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ABSTRACT 

An analysis of the first-order effects of component imperfections 
and azimuth errors in an automatic, self-compensating ellipsometer is 
presented. Twenty-three parameters in a linearized theory are used to 
compute the ellipsometer parameters A and ̂  from polarizer, quarter wave 
compensator, and analyzer azimuths. These parameters are evaluated 
using 56 experimental measurements. The effectiveness of the corrections 
is recognized by a substantial decrease of the differences between 4-zone 
measurements. The theoretical dependence of the magnitude of errors on 
the orientation of the polarizer, analyzer, and quarter wave plate was 
experimentally verified. 
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NOTATION 

A,a Analyzer azimuth (degree). As a subscript, 
refers to the component. 

C,c Quarter wave plate azimuth (degree). As a subscript, 
refers to the component. 

C* FCI-C 

E Electrical field vector perpendicular to plane 
of specimen surface. 

Ey Electric field vector parallel to plane of specimen surface. 

FC Refers to measurements made with Faraday cells. 

FCI Glass core in the polarizer Faraday cell azimuth. 
Refers to component as a subscript. 

FCR Glass core in the analyzer Faraday cell azimuth. 
Refers to component as a subscript. 

NFC Refers to measurements made without the Faraday cells. 

NW Refers to measurements made without windows. 

P,p Polarizer azimuth (degree). As a subscript, 
refers to component. 

P* P-FCI 

R(w) Rotator matrix describing orientation of principle 
frame of reference for a component. 

r Reflection coefficient in direction perpendicular 
to specimen surface. 

r Reflection coefficient in direction parallel to 
specimen surface. 



VII 

Transmission matrix for component j. 

R(J)Tj R(-j) 

Describes non-ideal effect of component j on 
the electric field intensity (degree). 

Describes non-ideal effect of component j on 
phase of the electric field. 

Entrance and exit window azimuths. As a subscript, 
refers to components. 

Refers to azimuths of component j. 

Relative phase shift due to reflection from 
specimen surface (degree). 

Specimen mispositioning error (degree). 

Deviation in A due to component imperfections. 

Deviation in p. due to imperfections in component j 

Deviation in ty due to component imperfections. 

Error in azimuth of component j. 

Phase of electric field vector in x-direction. 

Phase of electric field vector in y-direction. 

Coupling constant for Z- error 6Z-. 

Coupling constant for p. error <Sp.. 

Wavelength of light, angstroms. 

Angle of incidence (degree). 



Vlll 

p. Relative transmittance for component j. 

p Specimen reflectance ratio, = r /r 

ijj Relative intensity parameter due to reflection from 
specimen surface (degree). 

v Frequency of light. 
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I. BACKGROUND AND THEORY 
Ellipsometry is used to study the surface properties of materials 

immersed in an optically transparent medium. The two quantities of 
interest in ellipsometry studies are the changes, due to reflection 
from the surface, in the relative amplitude ip and the relative phase A 
of two orthogonal components of the electric field vector which describe 
the state of polarization of the probing light beam. 

When the components of the ellipsometer contain imperfections, 
their effects on the phase and amplitude of the light must be included 
in the interpretation of ellipsometer measurements. Imperfections in 
the ellipsometer are assumed to be either calibration errors in the 
graduated azimuth circles of the polarizer, analyzer, and quarter wave 
plate, deviation from quarter wave retardation, or flaws in the optical 
components due to strain-generated birefringence and polarization-
dependent absorption. 

The purpose of this analysis is to obtain a set of equations for 
ip and A which compensate for the component imperfections. This analysis 
extends the word of Azzam and Bashara on error corrections for a manual 
compensating ellipsometer to the use of an automatic self-compensating 
ellipsometer. The self-compensating ellipsometer uses Faraday cells to 
rotate the plane of polarization, thus enabling the ellipsometer to 
follow rapid changes in the state of the surface. The Faraday cells 
add two more imperfect components to the analysis, which results in more 
error terms in the equations for ip and A. The Faraday cells are assumed 
to be both birefringent and dicroic, thus producing both relative phase 
and relative attenuation effects. 
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A. Components of the Ellipsometer 
The components of the ellipsometer are arranged in the following 

sequence (Figure 1): polarizer P, polarizer Faraday cell FCI, quarter 
wave plate C, entrance cell window WI, specimen S, exit cell window WR, 
analyzer Faraday cell.FCR, and analyzer A. The abbreviations used to 
represent each component (P, FCI, etc.) will also be used in other 
contexts: as subscripts to designate to which component a parameter 
refers; and to represent angles of rotation. These latter usages will 
be introduced in the following sections. 

B. Rotated and Standard Coordinate Systems for the Measurement of the 
Nulling Angles 
There are two possible coordinate systems for the measurement of 

the nulling azimuth angles of the analyzer and polarizer. In one system, 
the nulling angles are called standard azimuth angles and are denoted by 
a and p (for analyzer and polarizer). In the other, they are called 
rotated azimuth angles and are denoted by A and P. 

The two coordinate systems are defined by the experimental set-up, 
specifically by the positioning of the specimen, which in turn depends 
on the nature of the experiment. Figures 2 and 3 illustrate the two 
different experimental set-ups. If the specimen plane is horizontal 
(Figure 2), then the coordinate system is standard; if the specimen 
plane is vertical, the coordinate system is rotated (Figure 3). 

The orientation of the orthogonal components, E and E , of the 
A y 

electric field vector is defined relative to the plane of the specimen. 
The E -axis is parallel to the plane of the specimen, and the positive 
E -axis is in the direction of a vector in the plane defined by the 



LIGHT SOURCE 
COLLIMATOR 

POLARIZER (P) 

POLARIZER 
FARADAY CELL (FCI) 

QUARTER WAVE 
COMPENSATOR (0 

ENTRANCE 
CELL WINDOW (WD 
SPECIMEN (S) 
EXIT 
CELL WINDOW (WR) 

ANALYZER 
FARADAY CELL (FCR) 

ANALYZER (A) 

TELESCOPE 

PHOTOMULTIPLIER 
XBL 774-8330 

lf-compensating el l ipsometer. 



XBL774-3 29I 

Fig. 2. Horizontal specimen orientation defining standard coordinate system. 
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XBL7I9-44 19 

Fig. 3. Vertical specimen orientation defining rotated 
coordinate system. Azimuths p, a, and q referred 
to as (capital) P, A, and Q in text. 
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incident and reflected beams. Rotating the specimen plane counter
clockwise from a vertical position (rotated system) to a horizontal 
position(standard system) therefore rotates the E -E coordinate system 

x y 
by 90° (in the counterclockwise direction). 

Though the azimuth circle of the polarizer can be moved, the 
transmission axis of the polarizer remains fixed with respect to the 
azimuth circle. The same is true in regard to the transmission axis of 
the analyzer. The azimuth angle of the polarizer is measured counter
clockwise from the positive E axis to the transmission axis of the 
polarizer (indicated in the figures by a heavy double pointed arrow), 
and the azimuth angle of the analyzer is measured counterclockwise 

11 
from the positive E axis to the analyzer transmission axis (see 
Figures 2 and 3). 

Because the two coordinate systems are related by a 90° rotation, 
the polarizer and analyzer azimuths in each system are related by: 

P = p ± 90° , 

A = a ± 90° . 

In keeping with the rotation for the analyzer and polarizer 
azimuth angles, the setting of the quarter wave plate is denoted 
by c if the nulling angles have been measured in the standard 
system or by C if the nulling angles have been measured in the 
rotated system, and 

C = c ± 90° . 
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Some derivations and results given in this paper do not depend 
on the coordinate system used to measure the nulling angles. For that 
reason, unless otherwise noted, A, P and C will be used throughout this 
paper to refer in general to the analyzer and polarizer azimuth angles 
and the setting of the quarter wave plate in either coordinate system. 
If the results depend on the coordinate system used, both sets of 
results will be given. 

C. Zones and Groups 
The values of i\i, the relative amplitude, and A, the relative phase, 

are not measured directly, but are calculated from the nulling azimuth 
angles of the analyzer and polarizer respectively. The ranges of ty 

and A and the nulling azimuth angles are : 

T/J r 0°-90° a,A: 0°-180° 

A: 0°-360° p,P: 0° -180° 

Though the value of A depends explicitly only on P, the equation 
defining the ideal value of A in terms of P is not the same for all 
values of A. In fact, the defining equation for A depends also on the 
range of A and on C, though neither A nor C appear in the equation. 
For this reason, it is convenient to distinguish 16 categories called 
zones to which a measurement, consisting of a value of P, C and A can 
belong. The 16 zones are defined as follows: The range of A is 
divided into two subranges, 0°-90° and 90°-180°; the range of P is 
divided into four subranges, 0°-45°, 45°-90°, 90°-135° and 135°-180°, 
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and the value of C is limited to two possibilities, 45° and -45° (135°). 
Taking all possible combinations of the subranges of A and P and the 
value of C yields 16 zones. Moreover, the zones are grouped into four 
larger categories called groups, which depend on the range of A. It is 
a convention that the groups which correspond to a certain range of A 
are lettered and that the four zones, which comprise one of the lettered 

2 groups, are numbered according to the range of the polarizer azimuth. 
However, the numbering of zones is not the same for rotated polarizer 
azimuths as for standard polarizer aximuths. Table El gives the 
definition of groups and Table E2 the definition of zones. 

The ideal (uncorrected) value of I|J and A for each zone, as well as 
the corresponding ranges of the polarizer and analyzer azimuths for both 
the standard and rotated azimuth system, are given in Appendix A. 

D. One-Zone and Four-Zone Measurements 
A one-zone measurement consists of a value of A, P and C. The 

value of C may be either 45° or 135° and is set before the nulling 
angles A and P are found. A one-zone measurement may be taken on 
either a bare, unchanging surface or on a surface that is rapidly 
changing. After the nulling angles have been measured, the zone to 
which the triplet (C, A, P) belongs can be found from Table I which 
contains the zone and group divisions. The triplet will belong to 
one and only one of these zones, hence the name one-zone measurement. 
Once the correct zone is determined, the ideal values of \\> and A may 
be calculated using the appropriate formulas. 
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TABLE El. Definition of group lettering 

Group Range of A 
A 
B 
C 
D 

0°-90° 
90°-180° 
180°-270° 
270°-360° 

TABLE E2. Definition of zone numbering 

Range of Range of 
standard rotated 

Zone azimuth p azimuth P 

1 
2 
3 
4 

0°-45° 
45°-90° 
90°-135° 
135°-180° 

90°-135° 
135°-180° 
0°-45° 
45°-90° 
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A four-zone measurement is actually four one-zone measurements that 
all belong to the same group, but fall into the four different zones 
within that group. Since each set (C, A, P) defines a value of ty and a 
value of A, a four-zone measurement is only meaningful if taken on an 
unchanging surface so that the four one-zone measurements all define the 
same values of ty and A. Ideally the values of ip and A calculated from 
the four one-zone measurements should be the same. This is rarely the 
case, however, and the conclusion drawn is that the components of the 
ellipsometer contain imperfections which affect the measurements. The 
assumption that disagreement in the four-zone measurements is a result 
of imperfect components is central to this analysis, because the aim of 
using the corrected equations (to be derived in following sections) is 
to improve the agreement of the four one-zone measurements. 

