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ABSTRACT 

The analysis of pressurized thermal shock (PTS) shows it is 
necessary for nondestructive evaluation to demonstrate high 
probability of detecting cracks 0.250 inches deep and deeper at 
the clad/base metal interface. 

Ultrasonic techniques developed and used in Europe are 
evaluated in this paper for their applicability to U.S. reactor 
pressure vessels for detecting cracks of interest for PTS. 

Flaw detectabi 1 i ty experiments were carried out by testing 
the i nspection technique's ability to detect artificial flaws 
under several types of clad, including some Manual Metal Arc 
(MMA) clad. Both ground and unground clad surfaces were evalu­
ated. Crack sizing tests of the inspection technique were made 
using a crack tip diffraction technique. 

The data reported here indicate that for sufficiently 
smooth clad surfaces, the dual 700 compressional wave technique 
is extremely effective for detecting under-clad cracks. In 
addition, results show that dramatic signal-to-noise improve­
ments can be made by grinding the clad surface. Specifically, 
an improvement of 10 to 12 dB in signal-to-noise ratio was 
achieved by smoothing the clad surface roughness from 12.6 x 10-3 
inches RMS to 5.6 x 1o-3 inches RMS. The improvement in surface 
fin ish allowed sufficient ultrasound to penetrate the clad 
surface to improve crack detection confidence from low to very 
high. 
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EXECUTIVE SUMMARY 

It has been postulated that small (0.25 inch deep) cracks 
beneath the clad of pressure vessel belt 1 ine welds could result 
in vessel failure during a reactor overcooling transient. Non­
destructive evaluation must demonstrate a high probability of 
detecting these small cracks. The cracks of interest lie 
parallel or perpendicular to the clad lay and within the first 
one inch of the vessel surface. 

European techniques (DeRaad, Engl and Bergh, 1981; Launay 
et al., 1981) using 70° compressional waves have been shown to 
be effective in detecting under-clad cracks 3 mm deep or shal­
lower under ideal conditions (smooth clad and cracks predomin­
antly perpendicular to the clad lay). Most circumferential 
welds in U.S. pressure vessels have been clad using the manual 
metal arc (MMA) process. This welding process creates rough 
surfaces that contribute to ultrasonic inspection noise and 
inhibit inspection effectiveness. This paper reports progress 
in a program in which the Pacific Northwest Laboratory is 
evaluating European and other inspection techniques that may be 
useful for inspecting U.S. pressure vessels. 

Flaw detectability experiments were carried out by testing 
the inspection technique's ability to detect artificial flaws 
under several types of clad, including MMA clad. Both ground and 
unground clad surfaces were evaluated. Crack sizing tests of the 
inspection technique were made using a crack tip diffraction 
technique. 

The data reported here indicate that for sufficiently 
smooth clad surfaces, the dual 70° compressional wave technique 
is extremely effective for detecting under-clad cracks. In 
addition, results show that dramatic signal-to-noise improve­
ments can be made by grinding the clad surface. Specifically, 
an improvement of 10 to 12 dB in signal-to-noise ratio was 
achieved by smoothing the clad sur face roughness from 12.6 x lo-3 
inches RMS to 5.6 x lo-3 inches RMS. The improvement in surface 
finish allowed sufficient ultrasound to penetrate the clad 
surface to improve crack detection confidence from low to very 
high. 

The results of flaw detectability experiments reported in 
this paper show that few U.S. reactor vessels have been effec­
tively examined for Pressurized Thermal Shock (PTS) type flaws. 
The conclusions (on page 17) suggest changes to Codes and/or 
regulatory guides that would improve detection of PTS-type 
flaws. 
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DETECTION OF SMALL-SIZED NEAR-SURFACE 
UNDER-CLAD CRACKS IN U.S. PRESSURE VESSELS 

INTRODUCTION 

The belt 1 ine welds in the pressure vessels of several U.S. 
reactors have suffered serious radiation damage. This damage 
resulted from high copper content in the welds. It has been 
postulated (Gamble and Strosnider) that under-clad cracks as 
small as .250 inches in depth could result in vessel failure 
during an overcooling transient. A combination of conditions 
would be required for this type of failure to occur. These 
include: crack existance, high radiation damage, and high 
pressure (approaching operating pressure) at a low temperature. 
This generic safety issue is identified as Pressurized Thermal 
Shock (PTS). 

