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SUMMARY 

Studies were conducted of the potential for uptake and mobilization 
of phenol and aniline when presented as single compounds to the biouptake 
of these compounds within a complex water-soluble fraction (WSF) of a 
coal liquid. Estimated bioconcentration factors (BCF) of phenol-only 
exposures differed from BCFs obtained in the presence of the WSF. Dif
ferences in uptake could be due to competitive interactions among similar 
molecules for uptake and absorption, since phenolic compounds comprised 
nearly 90% of the soluble components in the complex mixture. Observed 
differences in unextractable 14c residues suggested selective binding of 
phenol or metabolites to trout tissue storage sites. Differences in 
potential for bioaccumulation of phenol in complex mixtures were not 
consistent with estimates of BCF as determined by measured octanol/water 
coefficient values. In contrast to phenol, presence of coal-liquid water 
solubles did not significantly influence either the uptake or elimination 
of 14c aniline by daphnids or trout. Identification of metabolites would 
provide useful information on potential differences in biotransformation 
and elimination mechanisms in complex organic mixtures. 
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INTRODUCTION 

Synthetic fossil fuel production processes are currently being 
developed to augment U.S. domestic supplies of liquid fuel. These 
activities result in an increased potential for environmental con
tamination through manufacture, transportation, or waste disposal 
operations. Fossil fuel liquids contain organic aromatic compounds with 
oxygen and nitrogen functionality, many of which possess toxic or 
mutagenic properties (Strand and Vaughan 1981). The evaluation of 
potential environmental consequences from introduction of fossil fuel 
chemicals into aquatic environments is a complicated process that 
requires information about physical, chemical, and biological properties 
of many different types of organic compounds. 

One concern of aquatic hazard evaluation is the uptake and retention 
of these organic components by aquatic biota. Two general approaches can 
be used to assess the potential uptake of organic compounds from complex 
petroleum or bituminous mixtures.~ In one approach, organisms are exposed 

• to a complex water-soluble fraction (Roubal, Stranahan and Mal ins 1978; 
Woodward, Mehrle and Manck 1981), and accumulated tissue levels of 
specific compound classes are compared. A second approach used by 
researchers has been to study the environmental fate of contaminants 
through the use of single-compound exposures (Vieth, DeFoe and Bergstedt 
1979). A criticism of the first method is that it fails to account for 
pathways of individual compounds because of metabolism, conjugation, 
and/or degradation; the second approach provides information on fate and 
effects for only one out of many possible components at a time. Addi
tionally, recent evidence indicates that the single-compound approach to 
predicting bioaccumulation potential of certain organic compounds may be 
inappropriate when the constituents are contained within a complex 
organic mixture, for example, a potential effluent from an oil shale 
industry (Linder and Bergman 1982). It therefore seems reasonable that 
competitive interactions for biotic transport may occur among 
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constituents in complex aqueous effluents, particularly if compounds 
possess similar physical or chemical properties. 

We conducted tests with the water flea (Daphnia magna) and rainbow 
trout (Salmo gairdneri) to compare the potential for uptake and mobili
zation of single compounds presented alone with the potential when those 
same compounds were presented within a complex coal liquid, water-soluble 
fraction. Phenol and aniline were used as representative compounds 
because they are highly soluble, moderately toxic, and common to many 
fossil fuel liquid products and corresponding wastes. The tests were 
primarily designed to aid in protocol development relating to· the 
transport and fate of components from complex mixtures in aquatic biota. 
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EXPERIMENTAL DESIGN 

Juvenile rainbow trout (150 to 950 mg) were obtained from parent 
stock reared at our laboratory. For each test series, static exposures 
were initiated by placing 24 fish in each of two 60-L glass aquaria 
containing 50 L of well water. Three fish from each treatment were 
removed after 4, 8, 24, 48, and 72 hours of exposure for uptake counts 
and tissue extractions. At 72 hours the remaining fish were transferred 
to clean well water for depuration. Three fish from each treatment were 
removed for elimination counts and tissue extractions after 76, 80, and 
96 hours of exposure. Fish were not fed during the 96-hour test. 