Given below is a four-zone measurement and values of ty and A 
calculated from the ideal equations in Table I. For comparison, the 
corrected values of ij> and A are given. 

E. Theory 
The analysis of Azzam and Bashara uses the Jones Calculus to 

describe the optical effect of each component on the state of polariza
tion of the light as it passes through the ellipsometer. The Jones 

3 
Calculus, invented in 1940 and 1941 by R. Clark Jones, uses a matrix to 
represent an optical device such as a polarizer or retarder and a vector 
to describe the state of polarization of a beam of light. The passage 
of the light through a component corresponds to multiplication of the 
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Four-zone measurement made on bare zinc 

Zone 

Bl 
B2 
B3 
B4 

c 

135° 
45° 
135° 
45° 

a 

37 
40 
142 
145 

68° 
06° 
70° 
09° 

1 

5 
84 
95 
174 

D 

23° 
03° 
35° 
42° 

Ideal values of ip and A calculated from 
four-zone measurement 

Zone 

Bl 
B2 
B3 
B4 

r 
37 
40 
37 
34 

68 
06 
30 
91 

A° 

100 
101 
100 
101 

.46 

.94 

.70 

.16 

Corrected values of ip and A 

Zone 

Bl 
B2 
B3 
B4 

t|> 

37 
37 
37 
37 

.473 
509 
472 
452 

A 

100 
100 
100 
100 

422 
632 
392 
742 
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vector representing the light by the component's matrix. The effect of 
imperfections in a component is treated as a first-order Taylor series 
expansion about the ideal component value. 

F. The Jones Calculus 
To define the spatial arrangement of the ellipsometer, we use a 

right-handed rectangular coordinate system with x, y and z axes. The 
components of the ellipsometer lie along the z axis which is perpendi
cular to the planes containing the components. When the axes of a 
component are parallel to the x and y axes, the component is said to 
be in its principal frame of reference. In this case, the Jones trans
mission matrix of either a partial polarizer or a retardation plate 
is given by e^N, where N equals 

\ 0 N y / 

where 

Nx = exp [ - i (2Trd/A) (n x - i k x ) ] 

Ny = exp [ - i (2ird/X) (n - i k ) ] 
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and d is the thickness of the plate; A is the wavelength of the light in 
a vacuum; n and n, are the principal indices of refraction in the x and 

x y 
y directions; and k and k are the principal extinction coefficients in 

x y 
the x and y directions. 

For a partial polarizer the principal indices of refraction are 

y equal, nv = n„ = n, and the Jones matrix has the form e Nn where 
x y r 

/
p
x °< 

e ^ is the absolute phase factor and P and P are the principal 
transmittances in the x and y directions, respectively. If the absolute 
phase of the two components of light is of no interest, then N may be 
used alone as the matrix representation of the partial polarizer. This 
form of the Jones matrix is called the standard matrix. 

For a retardation plate, the principal extinction coefficients, 
k and k , are both zero and the Jones matrix has the form e * NR, 
X V l\ 

e
1Y 0 

,-v, and y = S/2 
0 e

 1Y/ 

where 8 is the retardance. As in the previous case, the absolute phase 
factor e1

^ may be omitted so that the standard matrix of a retardation 
plate is NR. Appendix 2 of Reference (4) lists the standard Jones 
matrices for commonly used optical devices. 
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For this analysis the standard Jones matrix is further simplified 
by dividing each entry in the matrix by the entry in the upper left-hand 
corner of the matrix, and then dropping the divisor. The representation 
of the partial polarizer is then 

where pp is the relative transmittance for the polarizer, P /P . " y x 
For the retardation plate, 

TR = C I) -
where P R

= e is also called the relative transmittance. 
Using this simplification, each component of the ellipsometer has 

the same diagonal form when in its principal frame of reference. Thus, 
for the jth component, 

where p. is the relative transmittance. HoweVer, if the component is not 
in its principal frame of reference, then its Jones matrix T. is related 
to the Jones matrix T. by 
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T
ji

 = R(a)) T
j
 R(

"
w) 

where R(w) and R(-w) are the rotator matrices 

cosw s m w \ 
R(u>) = ( and R(-w) = 

■sinw cosw/ \sinw cosw 

The angle w measures the amount by which the coordinate system associated 
with the component has been rotated with respect to the fixed x-y 
coordinate system. 

The form of the Jones vector that will be used in this analysis 
is just 

E
x 

E 
E. 

where E and E are the scalar components of the electric field vector 
x y 

along the x and y axes. Ex and E are further defined by 

E
x
 = A

x
 ex

P^'(
e
x
 + 2Trvt

^ 

Ey = Ay exp[i(ey + 2irvt)] 

file:///sinw


-16-

where Av and Aw are the maximum values of E„ and E, , and e and e are 
A y y- y y- y 

the phase components of E x and E at time t = 0. In problems not 
concerned with time, the time factor e vt can be dropped so that 

E x = Ax exp (1ex) 

Ey = Ay exp (lV 

Subscripts on E, E and E will be used to designate through which 
component the light has just passed. 

With the major elements of the Jones calculus defined, we can now 
express the optical effect of the sequence of ellipsometer components 
as a chain of matrix multiplication: 

TA TFCR TWR TS TWI TC TFCI R^"P^ 
Ex 
Ey/ 

J initial 

Two points should be noted in connection with the matrix multiplication 
given above. First, because the Jones vector representation of light is 
limited to polarized light, the first use of the Jones vector is to 
describe the state of polarization of the light after it has passed 
through the polarizer. Therefore, the Jones matrix for the polarizer 
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Tp does not appear in the matrix chain through the counter rotator matrix 
R(-P) does. Secondly, the Jones matrix for the specimen is 

where p is the specimen reflectance ratio. 

G. Component Imperfections Treated as First-Order Series Expansions 
For the purpose of this analysis, the relative transmittance of an 

optical component contains the measure of the imperfection within that 
component. For a small imperfection in the jth component, the relative 
transmittance p. is given by 

pj = p j + 6 p j ' {1) 

where p. is the ideal relative transmittance and 6p. is a measure of the 
imperfection. Since the imperfection may affect both the intensity and 
the relative phase of the light, 

«Pj - t,J + i t y , (2) 

where t, . measures of the effect of the imperfection on the intensity and 
tp.. measures the effect 0V1 the relative phase . 
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Due to calibration errors the true azimuth angle Z. (this refers 
to C, A or P) may vary from the measured azimuth Z. by a small deviation 

Zj - Z° + a} (3) 

When the light flux transmitted by the analyzer is a minimum, the 
of p , the ratio of the complex refle 

for the specimen, is given by equation (4) 
value of p , the ratio of the complex reflection coefficients (r /r ) 

Ps - f(Zj, Pj) (4) 

The first order Taylor series expansion of (4) about p. and Z. is 

»s-
 f(
Vj> ♦ f w f V

P
J
 (5) 

The coupling constants y . and y < determine the way in which the azimuth 
error SZ. and a component imperfection <5p. couple onto an error in p . 

J J ^ 
The zeroth-order approximation to p , given by 

Ps° - f<Zj\ Pj°) , (6) 
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is the value of p when the measured azimuths are substituted into the 
error-free ellipsometry equations in Table I . The corresponding 
corrections to IJJ and A, 6I|J and SA, are found by taking the logarithmic 
differential of p = tamj> e l A , 

<Sps/Ps = 26i|Vsin2ij; + iSA (7) 

The expressions for 6IJJ and 6A are therefore, 

6ip = J2 sin 2ip Re(Sps/ps) 

SA = Im (6p s /P s) 
(8) 

H. Birefringence in the Polarizer Faraday Cell 
The coupling constants for the polarizer, analyzer, quarter wave 

plate, and entrance and exit cell windows, as well as the corresponding 
corrections to IJJ and A are derived in Reference 1. It can be shown that 

Y n has the same form as Yn . The derivation of the constant Yn P
FCR

 P
WR

 P
FCI 

is presented here; the procedure will first be outlined and the algebraic 
steps and simplifications will follow. 

For the purpose of determining yn > the other components are 
assumed to be ideal; therefore 

P
FCI 

s s P
FCI

 M
FCI 
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The imperfection in the glass core of the Faraday cell is assumed to 
affect both the intensity and the relative phase of the light beam so 
that 

6pFCI " t1FCI + lt:2FCI 

The measure of the imperfection <$pp~r is embedded in the Jones matrix 
for the Faraday cell: 

* 1 0 
T p c I (FCI) = R(FCI) } R(-FCI) (B) 

0 pFCL 

where 

PFCI = pF°CI + 6pFCI ' (C) 

The result of the chain of matrix multiplications (from right to left), 
* * * * . TQ Tr T C P T T , acting on the incident beam, is the vector (E , E ). o u rl/l p A,b y, o 

The ratio of the components of this vector defines the specimen reflectance 
ratio: 
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This ratio contains the term <5PpCI which has been carried through the 
matrix multiplication like a constant. Using algebraic simplifications 
and trigonometric identities, the single-term expression for p given in 
equation (D), can be separated into two terms, one of which is multiplied 
by Spppj. Comparison of this to equation (A) yields expressions for 
p° and YPprT* These expressions are then substituted into the equation 
for the logarithmic differential of p , which in this case is, 

6pq
 Y P F r T

 6pFCI 
__s = _±CI (E) p, P° s Ms 

where p in the denominator of the term on the right hand side has been 
approximated by its ideal value p°, and 

6pFCI " ^FCI + n t2FCI 

When the resulting expression of equation (E) is separated into its real 
and imaginary parts, it yields the corrections to ^ and A that must be 
made to compensate for the imperfections in the polarizer Faraday cell. 