The ability of nondestructive evaluation (NDE) to detect 
and characterize flaws provides an opportunity to assess the 
integrity of the inner surface of the vessel. Currently, a 
specialized technique developed in Germany and France is gener­
ally accepted as providing optimum detection resuls (DeRaad, 
Engl and Bergh; Launay et al.; Becker; Gruber). At the direct ion 
of the U.S. Nuclear Regulatory Commission (NRC), the Pacific 
Northwest Laboratory (PNL) is evaluating the effectiveness of 
this technique. The objective of this study is to provide NRC 
with information on how well the technique detects flaws in 
pressure vessels fabricated in the U.S. 

The technique developed in Europe uti 1 izes high-angle 
(generally greater than 500) compressional waves. This tech­
nique was developed to detect under-clad cracks in light water 
reactor vessels. Inspection is performed with the search unit 
in contact with the clad surface (i.e., near surface flaw 
detection). It has been shown to be effective in detecting 
under-clad cracks 3 millimeters deep under ideal conditions 
(smooth clad and cracks predominantly perpendicular to the clad 
lay). Figure la shows the directivity pattern in steel of a 70° 
zone focusert compressional wave emitted from a dual element 
transducer. The directivity pattern in Figure la shows that the 
peak energy of a 70° zone focused transducer lies between 0.25 
in. and 0.5 in. below the surface of the metal, which makes the 
high-angle compressional waves ideal for detecting defects near 
the clad/base metal interface. The compressional waves have 
better penetrating power through clad than shear waves, pro­
viding a better signal-to-noise ratio. Commercially available 
transducers specially designed for under-clad-crack detection 
incorporate a transmit/receive design that allows the high­
angle zone focusing (see Figure lb). 
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FIGURE 1. Probe for Under-clad Crack Detection: a) Directivity 
Pattern for 70° Compressional Wave; b) Send/Receive 
Design for Commercial Probes. 

The PNL evaluation of this technique included an assessment 
of flaw detectability and initial crack characterization exper­
iments. This evaluation is part of a long-term NRC program 
designed to identify ultrasonic inspection technology that can 
reliably detect and characterize cracks beneath the clad of a 
reactor pressure vessel . This report deals with study results 
to date . The following report section discusses flaw detect­
ability experiments in which European technique were used to 
detect artificial flaws under several types of clad. The 
subsequent sect ion describes crack characterization ex peri­
ments. Conclusions are followed by a discussion of plans for the 
long - term program. 

FLAW DETECTABILITY 

Flaw detectability experiments have been carried out on 
strip clad, single-wire subarc clad, and manual clad. Both 
ground and unground surfac.P.s were evaluated. The test blocks 
used for this oval ua t ion included: a 29. 5 in. dia. clad dropout, 
two 23.6 in. square blocks with strip and single-wire clad with 
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one side ground and the other as deposited,(a) and two small 
samples with ground and unground, manually clad surfaces. The 
pressurizer dropout contained through-clad notches as well as 
thermal fatigue cracks under the clad. The two EPRI blocks 
contained notches under the clad (under-clad notches). The two 
manually clad samples contained two reference reflectors each 
and were used to evaluate general noise level. 

The measurements reported here were taken using a 2-MHz 
dual-beam longitudinal (SEL) 70° transducer with .39 x .59 in. 
elements and focal zone of .67 in. This unit was considered 
optimal for the clad conditions and thicknesses (.25 to .35 in. 
tested. All measurements were performed manually. 

Measurements of flaw amplitude response from each of the 
under-clad thermal fatigue cracks (labeled A through I) in the 
pressurizer dropout sample were compared with the amplitude 
response from a 1/8 in. dia., flat-bottom reference reflector 
(Table 1). The flaw amplitude response was measured from two 
directions (1800 apart) as would be done during actual field 
tests. The amplitude responses were higher than responses from 
the reference ref lector; therefore, these cracks should be 
easily detectable with this technique even under field condi­
tions. 