Adult daphnids were obtained from cultures reared at our laboratory. 
Daphnids were held in 600-ml glass beakers containing 500 mL of well 
water at 20°C. Initial loading rates were 60 to 75 daphnids for each of 
four replicate beakers at each treatment. Five daphnids from each treat
ment were removed for uptake counts after 1, 2, 4, 8, 16, and 24 hours 
of exposure. Remaining daphnids were transferred by plankton netting to 
fresh well water at 24 hours, and removed for depuration counts at 25, 
26, 28, 32, 40, and 48 hours. Daphnids were fed prior to test initiation 
only. 

EXPOSURE METHODS 

The water-soluble fraction (WSF) used in all tests was generated 
using a slow-mix procedure and an oil-to-water ratio of 1:99 (Dauble et 
al. 1982). The coal liquid was a 2.9:1 blend of middle to heavy distil
late produced by the Solvent Refined Coal (SRC II) process. It was 
obtained from a pilot plant at Fort Lewis, Washington, and stored at 4°C 
until use. The WSF was chemically characterized for overall composition, 
and phenolics were found to comprise about 90% of the total organic 
carbon (TOC). The major phenolic constituents were phenol, 15%; cresols, 
37%; c2 phenols, 20%; and c3 phenols, 9% (Dauble et al. 1982). Alkyl 
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anilines were the major nitrogen-containing compounds (Felice 1982). 
Test organisms in the single-compound-plus-WSF treatment were exposed to 
nominal concentrations of 0.5 mg/L TC. 

All radiolabeled chemicals were obtained from Pathfinder Labora
tories, St. Louis, Missouri, and were >98% pure. Specific activities 
were as follows: 14c aniline as aniline sulfate, 9.56 !lCi/mM; 14c 
phenol (trout exposures), 6.8 llCi/mM; 14c phenol (daphnid exposures), 
11.61 llCi/mM. 

Trout Exposures 

For the phenol-only and phenol-plus-WSF treatments with rainbow 
trout, 200 llCi of 14c phenol was added to each exposure aquaria. Total 
phenol concentrations in exposure aquaria were adjusted to the same con
centration as follows: single-compound exposure, 55 llg/L as 14c phenol 
plus 75 llg/L nominal as cold phenol; single compound with WSF, 55 llg/L 
as 14c phenol plus 75 llg/L nominal as WSF phenol. 

For the aniline and aniline-plus-WSF treatments with rainbow trout, 
200 llCi was added to the aquaria. Total aniline concentrations in expo
sure aquaria were for single-compound exposure, 32 llg/L as 14c aniline; 
and for single compound with WSF, 32 llg/L as 14c aniline plus 6 llg/L 
remaining as WSF aniline. Since aniline concentration in the coal liquid 
WSF contributed only an estimated 6 llg/L, no adjustment was made in the! 
single-compound exposure to equalize aniline concentrations between 
treatment aquaria. 

Daphnid Exposures 

Total activity of 14c phenol in daphnid exposure water at test 
initiation was -115,000 dpm/ml. Tota 1 phenol concentrations were 
adjusted to equivalent levels as follows: for single-compound exposure, 

14 . 
696 llg/L of C phenol plus 80 llg/L as cold phenol; for single compound 
with WSF, 696 llg/L as 14c phenol plus 86 llg/L nominal as WSF phenol. 
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Total activity of 14c aniline in daphnid exposure water at test 
initiation was -145,000 dpm/mL. Total aniline concentrations in the two 
treatments were for single-compound exposure, 484 ~g/L as 14c aniline; 
for single compound plus WSF, 484 ~g/L as 14c aniline plus estimated 6.5 
~g/L as WSF aniline. 

ANALYTICAL CHEMISTRY 

During the exposures, 1-mL samples of the water were pipetted into 
liquid scintillation vials. For the rainbow trout test series, samples 
of the water were collected, in duplicate, at 0, 4, 8, 24, 48, and 
72 hours after initiation of each exposure. Daphnid water samples were 
collected at 0, 1, 2, 4, 8, 16, and 24 hours after test initiation. The 
1-mL samples were diluted with PCS scintillation fluid (Amersham Searle) 
and counted using liquid scintillation spectrometry. All samples were 
corrected for quench effects. 