The details of the matrix multiplication are given next. 
The light beam leaving the polarizer is described by a Jones vector as, 

Ep = (1, pp) 
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For the purpose of determining YpCT» Pp = °> because in the linear 
analysis, component imperfections in the polarizer do not affect the 
analysis for the Faraday cell. On passing through the polarizer Faraday 
cell, the Jones vector becomes 

-FCI = TFCIR("P*) -P 

(cosP*, p F C I sinP*) 

where P* = P-FCI 
After passing through the compensator, 

Ec = T CR(-C*)E F C I 

= ( F r F2) 

where, 

(10) 

F, = cosC* cosP* - p F C I sinC* sinP* (11a) 

F2 = pc(sinC* cosP* + p p c i cosC* sinP*) (lib) 

and C* = FCI-C. 
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Upon reflection from the specimen, the light is linearly polarized 
so that A = 7T and 

Ps = - tamjj. (12) 

The Jones vector is given by 

where 

Is = Ts R(- C)Ic 

(Ex,s' Ey,s) 

(13) 

Ps 0 

0 1 

and 

Ex s = ps(F1cosC - F2sinC), 

E = (FnsinC + F9cosC) y,s 1 d. 

(14a) 

(14b) 
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For extinction (or flux minimum), the value of \\> is given by A ± 180°; 

substituting this into equation (12) gives 

p = -tanA. 

Combining this fact with the following definit ion of p , 

Ps = ^ -
s E 

y»s 

where equations (14a) and (14b) have been substituted for E and E 
x,s y ,s 

yields the following expression for p : 

-tanA[sinCcosC* cosP* - ppCI sinC sinC* sinP* + p cosC sinC* cosP* + p p F C I cosC cosC* sinP*] p = 

[cosC cosC* cosP* - p F C I cosC sinC* sinP* - p sinC sinC* cosP* - p p p c i sinC cosC* sinP*] 

-tanA[tanC - p p c i tanC tanC* tanP* + p tanC* + p p p c i tanP*] [1 - p F C I tanP* tanC* - p tanC tanC* - P C P F C I tanC tanP*] 

-tanA[tanC(l-pFCI tanC* tanP*) + pc(tanC* + p p c I tanP*)] 
[1 - p F C I tanC* tanP*) - pc tanC (tanC* + p F C J tanP*)] 

tanA [tanC + p (tanC* + p p c i tanP*)/(1 - P F C I tanC* tanP*)] 
Pc tanC(tanC* + p p c i tanP*)/(l-pFCI tanC* tanP*) -1 

(16) 



-25-

Assuming that the ideal relative transmittance for the Faraday cells is 
one, we can make the substitution p F C I = 1 + SpFCI in equation (16) 
to obtain, 

tanA 
tanC + pc(tanC* + tanP* + 6ppcI tanP*) 
1 -tanC* tanP* + 6ppci tanC* tanP* 

(tanC* + tanP* + <5pFrT tanP*) 
p tanC — 

(1 -tanC* tanP* - 6ppcI tanC* tanP*) 
- 1 

(17) 

The terms, 

Pc(tanC* + tanP*) + pc 6p p c i tanP* 

(1 - tanC* tanP*) - . 6 P F C I tanC* tanP* 
in the numerator, and 

(tanC* + tanP*) + <5pFCI tanP* 

(1 - tanC* tanP*) -Sp F C I tanC* tanP* 
in the denominator 

are both of the form (x + ex)/(y + e 2 ) , which may be expanded as, 

(X + e j 
(77^7 

V £1 £nX 
A , __1^ 2 
Y Y " y2 

(18) 
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This expansion is valid for e « 1, which is the case for small values 
of «pFCI. 

The numerator term is expanded as follows: 

Pc(tanC* + tanP*) + pc 6ppcI tanP* pc(tanC*+tanP*) pc 6ppci tanP* 
(1 -tanC* tanP*) - 6pFCI tanC* tanP* (1 - tanC* tanP*) (1 - tanC* tanP* 

Pc(tanC + tanP*) 6ppcI tanC* tanP 
(1 - tanC* tanP*)2 

Using the trigonometric identity tan(a + B) = (tana + tang)/(l -tanatanft), 
and combining the second and third terms, the expression becomes 

p (tanC* tanP ) + p 6pFCjtanP* 
(1 -tanC*tanP*) - 6pFCI tanC* tanP* 

Pr 5prrT[tanP +tanC tanP tan(C +P*)] p tan(C* + P*) + — !±±-
(1 - tanC* tanP*) 

(19) 
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The expansion of the term in the denominator is: 

(tanC* + tanP*) + 6P|-CI tanP* tanC* + tanP* 
(1 - tanC* tanP*) - 6Pf-CI tanC* tanP* (1 - tanC* tanP*) 

6pFCI tanP* (tanC - tanP ) 6pFCItanC tanP' 
+ + —— 

(1 -tanC* tanP*) (1 -tanC* tanP*)2 

SpFrT[tanP* + tanC* tanP* tan(C* + P*) 
tan(C* + P*) + tki (20) 

(1 - tanC* tanP*) 

The result of putting the expansions of the numerator and denominator 
terms into equation (17) is another expression of the form of equation (18), 

[1 +tanC*tan(C* + P*)] 
[tanC + p tan(C* + P*)] + p„6pFrTtanP* ps =

 c c F C I (1 - tanC* tanP*) 

[p tanCtan(C*+P*)-1]+p r5pF P T tanCtanP* [ 1 + tanC*tan(C*+ P*)] 
c c F C I (1 - tanC* tanP*) 

tanC + pctan(C* + P*) pc6pF C I tanP*[ l + tanC*tan(C*+P*)] 

p tanC tan(C* + P*)- l (1 - tanC*tanP*)[P(;tanC tan(C*+P*)-l 

[tanC + pctan(C* + P*)] [pc6ppcItanC tanP*(l + tanC*tan(C* + P*))] 
(1 -tanC*tanP*) [pctanC tan(C* + P*) - I ] 2 
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Combining the second and th i rd terms and replacing (C +P ) by 

(P-C) gives, 

5 tanC + p tan(P - C) 
tanA pctanC tan(P - C) - 1 

Pc<SpFCItanP*[l+tanC*tan(P-C)] [pctanCtan(P-C) - 1 - tanC(tanC+ pctan(P-C))] 

(1 - tanC* tanP*) [p„tanC tan(C* + P*) - l ] 2 

tanC + pctan(P-C) pc6pFCItanP* sec C[l + tanC* tan(P-C)] 
PctanC tan(P-C) -1 (1 - tanC* tanP*) [pctanC tan(P-C) - I] 2 

, (21) 

Comparing the last expression to p = p + YprT^PFCI snows tna't 

tanA[tanC + p^tan(P-C)] p = 5 (22) 
s pctanC tan(P-C) -1 

,* 2 -tanAp tanP sec C[l+tanC tan(P-C)] 
Y = c_^ (23) 
rL1 (1 -tanC tanP*) [p tanC tan(P-C) - I T 
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The expression for yFC, can be simplified as follows: 

-tanAp sec2C[l + tanC* tan(P-C)] 
Y = —. - . 
FCI (l/tanP*-tanC*)[pctanCtan(P-C)-!]2 

-tanApcsec2C[l+sinC*sin(P-C)/cosC*cos(P-C)] 
(cosP*/sinP*-sinC*/cosC*)[pctanCtan(P-C) - I ] 2 

-tanAp sec2C sinP*[cosC*cos(P-C) + sin(P-C)] 
cos(P-C)(cosP*cosC* - sinP*sinC*)[pctanCtan(P-C) - l ] 2 

(24) 
-tanAp sec2CsinP* cos(C*-(P-C)) 
cos(P-C)cos(C*+P*)[pctanCtan(P-C) - I ] 2 

-tanApcsec2CsinP*cosP* 
= 
cos (P-C)[pctanCtan(P-C) -1] 

-tanA pcsec2Csec2(P-C)sin2P* 
2[pctanCtan(P-C) - I ] 2 
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The fractional error of p due te birefringence in the Faraday cell 

core is 

(f) - (nr) <»> 
v P/FCI \ P / 6 p F c i 

where SPprT = *1FCI + ""^FCT Really, the quarterwave plate affects only 

the phase shift measured by A and not the intensity of the beam and under 

this condition ty = 45°, A = 90° and pc° - -i. When, in addition, C = -rr/4, 

equation (22) gives, 

-tanA[l -i tan(P -TT/4)] 

[i tan(P-Tr/4) + 1] 

-tanA(l + tanP - i tan P + 1) 
(i tan P - i + 1 + tanP) 

-tanA(cosP + sinP - isinP + i cosP 
(isinP - icosP + cosP + sinP) 

(e"
iP + ie' i P ) 

tana .p .p 
(e - ie ) 

. . -i'2P/i + i \ 
-tanA e ( I■■_ ! J 

-i?p 
-i tanA e

 xcv 
(26a) 
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Similarly, for c = -TT/4, equation (22) reduces to 

p~ = i tanA e -i2P (26b) 

We can now use equations (24), (25), and (26) to solve for 5^prT 

and SA r. F i rs t , for C = TT/4 and p = - i , 

^FCI 
i tanA sec (P - - ^ ) sin2P^ 

[1 tan(P - J ) + I ] 2 

1 tanA sin 2P 

c o s 2 ( P - J ) i(tanP -1) 
„(1 +tanP) +1_ 

-.2 

i tanA sin 2P (1 +tanP)' 

-4=r cosP + - L sinP) [tanP(i +1) + ( - i +1 ) ] 2 

/2 / I / 

1 t a n A s i n 2 P ^ c o s P
c ; s ^ P ) ] 2 

^(cosP + s i n P ) 2 [ ( 1 - i ) ^ P + i s i n P ) ] 

2i tanA sin2P 
( l - i ) 2 e 1 2 P 

-tanA sin2P* e"l2P 

tanA e" l 2 P (sin2P cos2FCI -cos2P sin2FCI) (27) 
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For p = p 
° » 

Y 
- ^ = -i(sin 2P cos2FCI - cos2P sin 2FCI) (28a) 

and for C = -TT/4, p = p , 
o 

Y 
FCI = i(sin2Pcos2FCI - cos2P sin 2FCI) (28b) 

Equation (25) becomes 

Kp ) = +i(sin2P cos2FCI - cos2P sin 2FCI ) ( t 1 F C I + i t 2 F C I ) (29) 

fo r C = ±fi"/4, and the corrections to A and ip are given by 

SA = I m ( ^ ) = Ti(sin2P cos2FCI - cos2P sin2FCI) t 1 F C I (30) 

and 

6i|> = \ sin 2ip Re 9p_ 
p FCI 

± ^ s i n 2A(sin 2Pcos 2FCI - 2Psin2FCI) t 2 F C I (31a) 

for those zones in which sin 2ip = sin2A. 
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For those zones in which sin2ij; = -sin2A, 

<ty = + %sin2A(sin2P cos2FCI - cos2P sin2FCI) t 2 F C I . (31b) 

When the error terms have all been derived, they are added together 
to give the total correction to ip and to A. Care must be taken that 
the parameters appear with the correct signs; the signs depend on the 
setting of C and the range of A and the range of P. The result is that 
32 equations are needed to characterize A and 32 more are needed to 
characterize ip. Sixteen equations, one for each zone, are used when the 
nulling angles have been measured in standard azimuth angles, and the 
other sixteen are used when the nulling angles have been measured in 
rotated azimuth angles. The equations for ip and A are written out in 
full in Tables H a and lib (Appendix A). Tables H e , lid, Ilia, and 
11 lb contain the signs of the parameters in the equations for ip and A 
for all groups. 

