06	622. 19	892. 82	399. 36	3. 680 E+06	0.83	20	2	2. 61	15
AG110M	657. 80	943. 15	20. 347	1. 984E+05	6. 19	17	- 2	1. 93	16
CS137	661. 85	948. 97	439. 34	4. 310E+06	0.67	17	2	2. 54	17
CE144	696. 67	998 . 97	36. 885	3. 718E+05	4. 21	9	1	2. 40	18
ZR95	724. 25	1038. 57	62. 85 0	6. 659E+05	3. 91	18	2	2.75	19
EU154									
ZR95	756.89	1085.44	70. 322	7.881E+05	2.20	26	2	2. 65	20
EU154									
NB95	765. 98	1098.49	275. 39	3. 122E+06	1. 01	26	2	2.80	21
AG110M							_		
C5134	796. 02	1141.63	455. 83	5. 366E+06	0.64	22	2	2.70	22
C5134	801.88	1150.04	47. 239	5. 600E+05	2.68	22	2	3. 19	23
RU106	873.64	1253.08	15. 356	1. 9766+05	7.00	9	1	2.98	24
EU134					<u> </u>	_			~~
HG110H	885. 81	1269.40	10.313	1. 144E+00	8.47	<u> </u>	1	2.62	25
MU110M	937.10	1399.20	3. 0323	4. 200E+04	19.62	~~~	1	1.04	26
KU106	1000.73	1307.31	30. 200	5. 401E+05	2. 93 42. 65	11		2.85	
577 5110 8 4	1112.72	1350.31	1.2907	2.0772709	42.63	40	~	1.13	28
EU134	1128.18	1618. 31	7.1350	1. 1686-000	10.49	10	1	2.61	29
CE434	4460 34	4676 00	4 0640	C OCOELCA	45 07	6		2.05	20
U3134 EIM 44	100.29 1074 67	1929 47	40 0012	0.000CTU4	177. 23 8. 88	2	4	6.77 7 70	30 74
20134	4222 28	1942 00	10,002 () 9880	1, 0396703 5 Acaeloa	12 66	ファ	4	3. 20 7 24	22
CE174	1765 67	1959 20	2.0330 9.6697	J. 4016704	44.07 5 55	14	4	3.07	22
00110M	1794 79	1005 25	4 64 27	1.071670J 7.4976404	46.95		4	3.07	->-> ->-∕
222	1400 07	2020 27	4 1169	3. 1715709 9 9976104	4 54	2	4	2 77	27 28
CE144	1489 44	2427 87	7.1102 9 5475	5. 2015-704 5. 2005-404	10 57	<i>, , ,</i>	1	3.77	20
CE444	2466 74	7476 06	6. J913 7 0375	J. 7006707	4 7 2		-	2.10 7 46	30
~	4100.J4		1.0310	5 TOPELDO		~~	~	ン サフ	۲ د.