Three fish were collected at 4, 8, 24, 48, 72, 76, 80 and 96 hours 
after test initiation for measurements of whole body uptake. Each fish 
was rinsed in distilled water, blotted dry, and placed in a liquid scin
tillation vial. Samples were then stored at -20°C prior to chemical 
analysis. Whole fish were thawed and weighed into 25-mL Corex® centri
fuge tubes, and 2 mL of acetone (Burdick and Jackson, distilled in 
glass) was added to each centrifuge tube. The samples were homogenized 
for 30 sec using a Tekmar® Tissumizer. The homogenized samples were 
centrifuged (5,000 rpm for 5 minutes) and the supernatants transferred 
to a 5-mL sample vials. Each tissue pellet was subjected to a second 
homogenization (2 mL of acetone), and a 200 ~L aliquot from the combined 
extract of each whole fish was counted using liquid scintillation. 

-------------
®Corex is a registered trademark of Dupont Sorvall, Wilmington, Delaware 
19898. 

®Tekmar is a registered trademark of Tekmar Company, P.O. Box 371856, 
Cincinnati, Ohio 45222-1856. 
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The pelleted tissue residues were dried in a oven at 60°C for 2 
hours. Weighed samples were transferred to 2-mL reaction vials to which 
was added 1 mL of 4 N NaOH. The samples were heated at 60°C for 4 hours 
and cooled to room temperature. They were shaken occasionally during 
the digestion process. Liquid scintillation techniques were used to 
count Aliquots of each sample (-200 ~L). A calibration curve was 
prepared that related dry residue weight to wet weight, in order to 
allow comparison of acetone-soluble and insoluble forms of 14c activity. 
Thus, the 14c activity in the base digested tissue could be translated 
into a 14c activity on a wet-weight basis. Wet weight of the fish used 
to generate the calibration curve ranged from 250 mg to 1250 mg. 

Five daphnids for tissue analysis were removed by pipette at each 
sample interval. They were placed on filter paper, rinsed four or five 
times with distilled water, and air-dried under a light vacuum. The 
daphnids were then placed into scintillation cocktail and sonicated for· 
1 hour to aid dissolution of the carapace. Liquid scintillation was used 
to count the samples for total 14c activity. Eight replicate groups of 
five daphnids each were blotted dry on tissue paper and weighed (wet 
weight); then dried at 40°C for 24 hours to obtain mean dry weight. 
Determination of 14c bioconcentration factors was based on micrograms 
equivalent 14c per gram dry weight of daphnids. The mean wet weight of 
individual daphnids was 2,143 ± 76 ~g, and the dry weight averaged 146 
± 4 ~g. 

STATISTICAL ANALYSIS 

A general linear test (Neter and Wasserman 1974) was used to com
pare differences over time in the percent of nonextractable material 
found in trout exposed to the single compound alone to the percent found 
in the trout exposed to the single compound plus WSF. For each chemical, 
the regression of nonextractable parent material over time was compared 
to that for fish exposed to the complex mixture. Since the independent 
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variable in the regressions was time, tests for serial correlation 
(Durbin-Watson) were also conducted. The results were not significant 
(a >0.05). 

Kinetic model theory and nonlinear least square techniques were 
used to obtain estimates of uptake and depuration rates and BCFs for 
tests with daphnids. A two-compartment ( daphnid and water) closed 
system was used as the model for exchange of the radiolabeled compound 
(Hamelink 1975) to obtain simultaneous estimates of uptake and depura
tion from the uptake phases of the experiment. Independent estimates of 
depuration rates from the depuration phase data were also used to esti
mate BCFs and 14c half-life values. Differences in uptake and depuration 
phase responses of the single compound and the compound plus WSF were 
tested using a general linear test (Neter and Wasserman 1974). 

COMPARISON OF SINGLE-COMPOUND AND COMPLEX-MIXTURE EXPOSURES 

Mean water concentrations in the phenol-only exposure with rainbow 
trout declined from 7,000 dpm/mL at 0 hours to 5,800 dpm/mL at 72 hours. 
Concentrations in the phenol-plus-WSF exposures were similar and ranged 
from 7,800 dpm/mL at 0 hours to 5,900 dpm/mL at 72 hours. 