If the ideal-value equations for A (Table I) are solved for 2p and 
the resulting expression substituted for 2p into the corrected equations 
for A, the final result is a set of equations for p. Replacing 2a in the 
equations for ip with expressions in terms of the ideal value of ty yields 
a set of equations for a. If the same sort of substitution is made for 
2P in the equations for A (for rotated azimuths), the resulting set of 
equations for P are identical to those for p. The same is true of the 
equations for A; they are identical to those for a. The equations for A 
and P are used in linear combinations to solve for the parameters. The 
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procedure will be outlined in the next section. 
Tables IVa and IVb show the complete equations for A and P for 

group B. The analysis also includes intensity effects in the analyzer 
Faraday cell. This involves use of the coupling constant ypCR» having 
the same form as yWR, derived in Ref. (1), and Sp F C R = ^iprR"1" 1# t2FCR' 
(6A)FCn and (<ty)FCR a re found as in equations (30) and (31). 



-35-

II. EVALUATION OF THE PARAMETERS 

A. Introduction 
Nineteen parameters have been used to characterize the component 

imperfections, window birefringence, and azimuth angle errors. Eight of 
the parameters appear only in the equations for ip and are solved using 
the equations for A2, A 2, A- and A.. The other parameters, with one 
exception, appear only in the equations for A and are evaluated using 
the P.j equations. The exception is 6C which is in all of the equations. 

The expressions contained in this section are those that were used 
to evaluate the parameters. Some alternate expressions have also been 

indicated if there is a choice between determining a parameter from 
measurements made on either a dielectric or a metal. In general, the 
expressions presented are the simplest. A discrepancy of nearly half a 
degree in the value of t 1 F C R sin2FCR did not occur between dielectric and 
metal measurements; the value for the metal measurements was chosen. 

The equations for A and ip in terms of the azimuth angles are 
different for each group of zones. As a result, the definition of a 
parameter depends on the group in which the measurements occur. Once 
defined, however, the parameter does apply to other zones. The parameter 
definition does not depend on the use of standard or rotated azimuths 
for the measurement. 

B. Experimental Procedure 
Inspection of the complete equations for i|> and A in Table IVa and 

IVb show that the magnitude of the corrections depends upon <j> and A. 
By the appropriate choice of the specimen and the arrangement of the 
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ellipsometer, this functional dependence on ip and A may be used to simplify 
the expressions. For reflection from a dielectric, AQ = 0° and ^Q = 45°. 

Measurements were taken in each of the four zones for the group 
determined by the experimental value of A. It will be shown that the 
appropriate averaging of the azimuths A and P for the zones isolates 
certain component parameters. Isolation of parameters is also achieved 
by making four-zone measurements with and without various components. It 
should be noted that when the Faraday cells are removed, manual ellipsometer 
measurements are necessary. These were performed by monitoring the output 
voltage from the photo-multiplier tube, and determining the minimum inten
sity by averaging azimuths for A and P which give equal voltages on each 
side of the minimum. 

The ellipsometer was first placed in the straight-through position. 
With Faraday cells in place, the calibration circles of A and P were 
adjusted to give minimums for A being perpendicular to P. The calibration 
circle for C was adjusted to give the smallest average deviation when set 
parallel to A and P. The Faraday cells were removed, and a four-zone 
measurement was made. 

The ellipsometer was then aligned to reflect at 75° from a surface 
facing up. Alignment was performed by auto-collimation from mirrors on 
a prism accurate to 16 seconds of arc. Without the Faraday cells, 
multiple four-zone measurements were made from a clean, uncoated glass 
prism. The specimen was realigned for each four-zone measurement, to 
allow the azimuth angle Sg to be averaged to zero in the analysis of the 
data. With the specimen fixed, the Faraday cells were inserted at a 
fixed orientation. One four-zone measurement was performed. The 
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procedure for the dielectric was repeated for a metal surface. Finally, 
four zone measurements with and without the cell windows were conducted 
for reflection from the metal specimen. 

C. Expressions for the Parameters 
The following subscripts have been used to identify the set of 

measurements used in the calculation of each parameter: 
S — measurements made while the ellipsometer is in the straight-

through position, 
D — measurements made using a dielectric as a specimen, 

FC,NFC — measurements made with and without the Faraday cells in place, 
respectively, 

W,NW — measurements made with and without the windows in place, 
respectively, 

The windows are always used in combination with the Faraday cells (though 
the Faraday cells are sometimes used alone), and in the context of this 
paper, FC, NFC, and NW will all refer to measurements made on either a 
dielectric or metal specimen. In addition, the notation < > represents 
the average of multiple measurements of the quantity inside the brackets. 

Whenever A and \\> appear in the expressions for the parameters, they 
refer to the four-zone average calculated from the set of measurements 
that is being used to evaluate the parameter. If the measurements are 
taken with the windows and/or Faraday cells in place, correction terms 
must be added to the four-zone average for A. For measurements made with 
only the Faraday cells the correction term is t 2 F C R cos 2FCR; for measure
ments made with both the windows and Faraday cells in place, the correction 
term is the sum of t9C-rD cos 2FCR, t 9 U Tcos2WI, and t91IDcos2WR. 
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The correction terms are the same for all groups. Table V contains the 
formulas for the four-zone averages for A and ty for each group and the 
correction terms for the four-zone average of A. 

Because most of the parameters do not depend directly on other 
parameters, the order in which the parameters are calculated is not 
important except in a few instances. Some of the terms for the Faraday 
cells or windows involve a four-zone average of A. Therefore they 
indirectly depend on t 2 W Icos2WI, t2WRcos2WR, and/or t?FpR cos 2FCR, 
terms which appear explicitly only in the equations for A. The expressions 
for these parameters are given first. 

From measurements made on a dielectric: 

t2FCRcos2FCR = ^[(PrP2+P3-P4)FC-(prP2+P3"P4)NFC] (32a) 

for groups A and C 

= ^C(-P1+P2-P3+P4)FC - C-P1 + P2-P3
+P4)NFC (32b) 

for groups B and D . 

The terms t2WIcos2WI and t2WRcos2WR always appear as a sum in the 
equations for A and P.; therefore it is not necessary to solve for each 
parameter individually. From measurements made on a metal: 

t 2 W Icos2WI +t 2 W Rcos2WR = fc[( V P 2 + P3"P4V(PrP2 + P3-P4 W (33a) 

for groups A and C, 

= %C(- p
1
+ p

2- p3 + P4 )W- (- Pl + P2-P3+P4)NW] (33b) 

for groups B and D . 

The next ten expressions are for the parameters that appear in the 
equations for ifj, (from measurements made while the ellipsometer is in 
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straight- through pos i t i on ) : 

SC +6Ac = 90° - %j(A1+A2+A3+A4)s fo r groups A and D, (34a) 

6 C c " 6 A c = 9 0 ° ~ ^ ( A i + A 2 + A 3 + A 4^s f 0 r 9 r o u p s B a n d C ' (3 4 b) 

From mul t ip le measurements made on a d i e l ec t r i c with neither the Faraday 

ce l ls nor windows in place: 

sin2i|>D cosADSCc + <SAc = 90°- ^<A]+A2+A3+A4 >D 

fo r groups A and D, 

sin2^d cosADSCc-6Ac = 90°- i f ^ + A g + ^ + A ^ D (35b) 

for groups B and C. 

Combining the appropriate form of equations (34) and (35) and solving 

for 6C gives c 3 

(A, + A ? + A ~ + A J - <A, + A ? + A ^ + A 4 ) n 
6C = ! - - — ! - ^ - ^ - fo r a l l groups. 

c 4(cosADsin2^-l) (36) 

The value of 6C may now be substituted into equation (34) to solve 
for SA . c 

SAc = 90° - %f (A-j + A
2

+ A 3 + / V s " 6 C c for groups A and D, (37a) 

6Ac = -90°+ %f (A1
 + A

2
+ A 3 + A

4 ) S
 + SCC fo r groups B and C. (37b) 

From measurements made without Faraday ce l l s on a d i e l e c t r i c : 
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(A, - A . - A - + A ) 
t ? p = — ! — for groups A and B , (38a) 

v 4sin 2I|J 

(-AT + A ? + A . , - A J 
= ! £ _ _ ^ !*_ f 0 r groups C and D . (38b) 

4sin 2ijj 

From mul t ip le measurements, without Faraday c e l l s , on a metal: 

<A1 +A3> -180° -2(sin2\J>cosA6C - SA ) 
t = (39a) 

I L U ' J ; sin2I/J sinA 

-<Ao+A / l> + 180° + 2(sin2ibcosA6C„ - <5A J 
t K ( 2 4 ) = 2 — i C- C- (39b) 

I L ^ ' ^ sin2ij; sinA 

for groups B and C. For groups A and D, 

-<A] +A3>+180° -2(sin2ijjcosA6Cc + 6Ac) 
t l C ( l , 3 ) = sin2i|j sinA ^39c^ 

A2+A4> -180° +2(sin2ij jcosA6Cc+6Ac) 
t lC(2 ,4) = sin2i/j sinA ( 3 9 d ) 

I f the measure of the quarter waveplate in zones 1 and 3 is q =45c 

or Q = 135°, then t-,„ = t,-/-, ~\ and t 7 c = t ^ / p 4 > . Otherwise, 

t lC = t lC (2 ,4 ) a n d t l C = t l C ( l , 3 ) ' 
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t ? F r T cos2FCI = (40a) 
CYKji 2sin 2iJ; cosA 

j sin 2FCI = 

From measurements made wi th the Faraday ce l ls on a d ie l ec t r i c 

[ (A 1 +A 2 +A 3 +A 4 )F C - (A 1 +A 2 +A 3 +A 4 )N F C ] 

for groups A and D, 

= - [ (A1 +A2 +A3 +A4 )F C - (A1 +A2 +A3 +A4 )F C I ] ^ 

2sin 2ty cosA 
for groups B and C. 