TABLE 1. Flaw Amplitude Response from Nine Under-Clad Thermal 
Fatigue Cracks 

Flaw 
DeEth 

Res2onse(b) Through Flaw 
Wall Direction Direction 

Flaw (in.) A B 

A 0.50 +3 dB +6 dB 
B 0.50 +5 dB Direction Direction +5 dB 
c 0.25 +6 dB A B +10 dB 
D 0.50 +3 dB 

~T~ 
+5 dB 

E 0.25 +14 dB Clad +5 dB 
F 0.15 +4 dB +8 dB 
G 0.50 +1 dB +2 dB 
H 0.75 +6 dB Flaw +12 dB 
I 0.75 +9 dB +1 dB 

(a)Access to these two samples was made possible through J.R. 
Quinn, Electric Power Research Institute (EPRI), Palo Alto, 
California. 

(b)sensitivity Standard: 1/ 8 in. dia., flat-bottom reference 
reflector. 
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Figures 2 through 6 show the relative signal amplitudes 
for: a 1/8 in. dia., flat-bottom hole (FBH) at the interface, 
an ASME-type through-clad notch, thermal fatigue under-clad 
cracks, under-clad notches, the base 1 ine noise, and indications 
from within the clad. The base line is the level which would 
yield a nearly continuous recording. Occasional clad indica­
tions arise from the clad itself and are particularly prevalent 
when signal propagation is perpendicular to ungound clad. These 
clad signals have been measured and will be addressed later. 
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FIGURE 2. Flaw Response from Pressurizer Dropout. 

The samples in Figures 2 through 4 each exhibit similar 
responses and good signal-to-noise ratios. Calibration gain was 
within .±,2 dB for each of the three samples. The signal-to-noise 
ratio for the ground single-wire clad of Figure 5 is slightly 
less, but satisfactory. An additional gain of 6 dB was required 
for calibration of the sample in Figure 5 over that used for the 
samples in Figures 2 through 4. An additional gain of 14 dB was 
required for calibration of the unground single-wire clad of 
Figure 6. 
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The flaw detectability measurements just described show a 
marked dependance on surface condition (i.e. , "as welded" versus 
ground). To provide an estimate of inspectability under noisy 
clad conditions, noise level measurements were made on manually 
clad test blocks. 

The test blocks used for the noise level measurements are 
shown in Figure 7. Both blocks were clad using stainless steel, 
single-wire, manual metal arc welding and contain a 1/8 in. dia., 
flat-bottom hole. The block shown in Figure 7a was "as welded" 
and the block in Figure 7b was lightly hand ground. 

Noise level measurements were made on both samples by 
adjusting the response from a 1/8 in. dia., flat-bottom-hole to 
80% of full screen height. A time exposure photograph was taken 
of background noise generated while scanning perpendicular to 
the clad in a defect-free area of the clad specimens. 

This technique, while perhaps crude, provides a method for 
recording peak background noise. A measure of peak background 
noise is important because an operator must be able to differ­
entiate signals of interest from inherent background noise. 

Figure 8 illustrates the results of ultrasound energy 
backscattered from two conditions of surface finish. Figure 8a 
shows large amounts of backscattered ultrasound energy result­
ing from a rough "as clad" surface; this condition makes signal 
interpretation very difficult for examination personnel. Light 
hand grinding can reduce backscattered energy 10 to 12 dB as 
shown in Figure 8b. 

A measurement of surface roughness was also performed to 
quantify the "improvement" of surface condition with grinding. 
These measurements were taken using a linear variable differ­
ential transformer (LVDT) that was attached to a stylus and moved 
across the surface of the test block both parallel and perpen­
dicular to the clad. Figures 9 and 10 show the results of these 
measurements. The change in surface roughness measurements from 
0.012 in. RMS for the as-welded surface to 0.006 in. RMS for the 
hand-ground surface reduced backscattered energy 10 to 12 dB. 

To understand why surface roughness has such a dramatic 
effect on background noise, a simple computer program was 
developed that used Snell's Law to trace the path of the 
ultrasound. The program cannot be used to model the ultrasound 
beam, but is very useful for showing trends in the ultrasonic 
beam sea tter. Since the program can trace ultrasonic rays 
through an arbitrary surface condition, surface profile mea-
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a) As-welded Condition 

b) Hand-Ground Condition 

FIGURE 7. Test Blocks for Background Noise. 
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Background Noise for Hand-Ground Condition 

FIGURE 8. Background Noise Measurements. 
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surements of the "as-welded" condition and hand-ground surface 
were plotted to show the relative scatter of sound for each 
condition. 