Total uptake of 14c phenol differed when rainbow trout were exposed 
to 14c phenol alone, as opposed to exposures of trout to 14c phenol in 
the presence of the SRC II WSF (Figure 1). In the phenol-only exposure, 
total 14c activity in whole fish tissue increased from a mean value of 
41,000 dpm/g at 4 hours after initiation of the exposure, to 
223,000 dpm/g at 72 hours. Tissue of fish placed in clean water after 
72 hours decreased to 35% of the high mean 14c activity at 96 hours. In 
the phenol-plus-WSF exposure, 14c activity ranged from a mean value of 
41,000 dpm/g at 4 hours after initiation of exposure to 138,000 dpm/g at 
72 hours. Body burdens of fish placed in clean water for 24 hours 
decreased to 43% of the high mean 14c activity observed at 72 hours. 
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FIGURE 1. Total 14c Activity (Extractable Plus Non-Extractable) in 
Rainbow Trout Exposed to 14c Phenol and 14c Phenol Plus Water
Soluble Fraction (WSF). All Values Mean± S.E., N = 3. 
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Based on concentrations of 14c in whole body fish and exposure 
water, 14c bioconcentration factors were estimated for accumulation of 
phenol in rainbow trout exposed to water containing phenol only and 
phenol plus WSF. The bioconcentration factor at 72 hours for the 
phenol-only treatment was estimated at 39, and for phenol plus WSF, the 
value was estimated to be 24. 

We also segregated the activity into acetone-extractable and 
nonextractable fractions in order to gain greater insight regarding the 
chemical form of the total 14c activity (Table 1). In the phenol-only 
exposure, from 93% to 96% of the total 14c activity was recovered from 

"fABLE 1. Comparison of Distribution of Acetone-Extractable 14c Activity 
in Rainbow Trout Exposed to Treatments of 14c Phenol 9no 14c 
Phenol Plus Coal Liquid Water-Soluble Fraction (WSF).la) 

Exposure 
Time (hr) 

4 

8 

24 
48 
72 

76 
80 
96 

% Extractable 14c Activity 

14c Phenol Only 14c Phenol + WSF 

------------------Uptake------------------

96.3 ± 1.3(b) 85.7 ± 4.1 

94.2 ± 0.8 
94.9 ± 2.4 
93.7 ± 1.2 
95.5 ± 1.9 

77.2 ± 2.6 

87.6 ± 1. 3 
81.0 ± 4.6 
81.9 ± 5.6 

------------~---Depuration----------------

94.4 ± 0.6 
94.2 ± 2.7 
95.4 ± 1.7 

76.6 ± 7.6 
65.9 ± 8.1 
70.6 ± 9.5 

(a)Organisms were depurated after 72 hours of exposure. 
(b)All values mean± S.D., N = 3. 
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tissue as acetone-extractab 1 e throughout the entire 96 hours of 
exposure. However, results indicate that the percent nonextractable 14c 
activity was greater for the phenol-plus-WSF exposure (intercepts were 
significantly different at a <0.01) than for the phenol-only exposure. 
The acetone-extractable 14c activity decreased from 86% at 4 hours after 
initiation of exposure to 71% at 96 hours. 

Water concentrations remained stable throughout the 72-hour exposure 
period for both aniline-only and aniline-plus-WSF exposures with trout. 
Mean 14c activity in the aniline only exposure was 10,300 dpm/ml; it was 
10,800 dpm/ml for the aniline-plus-WSF exposure. 

A comparison of the results of the total uptake of 14c activity by 

rainbow trout exposed to 14c aniline and 14c aniline in the presence of 
the WSF is shown in Table 2. In the aniline-only exposure, total 14c 
activity in whole fish tissue increased from a mean value of 
56,000 dpm/g at 4 hours after initiation of the exposure to 
203,000 dpm/g at 72 hours. Body burdens of trout placed in clean water 
decreased to 50% of the high mean 14c activity after 24 hours of 
depuration. In the anil ine-plus-WSF exposure, 14c activity ranged from 
a mean value of 57,000 dpm/g at 4 hours after initiation of exposure to 
203,000 dpm/g at 72 hours. The body burdens of fish placed in clean 
water after 72 hours decreased to 45% of the high mean 14c activity 
observed at 96 hours. 