From measurements made using the Faraday ce l ls on a metal: 

-[(A1+A2+A3+A4)FC - (A-j +A2+A3+A4)NFCJ + 2t2FCIcos2FCI(sin&|;cosA) 

2sin 2IJJ sinA 

(41a) 
for group A, 

-[(A1+A2+A3+A4)FC - (A1+A2+A3+A4)NFC] - 2t2FCIcos2FCI(sin2^cosA) 

2sin 2i> sinA 

for group B, ^ ' 

[(A1+A2+A3+A4)FC - (A1+A2+A3+A4)NFC] - 2t2FCIcos2FCI(sin2iJjcosA) 

2sin 2ip sinA 
(41c) 

for group C, 

[(A-)+A2+A3+A4)FC - (A1+A2+A3+A4)NFC] +2t2FCIcosFCI(sin2iJJCOsA) 

2sin 2ifi sinA 
(41d) 

for group D. 
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From measurements made with the Faraday cells on either a 

dielectric or metal specimen: 

t1FrRcos2FCR - ̂ r W V F C - ' V V W N F C (42a) 
lhLK 2sin 24) 

for groups A and B , 

(-A1+A2+A3-A4)FC-(-A1+A2+A3-A4)NFC 
(42b) 

2sin 2I|J 
fo r groups C and D , 

and 

* c ^ o c r n (A rA 2+A 3 -A 4 )F C - (A rA2+ A
3 -A4)NFC , , 

t 1 F r D sin 2FCR = (43a) 
""L K 2cos 2<J; 

fo r groups A and C , 

( ~ A 1 + A 2 ~ A 3 + / V F C " ( A 1 + A 2 ~ A 3 + / V N F C ( 4 3 b ) 

2cos 2ip 
fo r groups B and D . 

From measurements made with both Faraday ce l ls and windows in place 

on a metal: 

, <in?WT - [ ( f l 1 + W V y - ( V W V i ] ,,, i 
t 9 I I T sm2WI = (44a) 
^W i 2sin 2i|> sinA 

fo r groups A and B , 

(A ] +A2 +A3 +A4 )W - (A1 +A2 +A3 +A4 )N W 

2sin 2ty sinA 
for groups C and D 

(44b) 
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The next six expressions are for the remaining parameters that 
appear only in the equations for A. Because the terms t,p and 6P 
always appear as a sum in the equations for A and P, they are evaluated 
as a single term. From measurements made without the Faraday cells in 
place, on either a dielectric or metal specimen: 

tlP + 6 Pc = 6Cc + 9 0 ° " ̂ P l + P 2 + P3 + f V for all groups . (45) 

From measurements made without the Faraday cells, on a metal: 

(-p-, +P3) ( - P 2
+ [ V 

t2C(l,3) = ; and ^0(2,4) = : (46a) 
sinA sinA 

fo r groups A and C, 

( P ! - P 3 ) ( p
2 - p 4 ) 

^ 0 ( 1 , 3 ) = a n d t2C(2,4) = (46b^ 
sinA sinA 

for groups B and D. 

From measurements made with the Faraday ce l ls on a d i e l e c t r i c : 

t2 F C Rsin2FCR = fctan2iK(PrP2-P3+P4)FC-(PrP2-P3+P4)NRC] (47a) 

for groups A and B, 

= ^ tan2^[ ( -P 1+P 2+P 3 -P 4 )F C - ( -P 1+P 2+P 3 -P 4 )N F C ] ( 4 7 b ) 

fo r groups C and D. 
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From measurements made with the Faraday cel ls , on either a dielectr ic 

or metal specimen, 

t2pcRsin2FCR = \ tan2^[(
p

1-
p

2-
p

3+P4)FC - (
p
r

p
2 -

p
3

+ f
V N FC

 ( 4 8 a ) 

for groups A and B, 

= % tan2ij,[(~P1+P2+P3-P4)FC-(-P1+P2+P3-P4)NFC (48b) 

for groups C and D. 

From measurements made with the Faraday cells, on either dielectric 
or metal specimen: 

(P1+P2-P3-P4)FC - (P1+P2-P3-
p
4)NFc 

t , F r T cos2FCI = ' ■ <■
 6 4 hL '>

 6 4 mi for al l groups. (49) 
""

L1 2 cosA 

From measurements made with the Faraday cells on a metal: 

t sin2FCI =
 [P

r
P
2-

P
3

+P
4)FC " ( P 1 - P 2 -

P
3

+ P
4 ) N F C

] + 2 t
2FCR

S l n 2 F C R ( c o t 2
^ 

1FCI 2sinA 
(50a) 

for groups A and B, 

[(P rP2-P3+P4) - (P rP2-P3+P4)NFC] -2t2FCRsin2FCR(cot2t(;) 

2sinA 
(50b) 

for groups C and D. 
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t2WRsin2WR = ^ C( pr P2- P3 + P4 )W- ( Pr P2- P3 + P4 )NW ] (51a) 

for groups A and B, 

= ^ C(-P1+P2+P3-P4)w- (-P1+P2+P3-P4)NW] (51b) 
for groups C and D. 

Now that all of the parameters have been defined, the specimen mis-
positioning error can be determined. For groups A and D, 

, \ (R1 - ResA*) - sin2ij; cosA SC - <5A 
SB" = c ' c (52a) 

cos2<}) + sin2ip cosA 

and for groups B and C, 

, \ (R"-ResA_) + sin2i|j cosA SC - SA 
6B" = c _ _ c _ ( 5 2 b ) 

cos2t() - sin2ip cosA 

The sign refers to the setting of the quarter wave plate. If q=45° 
or Q = 135° for zones 1 and 3, then ResA+ = A] +A 3 and ResA" = A 2+A 4-
Otherwise, ResA = A 2 + A 4 and ResA- = A, +A3- Table VI contains the 
corresponding expressions for R which are different for each group. 

Finally, we have for the azimuth angle errors, 

6Cr = SC + 63* (53) 

SP1 = 5Pc + S31 (54) 

SA1 = SAc + (cos2c())SB± (55) 
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where the errors SA , SP , and SC in the calibration circle azimuths 
c c c 

are given in equations (37), (45), and (36). Note that, for the purpose 
± ± of calculation, the combinations t,p + 5P - SC which appear in the 

equations for A and P are equal to t l p + SP -SC . 

Table VII contains the numerical values of the parameters calculated 

for our experiments. 

D. Index of Parameter Expressions 

Parameters that appear in the equations for ty and A: 

SA equation 

SC equation 

S3 equation 

SA equation 

SC equation 

'1C 
'2P 
t2FCIcos2FCI 

t2FCIsin2FCI 

t1FCRcos2FCR 

t1FpRsin2FCR 

t2WIsin2WI . 

equation 

equation 

equation 

equation 

equation 

equation 

equation 

Parameters that appear in the equations for 

SC equation 

5P equation 

'IP equation 

37) 

36) 

52) 

55) 

53) 

39) 

38) 

40) 

41) 

42) 

43) 

44) 

A and P: 

36) 

45) 

45) 
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S3 
SC 
SP 

*2C 
t1FCIcos2FCI 
t
lFCI

s i n 2 F C I 

t2FpRcos2FCR 
t2FCRsin2FCR 
t2WIcos2WR . 
t2WRcos2WR . 
t2WRsin2WR . 

equation 
equation 
equation 
equation 
equation 
equation 
equation 
equation 
equation 
equation 
equation 

52) 
53) 
54) 
46) 
49) 
'50) 
32) 
48) 
r
33) 
[33) 
51) 
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III. RESULTS AND DISCUSSION 

A. Parameter Values 
The magnitudes of the twenty parameters (Table VII, Appendix A) 

indicate that the quarter wave plate has the largest imperfections. 
Intensity effects give a maximum error of 1.72 degrees (t, = -3.45°) in 
the determination of the relative amplitude ^, while shifts in the 
relative phase give a maximum error of 0.43 degrees in the determination 
of A (t2 = -0.43°). Errors in the divided circle readings are next in 
importance, with SA and SC combining to give a maximum error of 1.1 
degrees in I/J. The holders for the retarder and polarizing prisms would 
allow correction for these effects by the rotation of the components. 

Both relative phase and relative attenuation effects are present in 
the Faraday cells. The largest parameters are for the analyzer Faraday 
cell (t 1 F C R sin2FCR = 0.242, t 2 F C R cos 2FCR = -0.253). The windows of 
the stagnant cell exhibit minor birefringence, with only t 2 W I sin2WI = 
-0.228 being significant. However, the windows of the ultra-high vacuum 
chamber have a much larger effect (t2WT cos 2WI + t 2 W R cos 2WR = -1.54, 
t 2 W I sin2WI = 0.632). 

B. The Variation of Imperfection Effects with TJJ and A 
The complete equations (Table I, Appendix A) show that the corrections 

for component imperfections have a trigonometric dependence on ij; and A. 
This results from the use of the rotator matrix (p. 15) to orient 
the principal reference frame of each component. Figures 4 and 5 indicate 
this dependence. The computer program discussed in Appendix C was used 
to correct experimental measurements on the anodic dissolution of zinc 
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Fig. 4. Correction for ellipsometer imperfections 
Zn, 0.5M KOH, -l.OV vs. Hg/HgO. 
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in alkaline solution. Figure 4 shows that over a small range of A and ^, 
the corrections result in a parallel shift of the curve calculated by 
assuming ideal components. Figure 5 shows that over large ranges of A 
and ty, the magnitude of the corrections vary and may even change sign. 
An approximate correction procedure discussed in Appendix B shows explicitly 
the variation of the corrections for component imperfections with the 
orientation of the polarizer, analyzer, and quarter wave plate. 

C. Verification of the Theory 
Attempts were made to verify the theory used to derive the parametric 

equations by correcting 4-zone measurements on materials covering a range 
of A and \p values. The measurements on Cd, Ag, Cu, and Zn were randomly 
chosen from a large number of experiments conducted over a period of five 
months following the calibration of the ellipsometer. The measurements 
on Ag20 and CdO samples prepared from compressed powders were made fourteen 
months after the calibration. For comparison, A and ^ , calculated 
assuming ideal components, and the range of the corrected A and ty values 
are also presented. 