Figure 11 shows the scatter of ultrasound when penetrating 
an as-welded clad surface. Figure 12 shows the scatter of 
ultrasound when penetrating hand-ground surface. 

1.50 

-0.50 

FIGURE 11. Scatter of Ultrasound through an Unground Clad 
Surface. 

VJ 0.50 
w 
:I: 
() 
z 

-0.50 

FIGURE 12. Scatter of Ultrasound through a Hand Ground 
Clad Surface. 

For comparison, Figure 13 shows the penetration of ultra­
sound through an ideally smooth surface. The plots dramatically 
illustrate that the wilded surface increases scatter of the 
ultrasound considerably. This scattering of the ultrasound 
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results in decreased energy in the area of 
reducing the sensitivity of the inspection. 
explain the decrease in the signal-to-noise 
welded clad conditions. 

interest, thereby 
This would also 

ratio for the as-

COMPARISON OF PULSE ECHO SHEAR WAVE 
AND DUAL ELEMENT TECHNIQUES 

Since the implementation of Regulatory Guide 1.150, sev­
eral shear wave techniques have been proposed or used for under­
clad crack inspection. To assess the effectiveness of these 
techniques, comparison studies were performed. 

Under optimum conditions of ground clad, 600 and 700 
contact shear wave (PE) techniques were compared with contact 
dual element longitudinal probe techniques. The test involved 
use of 12 cracks observed from both sides, thus allowing 24 
observations. Nine of the test cracks were thermal fatigue type 
cracks and the remaining cracks were produced by hydrogen 
cracking. All cracks had an extended depth of 12 mm below the 
clad/base metal interface with a 3:1 aspect ratio. The compar­
ison test involved measurement of flaw detectability and flaw 
amplitude response. 

All techniques were calibrated using a 1/16 in . diameter 
side-drilled hole (SDH). The results of the comparison test are 
shown in Table 2 below. 
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TABLE 2. Crack Detection Performance 

700 600 450 60° 70° 
Shear Shear Long. Long. Long. 

Single Single Dual Dual Dual 

Number of Cracks 
Not Detected 7 6 0 0 0 

Number of Cracks 
Detected 17 18 24 24 24 

Average Amplitude 
of Detected Cracks 
(Relative to DAC) -5.8 dB -8.5 dB -7.7 dB +1. 2 dB +2.7 dB 

Both shear wave pulse echo techniques not only failed to 
detect a quarter of the flaws, but provided very poor flaw 
amplitude response and signal-to-noise ratio. The dual element 
longitudinal wave techniques performed much better. The 450 
dual element longitudinal techniques provided poor amplitude 
response; however, the improved signal-to-noise ratio allowed 
all flaws to be detected. The 100 dual element longitudinal 
technique proved to be the best performer. Using this technique, 
all flaws produced responses above the 1/16 in. SOH reference 
level. 

UNDER-CLAD CRACK CHARACTERIZATION 

Characterization of a crack after detection provides esti­
mates of crack size (both length and depth) so appropriate 
engineering decisions can be made for crack disposition. 

Crack sizing via the crack tip diffraction technique (see 
Figure 14) was investigated for underclad cracks. Ultrasound 
energy is reflected from both the face of the crack and dif­
fracted from both the top and bottom tips. This sizing technique 
involves detecting ultrasound energy diffracted from the bottom 
of the crack tip. The 12 cracks used in the comparison test pre­
viously described were sized using crack tip diffraction with 
both 45° and 60° dual element probes. Crack depths (Cp) were 
calculated from sound path measurements using the formula 

Cp =cos (8) X Mp· 

where 8 is the inspection angle and Mp is the sound metal 
path. 
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FIGURE 14. Crack Tip Diffraction Technique for Sizing Under­
clad Cracks. 

In addition, under-clad nocthes of known depth were also 
sized. The results of the crack sizing experiments are shown in 
Table 3. The results of the notch sizing exper iments . 