Based on concentrations of 14c in whole body fish and exposure 
water, 14c bioconcentration factors were estimated for accumulation of 
14c activity in rainbow trout exposed to water containing aniline only 
and aniline plus WSF. The bioconcentration factor was estimated at 20 
for aniline-only exposures and 19 for aniline-plus-WSF exposures. 

In the aniline-only exposure, from 70% to 89% of the total 14c 
activity was recovered as acetone-extractable activity during the course 
of the experiment (Table 3). The amount of acetone-extractable activity 
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TABLE 2. Total 14c Activity (Extractable Plus Non-Extractable) in 
Rainbow Trout Exposed to 14c Aniline and 14c Aniline Plus 
Water-Soluble Fraction (WSF). 

Exposure 
Time (hr) 

4 

8 

24 
48 
72 

76 
80 
96 

Total 14c Activity (dpm/g wet weight x 102) 

14c Aniline Only 14c Aniline+ WSF 

--------------------Uptake----------------------

559 ± 25(a) 573 ± 24 

785 ± 48 739 ± 8 
1,333 ± 62 
1,622 ± 60 
2,032 ± 120 

1,211 ± 89 
1,556 ± 78 
2,029 ± 169 

------------------Depuration---------------------

1,569 ± 178 
1,845 ± 344 
1,025 ± 41 

1,187 ± 82 
1,502 ± 318 

904 ± 92 

(a)All values mean± S.E., N = 3. 

decreased with time of exposure. Results for the anil ine-pl us-WSF 
exposure were similar to the aniline-only exposure at all time periods. 
The general 1 inear test indicated no significant difference between 
slope or intercept of the two regression lines (a >0.10). 

Mean concentrations of water in the phenol-only exposures with 
daphnids declined slightly from 115,300 dpm/ml at 0 hour to 105,200 
dpm/ml at 24 hours. A similar decline was observed in the phenol-plus
WSF exposures with daphnids; maximum concentrations of 116,500 dpm/ml 
were observed at 2 hours and the lowest concentration of 102,200 dpm was 
noted after 8 hours of exposure. Small amounts of radioactivity were 
detected during depuration. Mean 14c concentrations in the water, at 48 
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TABLE 3. Comparison of Distribution of Acetone-Extractable 14c Activity 
in Rainbow Trout Exposed to Treatments of 14c Aniline and , 
14c Aniline Plus Coal Liquid Water-Soluble Fraction (WSF).(aJ 

Exposure 
Time (hr) 

4 

8 

24 
48 
72 

76 
80 
96 

% Extractable 14c Activity 

14c Aniline Only 14c Aniline+ WSF 
N = 3 

--------------Uptake----------------

89.0 ± 1.2(b) 89.4 ± 1.6 

87.1 ± 0.6 85.2 ± 2.1 
86.8 ± 2.4 82.3 ± 2.8 
82.7 ± 1. 6 80.6 ± 2.5 
77.8 ± 3.8 74.5 ± 7.2 

------------Depuration--------------

70.8 ± 1.8 

73.7 ± 2.3 
69.9 ± 3.6 

72.1 ± 3.2 
73.4 ± 2.8 
66.4 ± 4.1 

(a)Organisms were depurated after 72 hours of exposure. 
(b)All values mean± S.D., N = 3. 

hours, were near 200 dpm/mL for both treatments and may have resulted 
from excretion of absorbed phenol by the daphnids. 

Mean 14c activity in daphnids for the phenol-only treatment 
increased rapidly during the 24-hour uptake period and was greater for 
the phenol-plus-WSF treatment at all time intervals after 1 hour (Figure 
2). BCFs estimated from 14c activity and using dry-weight conversions 
were 1,375 and 876 for phenol-only and phenol-plus-WSF exposures, respec
tively. Estimates of BCF based on kinetic model theory were lower (Table 
4). Significant differences (a < 0.001) were detected in the uptake 
rates of 14c between the single-c~mpound and compound-plus-WSF-exposures. 
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FIGURE 2. Comparison of 14c Activity in Daphnids Exposed to Phenol Only 
and to Phenol in the Presence of a Coal Liquid Water-Soluble 
Fraction (WSF). Values given as mean ± S.E, N = 4. 

However, no significant difference was found for the depuration rate. 
Estimated half-lives for the phenol-only and phenol-plus-WSF treatments 
were 8.0 hours and 12.1 hours, respectively. 