The corrected 4-zone measurements indicate that the calibration 
procedure gives an excellent account of the effects of component imper
fections in the determination of the relative amplitude parameter \p. 

Over ranges of A values of 0.34 to 101.82, and ty values of 22.84 to 43.05, 
the maximum spread in corrected ip values is ±0.06 degrees for the Ag?0 
sample. For the metal specimens, even better results were obtained, 
with the maximum spread being +0.025 degrees. The corrections to the 
relative phase A at first appear less accurate, with the largest spread 
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Corrected 4-zone 

Material p a q 

Cd 0001 86.20 40.72 45 
Single crystal 176.44 144.47 45 

93.33 142.05 135 
3.06 38.36 135 

Average: 

Ag 100 93.22 45.75 45 
Single crystal 3.68 139.69 45 

86.20 137.34 135 
175.96 43.49 135 

Average: 

Cu, o f f axis 101.59 39.16 45 
Single crystal 11.71 144.37 45 

78.05 142.27 135 
167.65 37.11 135 

Average: 

Zn 1010 83.64 39.52 45 
Single crystal 173.99 145.92 45 

95.72 143.59 135 
5.54 37.19 135 

Average: 

Ag polycrystal 93.52 44.46 45 
3.24 141.05 45 
86.49 138.72 135 
175.72 42.20 135 

Average: 

surements. 

A A ip 

97.60 
97.12 

96.66 
96.12 

96.88 
+0.74 

96.48 
96.86 

96.74 
96.45 

96.63 
±0.20 

40.72 
35.53 
37.96 
38.36 

38.14 
±2.60 

38.13 
38.10 
38.14 
38.13 

38.13 
±0.02 

83.56 
82.64 
82.40 
81.92 

82.63 
±0.82 

82.45 
82.37 
82.46 
82.27 

82.39 
±0.10 

45.75 
40.31 
42.66 
43.49 

43.05 
±2.72 

43.05 
43.06 
43.05 
43.07 

43.06 
±0.01 

66.82 
66.58 
66.1 
65.3 

66.20 
±0.76 

65.75 
66.26 
66.22 
65.58 

65.95 
±0.34 

39.16 
35.63 
37.73 
37.11 

37.40 
±1.77 

37.39 
37.39 
37.40 
37.40 

37.395 
±0.005 

102.72 
102.02 
101.44 
101.08 

101.82 
±0.82 

101.61 
101.75 
101.53 
101.40 

101.57 
±0.18 

39.52 
34.08 
36.41 
37.19 

36.80 
±2.27 

36.82 
36.77 
36.79 
36.77 

36.80 
±0.025 

82.96 
83.52 
82.98 

81.44 

82.73 
±1.04 

81.85 
83.25 
83.05 

81.78 

82.48 
±0.735 

44.46 

38.95 
41.28 
42.20 

41.72 
±2.76 

41.75 
41.69 

41.73 
41.75 

41.72 
±0.03 
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Corrected 4-zone measurements (continued) 

Material A *, U* 

Ag20 powder 

CdO powder 

Pb02 powder 

140.65 
50.69 
40.18 

129.91 

134.56 
44.62 
45.16 

135.20 

129.09 
38.70 
50.96 

140.70 

67.80 
113.45 
113.65 
67.95 

59.87 
120.48 
120.33 

59.67 

62.49 
118.87 
118.31 
61.86 

135 
135 
45 
45 

Average: 

135 
135 
45 
45 

Average: 

135 
135 
45 
45 

Average: 

11.30 
11.38 
9.64 

10.18 

10.62 
±0.98 

0.88 
0.76 
0.32 
0.40 

0.59 
±0.29 

11.82 
12.60 
11.92 

11.40 

11.94 
±0.66 

11.95 
12.13 
9.59 
9.83 

10.87 
±1.26 

0.12 
0.12 
0.37 
0.75 

0.34 
±0.41 

11.15 
11.87 
11.99 
11.72 

11.70 
±0.55 

22.20 
23.45 
23.65 
22.05 

22.84 
±0.79 

30.13 
30.48 
30.33 
30.33 

30.32 
±0.19 

27.51 
28.87 
28.31 

28.14 

28.21 
±0.70 

22.87 
22.83 
22.94 
22.94 

22.89 
±0.06 

30.35 
30.33 
30.31 
30.32 

30.33 
±0.02 

28.24 
28.22 
28.22 
28.22 

28.22 
±0.02 
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for the metal samples being ±0.74 for the polycrystalline Ag surface, 
while the spread in corrected 4-zone measurements increases over the 
range of uncorrected values for the two compressed-powder oxide samples. 

An explanation for the range of the corrected 4-zone values of A is 
anisotropy of the specimen surface. For the idealized planar, isotropic 
surface, A and \\> would not depend upon the zone of measurement. However, 
structural irregularities such as surface roughness, strain-induced 
birefringence, or crystallographic orientation would lead to directionally-
dependent optical properties of the surface. Evidence supporting aniso
tropy is that the range of corrected values of A is greatest among the 
single crystal specimens for the off-axis Cu surface. Also, it is 
certain that the oxide samples were strained by the elastic contraction 
of a protective brass ring following compression at 50,000 psia. 

Another result which should be emphasized is that averaging of 4-zone 
measurements does not eliminate the effects of imperfections in the 
determination of the relative phase A (Table V, Appendix A). The residual 
error t 2 F C R cos 2FCR + t 2 W I cos 2WI + t 2 W R cos 2WR remains. This suggests 
that the glass rod with fewer imperfections is used for the analyzer 
Faraday cell. 
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IV. CONCLUSIONS 

The application of parametric equations to the calibration of our 
automatic ellipsometer indicates that the quarter wave plate contains 
the largest optical imperfections. The Faraday cells used for self-
compensation contain both dicroism and birefringence. The windows of 
the ultra-high vacuum system exhibit significant birefringence. 

The effectiveness of the calibration procedure remains uncertain due 
to the possibility of surface anisotropies in the specimen being measured. 
The results of corrections to the determination of the relative amplitude 
parameter y suggest an exceptional accuracy of ±0.02 degrees. The 
consideration of surface anisotropies will be necessary to obtain a more 
definitive verification of the calibration procedure. 

The calibration was performed for the monochromatic Hg 5461 A line. 
It is expected that the 20 parameter values determined by the analysis 
will be functions of the wavelength of light. 

This work was supported by the Division of Materials Sciences, Office 
of Basic Energy Sciences, U. S. Department of Energy. 
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APPENDIX A 

Table I Zone assignments and ideal values of \b and A. 

Table H a Complete corrected equations for ib for Group B 
(standard azimuths). 

Table lib Complete corrected equations for A for Group B 
(standard azimuths). 

Table lie Signs of the parameters in the corrected equations for ib 
for all groups (standard azimuths). 

Table lid Signs of the parameters in the corrected equations 
for A for all groups (standard azimuths). 

Table 11la Signs of the parameters in the corrected equations 
for ty for all groups (rotated azimuths). 

Table 11lb Signs of the parameters in the corrected equations 
for A for all groups (rotated azimuths). 

Table IVa Complete corrected equations for the analyzer azimuth 
(standard azimuths). 

Table IVb Complete corrected equations for the polarizer azimuth 
(standard azimuths). 

Table IVc Signs of the parameters in the corrected equations 
for the analyzer azimuth for all groups. 

Table IVd Signs of the parameters in the corrected equations 
for the polarizer azimuth for all groups. 

Table V Four-zone averages for ib and A. 

Table VI Expressions for "R". 

Table VII Values of the parameters. 

Table VIII Complete equation for standard analyzer azimuth for 
Zone Bl. 



TABLE I 
ZONE ASSIGNMENTS AND IDEAL VALUES OF T A N D A 

TABLE I 

ZONE 

Al 
A2 
A3 
A4 

Bl 
B2 
B3 
B4 

CI 
C2 
C3 
C4 

Dl 
D2 
D3 
D4 

p 

0° 
45° 
90° 

135° 

0° 
45° 
90° 

135° 

0° 
45° 
90° 

135° 

0° 
45° 
90° 

135° 

- 45° 
- 90° 
- 135° 
- 180° 

- 45° 
- 90° 
- 135° 
- 180° 

- 45° 
- 90° 
- 135° 
- 180° 

- 45° 
- 90° 
- 135° 
- 180° 

STANDARD AZIMUTH ANGLES 
a 

90° - 180° 
90° - 180° 
0° - 90° 
0° - 90° 

0° - 90° 
0° - 90° 

90° - 180° 
90° - 180° 

0° - 90° 
0° - 90° 

90° - 180° 
90° - 180° 

90° - 180° 
90° - 180° 
0° - 90° 
0° - 90° 

c 

45° 
135° 
45° 

135° 

135° 
45° 

135° 
45° 

45° 
135° 
45° 

135° 

135° 
45° 

135° 
45° 

A° 
90° - 2p 
2p - 90° 

270° - 2p 
2p - 270° 

90° + 2p 
270° - 2p 

2p - 90° 
450° - 2p 

270° - 2p 
2p + 90° 

450° - 2p 
2p - 90° 

2p + 270° 
450° - 2p 

2p + 90° 
630° - 2p 

1* ° 

180° -
180° -

a 
a 

a 
a 

180° -
180° -

a 
a 

180° -
180° -

180° -
180° -

a 
a 

j 

3 II 
3 ' 

1 
a 

1 
a 
a 

a 
a 

P 

9. -
135° -

0° -
45° -

90° -
135° -

0° -
45° -

90° -
135° -

0° -
45° -

90° -
135° -

0° -
45° -

135° 
180° 
45° 
90° 

135° 
180° 
45° 
90° 

135° 
180° 
45° 
90° 

135° 
180° 
45° 
90° 

ROTATED AZ 
A 

0° - 90° 
0° - 90° 

90° - 180° 
90° - 180° 

90° - 180° 
90° - 180° 
0° - 90° 
0° - 90° 

90° - 180° 
90° - 180° 
0° - 90° 
0° - 90° 

0° - 90° 
0° - 90° 

90° - 180° 
90° - 180° 

IMUTH ANGLES 
C 

135° 
45° 

135° 
45° 

45° 
135° 
45° 

135° 

135° 
45° 

135° 
45° 

45° 
135° 
45° 

135° 

A° 
270° 

2P 
90° 
2P 

2P 
450° 

2P 
270° 

450° 
2P 

270° 
2P 

2P 
630° 

2P 
450° 

-
-
-
-

-
-
+ 
-

_ 
-
-
+ 

+ 
-
+ 

" 