TABLE 3. Crack Sizing Data for Matrix I Flaws. 

450 Sizing 

Crack DescriEtion Depth Ave. 
Tl:Ee Orientation (inches) 

Hydrogen cracking II .673 
I .675 

Thermal fatigue I I .768 
through clad I .680 

Thermal fatigue I I .763 
1 .765 

600 Sizing 

Hydrogen cracking I I .713 
I .723 

Thermal fatigue II .903 
through clad I .690 

Thermal fatigue II 1.033 
I 1.078 
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Sample 
Std Dev. 

s 

.102 

.035 

.181 

.073 

.060 

.051 

.180 

.229 

.167 

. 048 

.311 

.139 



The 600 dual element probe provided very good correlation 
to theory for both cracks and notches when compared with actual 
defect size (Figure 15). The 45° probe shows a good correlation 
between sound beam path measurements and defect size. However, 
the experimental results indicate the cladding is affecting the 
propagation path of the 45° longitudinal wave for the notches 
resulting in consistently undersizing them as shown in Figure 
16. 

Wooldridge (1982) has shown that the grain structure of 
stainless steel cladding tends to act as a waveguide for 450 
shear. Since clad grains tend to be oriented normal to the 
ferr it ic base metal, this means that 45° shear ultrasound 
propagates in the manner shown in Figure 17. If the propagation 
model that Wooldridge used for 45° shear is applied to the 45° 
longitudinal wave data, the mathematical model in Figure 17 can 
be applied. The results of this assumption are shown in Figure 
18, which shows an excellent correlation. 
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The experimentation performed is not intended to show that 
the model! ing done for shear waves applies to longitudinal 
waves. Rather, it shows that stainless steel clad does affect 
the propagation path of longitudinal ultrasound in steel. Fur­
ther work is planned to develop a model based on elastic 
constraints and grain orientation to explain our experimental 
data. 

CONCLUSIONS 

Based upon the work performed to date on the vessel appli­
cation task, the following conclusions can be drawn: 

• Few U.S. reactor vessels have been effectively examined for 
PTS-type flaws, based on comparison testing between U.S. 
standard practice and European techniques. 

• For future inservice inspection of U.S. reactor pressure 
vessels, a 1/16 inch diameter side-drilled hole or 1/8 inch 
diameter flat bottom calibration reflector should be added 
to existing vessel calibration blocks for examination of 
the clad/base metal region. 
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• The ASME Code Section XI and/or Regulatory Guide 1.150 
should be revised to specifically address inspection of the 
clad/base metal portion of vessels. The revision(s) should 
include examination requirements based upon inspection 
techniques currently employed in Europe. 

• All clad vessel surfaces should be characterized before 
inspection to ensure adequate examination sensitivity. 

• Minor preparation of clad surfaces may be necessary to 
ensure effective examination for PTS-type flaws. 

LONG-TERM UNDER-CLAD CRACK PROGRAM 

To quantify the ability of NDE to detect and size under-clad 
cracks, a long-term program has been initiated at the Pacific 
Northwest Labor a tory. This program is designed to assess 
current ultrasonic inspection technology, inspection teams, and 
inspection procedures for determination of their adequacy to 
reliably detect and characterize under-clad cracks. Where 
inadequacies are identified, solutions will be evaluated. The 
solutions that resolve inadequacies will be recommended for 
inclusion into the appropriate pressure vessel inspection 
Codes. 

The first task is to evaluate the under-clad crack fabri­
cation techniques. Phase 1 contains the specimens with which six 
different cracking methods will be used to create the under-clad 
cracks. Ultrasonic measurements of Phase 1 will provide a 
comparison of the different cracking methods. Since no experi­
ence exists for under-clad cracks in American vessels, the most 
ultrasonically conservative cracking method will be used. 

Phase 2 will be used to evaluate the effects of different 
clad types and roughness. This is extremely important so that 
the test sensitivity for a given inspection can be properly 
established. The clad roughness will be quantified in terms of 
a surface profile and backscattered noise. Inspection variables 
such as transducer frequency, size, and angle will be evaluated 
for the effects of clad conditions. 
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