Mean concentrations of water in the aniline-only exposures with daph
nids declined from a maximum of 150,000 dpm/ml after 1 hour of exposure 
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TABLE 4. Estimates of Uptake and Depuration Rates and Bioconcentration Factor (BCF) for Daphnids. 

Compound 

Phenol 

Phenol + WSF 

Aniline 

Aniline+ WSF 

Uptake Rate (K1~ 

15.751 ± 2.089(c) 

10.744 ± 3.398 

15.052 ± 2.959 

10.701 ± 2.729 

Elimination Rate (K2) 

Based On Based On (b) 
Uptake Phase Elimination Phase 

-0.089 ± 0.009 

-0.083 ± 0.021 

0.226 ± 0.055 

0.137 ± 0.031 

0.057 ± 0.011 

0.045 ± 0.009 

0.025 ± 0.009 

0.023 ± 0.009 

Bioconcentration Factor 
Based On 

Elimination Phase 

277 ± 66 

237 ± 88 

593 ± 234 

469 ± 227 

(a)Uptake rates estimated from the equation Cd = (K1/K2)Cw(1 - e-K2t), where K1 is the uptake rate, 
depuration rate, Cw is the dpm of 14c labeled compound in the water at steady state, Cd is 
compound concentration in Daphnia, and t is time. 

(b)Elimination rates estimated from the equation Cd = H1e-K2t, where K1 is the dpm in Daphnia at time 

~-

(c)All values are mean ± 1 standard deviation. 



to 139,200 dpm/ml after 24 hours. Concentrations in the aniline-plus
-WSF treatment were similar; mean 14c activity ranged from 144,500 dpm/ml 
at 1 hour to 135,700 dpm/ml after 8 hours of exposure. Negligible 14c 
activity was detected in water during depuration; concentrations at 
48 hours were near 50 dpm/ml. 

Total 14c activity in daphnids was similar at each of the sample 
intervals for both treatments (Table 5). Based on concentrations of 14c 
in daphnids and exposure water, 14c bioconcentration factors at peak 

TABLE 5. Comparison of 14c Activity in Daphnids Within Phenol and Phenol
Pl us-WSF Exposures During a 24-Hour Uptake and a 24-Hour 
Depuration Phase. 

Exposure Total 14c Activit~ 
Time (hr) Aniline Only 

0 (22 ± l)(a){b) 

1 263 ± 19 
2 416 ± 78 
4 608 ± 79 
8 585 ± 51 

16 906 ± 138 

24 1,016 ± 119 
25 864 ± 120 
26 1,030 ± 139 

28 933 ± 193 
32 780 ± 152 
40 689 ± 146 
48 527 ± 72 

{a)Values in disintegrations per minute {dpm}. 
(b)Values are mean ± S.E. 

15 

{d~m/g x 104) 
~niline + WSF 

(22 ± l)(a) 

248 ± 21 
285 ± 82 
410 ± 45 
736 ± 89 

1,022 ± 106 
1,058 ± 166 

980 ± 147 
895 ± 154 
889 ± 113 
577 ± 95 
834 ± 170 
545 ± 122 



' . 

uptake (24 hours) for aniline only and aniline-plus-WSF treatments were 
74 and 76, respectively. These values are similar to those obtained by 
kinetic model theory using only the uptake data, but are considerably 
less than estimates that used depuration rates from the depuration phase 
data (Table 4). There was no significant difference (a> 0.05) in either 
the uptake or depuration rates between the two treatments. Estimated 
14c half-lives were 26.5 hours for both the aniline-only and aniline
plus-WSF exposures. 

16 



DISCUSSION 

These studies demonstrated that differences may exist in uptake, 
depuration, and storage when a single compound is presented to an organism, 
as opposed to the same compound presented within a complex chemical 
mixture. The differences observed in the studies may be attributable to 
the chemical composition of the WSF. Since phenolic compounds comprised 
nearly 90% of the soluble components, differences in uptake of phenol could 
be due to competitive interactions among similar molecules for uptake and 
absorption by the organisms. Although data in whole fish were variable, 
approximately 35% 1 ess radioactivity was accumulated by fish, after 72 
hours, when coal liquid water-soluble components were present. Uptake 
rates of 14c phenol by daphnids were also lower in the presence of the coal 
liquid WSF, when compared to the single-compound exposure. This suggests 
that other lipophilic components competed with phenol for absorption into 
tissue. 