2P 
270° 
2P 
90° 

90° 
2P 
90° 

2P 

2P 
90° 

2P 
90° 

90° 
2P 
270° 
2P 

<r 
90° - A 
90° - A 

A - 90° 
A - 90° 

A - 90° 
A - 90° 

90° - A 
90° - A 

A - 90° 
A - 90° 

90° - A 
90° - A 

90° - A 
90° - A 

A - 90° 
A - 90° 

co 
i 



TABLE IIA COMPLETE CORRECTED EQUATIONS FOR"^ FOR GROUP B 
(NULLING ANGLES MEASURED IN STANDARD AZIMUTHS) 

TABLE IIA 

ZONE 

B2 

1J1 = a + SA + 6C sin2a sin2p - % t, sin2a cos2p - t_ sin2a - % t-f • cos2FCI sin2a sin2p + h t,f J sin2FCI sin2a cos2p 
- h t.f cos2FCR sin2a + h tifcr sin2FCR cos2a + h t- . sin2WI sin2a cos2p 

i|) = a + <5A + SC sin2a sin2p - h t, + sin2a cos2p + t. sin2a - h t,f . cos2FCI sin2a sin2p - h tjfci s i n 2 F C I s i n 2 a cos2p 
+ h t,, cos2FCR sin2a - h t., sin2FCR cos2a - h t, . sin2WI sin2a oos2p lrcr iter ^wi 

B3 IJJ = 180° - a - SA - SC sin2a sin2p + H tlc~ sin2a cos2p + t- sin2a + h t 2 f c i cos2FCI sin2a sin2p 
- h tofci s i n 2 F C I sin2a cos2p + h tif-j. cos2FCR sin2a - h t,f sin2FCR - h t 2 w i sin2WI sin2a cos2p 

B4 IJJ = 180° - a - SA - SC sin2a sin2p + h t. sin2a cos2p - t_ sin2a + % t^fci c o s 2 F C I sin2a sin2p 
+ h t., . sin2FCI sin2a cos2p - H t,_ cos2FCR sin2a + % t n c _ sin2FCR + % t, . sin2WI sin2a cos2p 2rcx lrcr lrcr Zwi 



TABLE I I B COMPLETE CORRECTED EQUATIONS FOR A FOR GROUP B 
(NULLING ANGLES MEASURED IN STANDARD AZIMUTHS) 

TABLE IIB 

ZONE 

Bl 

B2 

B3 

B4 

A = 90° + 2p - 25C + 2SP + 2t, - t, cos2p + tn- . cos2FCI 'in2p - t, . . sin2FCI cos2p c Ip 2c lrci ^ lrci 
+ t,f cos2FCR 

IP 
t0- sin2FCR cot2a + t0 . cos2WI + t, cos2WR - t0 sin2WR cot2a 2fcr 2wi 2wr 2wr 

A = 270° - 2p + 25C - 2SP - 2tx - t, cos2p - t.f . cos2FCI sin2p + t l f c i sin2FCI cos2p 
+ t ^ cos2FCR - t „ sin2FCR cot2a + t. . cos2WI + t. cos2WR 2fcr 2rcr 2wi 2wr t. sin2WR cot2a 2wr 

A = 2p - 90° - 2SC + 25P + 2t, - t, *" cos2p + t., . COS2FCI sin2p - t,- . sin2FCI cos2p r lp 2c lrci ^ lrci 
+ t,f COS2FCR - t,f sin2FCR cot2a + ^wi COS2WI + t 2 w r cos2WR - t2wrsin2WR cot2a 

A = 450° - 2p + 2SC - 25P - 2t. - t2 cos2p - t l f c i cos2FCI sin2p + t l f c i sin2FCI cos2p 
+ fc2£cr =°= 2FCR 

"lp 
t, f sin2FCR cot2a + t 2 w i cos2WI + t 2 w r cos2WR t 2 sin2WR cot2a 

r CTl O 

Note: SC - SP = (SC 0 + 66) - (SP C + SB) 
= scc - SP C 



TABLE He SIGNS OF THE PARAMETERS IN THE CORRECTED EQUATIONS FOR <V FOR ALL GROUPS 
(NULLING ANGLES MEASURED IN STANDARD AZIMUTH ANGLES) 

TABLE He 

Al 
A2 
A3 
A4 

Bl 
B2 
B3 
B4 

CI 
C2 
C3 
C4 

Dl 
D2 
D3 
D4 

SA 

-
+ 
+ 

+ 
+ 
-
-

+ 
j + 
-
-

-

+ 
+ 

&C sin2a. X 
sin2p 

+ 
+ 
-
-

+ 
+ 
-
-

+ 
+ 
-
-

+ 
+ 

* fclc X 
sin2a cos2p 

+ 
+ 
-
-

_ 
-
+ 
+ 

+ 
+ 
-
-

-

+ 
+ 

t2p X 
sin2a 

+ 
+ 
-

_ 
+ 
+ 
-

+ 
-
-
+ 

+ 

-
+ 

h t 2 f c ± cos2FCI X 
sin2a sin2p 

-
+ 
+ 

_ 
-
+ 
+ 

-
-
+ 
+ 

-

+ 
+ 

h t 2 f c i sin2FCI X 
sin2a cos2p 

+ 
-
-
+ 

+ 
-
-
+ 

+ 
-
-
+ 

+ 

-
+ 

* tlfcr X 
cos2FCR sin2a 

+ 
+ 
-

+ 
+ 
-

+ 
-
-
+ 

+ 

-
+ 

* tlfcr X 
sin2FCR cos2a 

+ 
-
-
+ 

+ 
-
-
+ 

-
+ 
+ 
-

+ 
+ 

h t 2 w i sin2WI x 
sin2a cos2p 

+ 
-
-
+ 

+ 
-
-
+ 

+ 
-
-
+ 

+ 

-
+ 

CT> 
i 



TABLE I ID SIGNS OF THE PARAMETERS IN THE CORRECTED EQUATIONS FOR A FOR ALL GROUPS 
(NULLING ANGLES MEASURED IN STANDARD AZIMUTH ANGLES) 

TABLE I ID 

Zone 

Al 
A2 
A3 
A4 

Bl 
B2 
B3 
B4 

CI 
C2 
C3 
C4 

Dl 
D2 
D3 
D4 

2SC 

+ 
-
+ 
-

-
+ 
-
+ 

+ 
-
+ 
-

-
+ 
-
+ 

2SP 

+ 
-
+ 

+ 
-
+ 
-

_ 
+ 
-
+ 

+ 
-
+ 
-

2t, IP 

+ 
-
+ 

+ 
-
+ 
-

_ 
+ 
-
+ 

+ 
-
+ 

Ho x 
cos2p 

-
-
-

_ 
-
-
-

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

^ f c i X 

cos2FCI sin2p 

+ 
-
+ 
-

+ 
-
+ 
-

-
+ 
-
+ 

-
+ 
-
+ 

t, , . X lfci 
sm2FCI cos2p 

+ 
-
+ 
-

_ 
+ 

-
+ 

_ 
+ 
-
+ 

+ 
-
+ 

t2fcr X 

cos2FCR 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

t „ X 2fcr 
sin2FCR cot2a 

-
-
-

-
-
-

-
-
-
-

-
-
-

t2wi X 

cos2WI 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

t, X 2wr 
cos2WR 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

t2wr X 

sin2WR cot2a 

-
-
-

_ 
-
-
-

-
-
-

-
-
-

I 
CT) 
i 



TABLE IIIA 
SIGNS OF THE PARAMETERS IN THE CORRECTED EQUATIONS FOR"^ FOR ALL GROUPS 

(NULLING ANGLES MEASURED IN ROTATED AZIMUTH ANGLES) TABLE IIIA 

Zone 

Al 
A2 
A3 
A4 

Bl 
B2 
B3 
B4 

CI 
C2 
C3 
C4 

Dl 
D2 
D3 
D4 

SA 

-
-
+ 
+ 

+ 
+ 
-
-

+ 
- + 
-
-

-
-
+ 
+ 

SC X 
sin2A sin2P 

+ 
+ 
-
-

+ 
+ 
-
-

+ 
+ 
-
-

+ 
+ 
-

* t l c
 X 

sin2A cos2P 

-
-
+ 
+ 

_ 
-
+ 
+ 

_ 
-
+ 
+ 

-
-
+ 
+ 

t2px 
sin2A 

+ 
-
-
+ 

+ 
-
-
+ 

_ 
+ 
+ 
-

-
+ 
+ 

* t 2 f ci * 
cos2FCI sin2A sin2P 

-
-
+ 
+ 

-
-
+ 
+ 

-
-
+ 
+ 

-
-
+ 
+ 

h t2fci X 

sin2FCI sin2A cos2P 

+ 
-
-
+ 

+ 
-
-
+ 

+ 
-
-
+ 

+ 
-
-
+ 

* tlfcr X 

COS2FCR sin2A 

+ 
-
-
+ 

+ 
-
-
+ 

-
+ 
+ 
-

-
+ 
+ 

* tlfcr x 
sin2FCR cos2A 

-
+ 
+ 
-

-
+ 
+ 
-

+ 
-
-
+ 

+ 
-
-
+ 

* t2wi X 

sin2WI sin2A cos2P 

+ 
-
-
+ 

+ 
-
-
+ 

+ 
-
-
+ 

+ 
-
-
+ 

cn 
CO i 



TABLE IIIB SIGNS OF THE PARAMETERS IN THE CORRECTED EQUATIONS FOR A FOR ALL GROUPS 
(NULLING ANGLES MEASURED IN ROTATED AZIMUTH ANGLES) 