Since metabolites were not characterized, relative contribution of 
percent compound to total 14c activity is unknown. However, it is expected 
that a relatively high percentage of the test compounds were metabolized. 
In studies with the phytoplankter Scenedesmus quadricanuda (Hardy, Dauble 
and Felice 1984) significant quantities of aniline and phenol were 
biotransformed to metabolites in 24 hours. Call, Brooke and Lu (1980) 
found that fathead minnows (Pimephales promelas) retained only 0.7% of 14c 
phenol as parent compound after 28 days of exposure. Identification of 
metabolites would also be useful data for the elimination phase since 
differential elimination of parent compound and metabolites has been 
documented (Melancon and Lech 1978). 

Our studies also suggest that the presence of a complex organic 
mixture may influence metabolic and storage processes. Significantly 
smaller portions of absorbed 14c activity could be extracted from fish 
exposed to phenol when soluble coal liquid components were present. In 
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long-term (e.g., 28-day) exposures of fathead minnow, Call, Brooke and Lu 
( 1980) found that 1 eve 1 s of acetone-unextractab 1 e 14c were somewhat 
concentration-dependent and ranged from 78.5% to 89.1% of the total 
radioactivity. A trend towards increasing amounts of unextractable~ 

radioactivity was evident only for our phenol-plus-WSF treatment. The 
values reported in this study are consistent with those reported in other 
short-term exposure studies. For example, Southworth, Keffer and Beauchamp 
(1981) reported that 10% of the 14c in fathead minnow was unextractable 
following 108 hours of exposure to benz(a)acridine. 

Although equal concentrations of phenol were present in both mixtures, 
increased concentrations of other chemicals in the WSF mixture may have 
induced enzyme systems in the fish. Thus, observed differences in 
unextractable residues· could be due to selective binding of phenol or 
metabolites to tissue storage sites. For daphnids, depuration rates were 
similar for all cases, suggesting that mechanisms of elimination were 
unaffected by prior exposure to the complex mixture. 

In contrast to phenol, presence of coal liquid water solubles did not 
significantly influence either the uptake or elimination of 14c aniline by 
either daphnids or rainbow trout. Aniline uptake, depuration and relative 
quantities of acetone extractables in trout tissue were essentially the 
same in the presence and absence of the WSF. This would suggest that the 
sites for absorption of aniline to trout tissue are limited and of a. 

different chemistry than those for phenol. 

Differences in potential for bioaccumulation of phenol in complex mix
tures are not consistent with estimates of BCF as determined by measured 
octanol/water coefficient values (Table 6). BCF estimates of phenol, based 
on log10 Kow values, would be similar under both exposure conditions and 
would be much lower than our laboratory-determined values. Our results 
also contrast with studies by Veith, Defoe and Bergstedt (1979) who, in 
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TABLE 6. Comparison of Octanol/Water Partition Coefficients 
Derived for Aniline and Phenol as Single Compounds and 
in Aqueous Extracts of an SRC II Liquid. 

Compound Lnn Kow(a) Lon Kow in WSF(b) - ~10 ~1o~----~ 

Phenol 1.46 1.43 

Aniline 0.90, 0.98 

~:~From Leo, Hansch and Elkins (1971)~ 
From Thomas (1984) 

0.96 

exposing fathead minnow to individual and mixed solutions of p,p'DDE and 
heptachlorepoxide, obtained similar BCFs for both. However, Veith, 
Defoe and Bergstedt postulated that uptake of chemicals in mixtures 
would only be independent of other chemicals provided that metabolism of 
the organism was not significantly altered. 

These experiments, necessary precursors to more detailed studies, 
nonetheless suggest that behavior of compounds in complex mixtures may 
not always be predicted based on single-compound exposures. The entire 
spectrum of environmental chemicals can influence uptake and storage 
mechanisms within an organism. Interactions among individual components 
within complex mixtures may also be expected to alter their retention, 
metabolism and excretion. Future studies, therefore, should examine a 
range of compound classes in addition to determining the rate of metab
olism and excretion of parent compounds in complex mixtures. 
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