TABLE IIIB 

Zone 

Al 
A2 
A3 
A4 

Bl 
B2 
B3 
B4 

CI 
C2 
C3 
C4 

Dl 
D2 
D3 
D4 

2SC 

+ 
-
+ 
-

_ 
+ 
-
+ 

+ 
-
+ 

" 
_ 
+ 
-

J + 1 

2SP 

-
+ 
-
+ 

+ 
-
+ 
-

+ 
-
+ 

+ 
-
+ 
-

2 tlp 

-
+ 
-
+ 

+ 
-
+ 
-

_ 
+ 
-
+ 

+ 
-
+ 
-

t2c X 

cos2P 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

_ 
-
-
-

-
-
-

t,. • X lfci 
COS2FCI sin2P 

-
+ 
-
+ 

-
+ 
-
+ 

+ 
-
+ 
-

+ 
-
+ 
-

t, - . X lfci 
sin2FCI cos2P 

-
+ 
-
+ 

+ 
-
+ 
-

+ 
-
+ 
-

_ 
+ 
-
+ 

t2fcr X 

cos2FCR 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

t2fcr X 

sln2FCR cot2A 

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

t, . X 2wi 
cos2WI 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

t, X 2wr 
cos2WR 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

t2wr X 

sin2WR cot2A 

-
-
-
-

-
-
-
-

-
-
-

-
-
-
-

CT> 
I 



TABLE IVA 
COMPLETE CORRECTED EQUATIONS FOR THE ANALYZER AZIMUTH 

(NULLING ANGLES MEASURED IN STANDARD AZIMUTHS) 

TABLE IVA 

ZONE 

BI A = ij; - SA + SC sin2<|) cosA + % t ~ sin2i|j sinA + t - sin2ij; - h t 2 f . cos2FCI sin2i)J cosA 
- h t 2 f . s in2FCI sin2ij) sinA + h t , f cos2FCR sin2\Ji - h t i f r . ] . sin2FCR COS2IJJ - % t 2 . sin2WI sin2ij; sinA 

B2 A = i); - SA + SC sin2>Jj cosA - h t, sin2i|j sinA - t - sin2\Jj - h t 2 f • cos2FCI sin2ij) cosA 
- % t 2 f . s in2FCI sin2ij) sinA - h t , f cos2FCR sin2i|j + h. t-,- sin2FCR COS2IJJ - h. t ^wi s i n 2 W I sin2\jj sinA 

B3 A = 180° - i|i - SA + SC sin2\Jj cosA + h t , s in2i j j s i nA - t , sin2i|) - h t 2 f . cos2FCI sin2i j j cosA 

- h t 2 f c i s in2FCI sin2\|i sinA - h t , f cos2FCR sin2i(j - h ^ifcr sin2FCR cos2iJ> - % t 2 w i sin2WI sin2iji sinA 

A = 180° - i|i - SA + SC sin2i)j cosA - h t . + sin2\|) sinA + t_ sin2i|i - Jj t 2 f c i o o s 2 F C l sin2>() cosA 
- h t - f . s in2FCI sin2<Jj sinA + h t-,~ cos2FCR sin2ijj + % t i f c r

 s i n 2 F C R COS2IJJ - h t 2 . sin2WI sin2ijj sinA 

I 
CT> 
en 



TABLE IVB TABLE IVB 
COMPLETE CORRECTED EQUATIONS FOR THE POLARIZER AGIMUTH 

(NULLING ANGLES MEASURED IN STANDARD AZIMUTHS) 

P = % (A-90°) + SC - SP - t, + % t2 sin A + h ^-\fcj_ cos2FCI cos A + h t l f c i sin2FCI sin A 
- h t 2 £ COS2FCR + h t 2 f c r sin2FCR cot2t|> - % t

2 v l <=os2WI ~ % t 2 w r cos2WR + h t 2 w r sin2WR cot2* 

P = h (270°-A) + SC - SP - t 1 + h t2 ~ sin A + h t l f c i cos2FCI cos A - h t l f c i sin2FCI sin A 
+ h t2f cos2FCR - h t 2 f c r sin2FCR cot2i|i + % t 2 w i cos2WI + % t 2 w r cos2WR - h t 2 w r sin2WK cot2i(; 

p = % (90° +A) + SC - SP - tj_ - h t2o sin A - h ^lfcj_ cos2FCI cos A - h ^lfci_ sin2FCI sin A 
tof COS2FCR - % t,-_ sin2FCR oot2i)i - % t, , cos2WI + % t- cos2WR - h t, sin2WR cot2* "2fcr u2fcr u2wi u2wr 

P = \ (450°-A) 1- SC - SP - tx - h t2c~ sin A - h t
l f c i cos2FCI cos A + h t l f c i sin2FCI sin A 

+ H t_, cos2FCR + h t-.. sin2FCR cot2tfi + % t, . cos2WI + % t- cos2WR + h t, sin2WR cot2iJ) 2fcr "2fcr 2wi 2wr L2wr 

Note: SC - SP = (SC + SB) - (SPC + Sg); Definition is for Group B 
= SC - SA 



TABLE IVC 
SIGNS OF THE PARAMETERS IN THE CORRECTED EQUATIONS 

FOR THE ANALYZER AZIMUTH FOR ALL GROUPS 
(NULLING ANGLES MEASURED IN EITHER STANDARD OR ROTATED AZIMUTH ANGLES) 

TABLE IVC 

IZone 
J 

A l 

A2 

A3 
A4 

B l 

B2 

B3 
B4 

CI 

C2 

C3 
04 

Dl 
D2 

D3 

D4 

SA 

-
-
-
-

-
-
-
-

-
-
-
-

_ 
-
-
-

SC X 

sin2i(; cosA 

-
-
-
-

+ 

+ 

+ 
+ 

+ 

+ 

+ 

+ 

_ 
-
-
-

% t l c x 
sin2\)j s i n A 

-
+ 

-
+ 

+ 

-
+ 

-

+ 

-
+ 

-

_ 
+ 

-
+ 

t 2 P X 

s in2i | j 

+ 

-
-
+ 

+ 

-
-
+ 

_ 
+ 

+ 

-

+ 
+ 

-

h t 2 f c i X 

c o s 2 F C I sin2<j cosA 

+ 

+ 
+ 
+ 

_ 
-
-
-

-
-
-
-

+ 
+ 

+ 

+ 

h t 2 f c i X 

s i n 2 F C I sin2ijj s i n A 

-
-
-
-

_ 
-
-
-

+ 

+ 

+ 

+ 

+ 
+ 

+ 

+ 

h t 2 f c r X 

cos2FCR sin2ijj 

+ 

-
-
+ 

+ 

-
-
+ 

-
+ 

+ 

-

_ 
+ 

+ 

-

* t l f c r X 

s i n 2 F C R cos2<Jj 

+ 

-
+ 

-

_ 
+ 

-
+ 

+ 

-
+ 

-

-
+ 

-
+ 

* t 2 w i x 
s i n 2 W I sin2i(j 

-
-
-
-

-
-
-
-

+ 
+ 

+ 
+ 

+ 
+ 

+ 

+ 

s i n A 

CTl 
^1 



TABLE IVD 

Al 
A2 
A3 
A4 

Bl 
B2 
B3 
B4 

CI 
C2 
C3 
C4 

Dl 
D2 
D3 
D4 

SIGNS OF THE PARAMETERS IN THE CORRECTED EQUATIONS 
FOR THE POLARIZER AZIMUTH FOR ALL GROUPS 

(NULLING ANGLES MEASURED IN EITHER STANDARD OR ROTATED AZIMUTH ANGLES) 
TABLE IVD 

sc 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
I + 

+ 
+ 

+ 
+ 
+ 
+ 

6P 

_ 
-

-

-

-

-

-

_ 
-

-

-

-

-

-

fc
lp 

-

-

-

-

-

-

-

-

-

-

-

-

^ He x 
sinA 

-

+ 
+ 

+ 
+ 
-

-

-

+ 
+ 

+ 
+ 
-

-

h t, , x 
* lfcr 

COS2FCI cosA 

+ 
+ 
-

-

+ 
+ 
-

-

+ 
+ 
-

-

+ 
+ 
-

h fc
lfcr

 X 

sin2FCI sinA 

+ 
-

-

+ 

+ 
-

-

+ 

+ 
-

-

+ 

+ 
-

-

+ 

h t
2fcr

 X 

COS2FCR 

+ 
-

+ 
-

+ 
-

+ 

+ 
-

+ 
-

-
+ 
-

+ 

h t
2fcr

 X 

sin2FCR cos2\f 

+ 
-

-

+ 

+ 
-

-

+ 

-

+ 
+ 
-

-

+ 
+ 

h t, . x 
2wi 

COS2WI 

+ 
-

+ 
-

_ 
+ 
-

+ 

+ 
-

+ 
-

-

+ 
-

+ 

h t
2wr

 X 

cos2WR 

+ 
-

+ 
-

_ 
+ 
-

+ 

+ 
-

+ 

-

+ 
-

+ 

h t
2wr

 X ■: 
sin2WR cot2i|j 

+ 
-

-

+ 

+ 
-

-

+ 

-

+ 
+ 

-

+ 
+ 

4 
CO 



TABLE V TABLE V 

FOUR-ZONE AVERAGES FOR"1^ AND A 

GROUP 
STANDARD AZIMUTH ANGLES 

■ k (a1+a2-a3-a4) + 90° 

(a1+a2-a3-a4) + 90° 

■k (a1+a2-a3-a4) + 90c 

(a1+a2-a3-a4) + 90° 

-h <Pi_P2+P3"P4' + A c 

+ % (P1-P2+P3-P4) + 180° +Ac 

''-5 (P1-P2+P3-P4) + 130° +Ac 

+ h (Pl-p2+p3-p4) + 360° + Ac 

ROTATED AZIMUTH ANGLES 

-k (A1+A2-A3-A4) 

+ k (A1+A2-A3-A4) 

+ k (A1+A2-A.-A4) 

■k (A1+A2-A3-A4) 

h (p
i-

p
2
+p
3
_p
4
) + A c 

+ h (P1-P2+P3-P4) + 180°+Ac 

■h (P1-P2+P3-P4) + 180° +Ac 

+ H (P1-P2+P3-P4) + 360° + Ac r 

For measurements made without Faraday cells and windows, Ac = 0 
For measurements made with Faraday calls, without windows, Ac = t,f cos2FCR. 
For measurements made with Faraday cells and windows, Ac = t,f cos2FCR + t, . cos2WI + t, cos2WR. 



TABLE VI TABLE VI 

EXPRESSIONS FOR "R" 

*~ ZONE 
Al, 

A2, 

Bl, 
B2, 

CI, 

C2, 

Dl, 

D2, 

A3 

A4 

B3 

B4 

C3 

C4 

D3 

D4 

R + 

R 

R~ 

R + 

R + 

R~ 

R~ 

R+ 

= 

= 

= 

= 
= 

+ 

_ 

-
+ 

+ 

-
+ 

fclfcr 
tlfcr 

fclfcr 

^ f c r 

fclfcr 

Hfcr 

fclfcr 
fclfcr 

sin2FCR 

sin2FCR 

sin2FCR 

sin2FCR 

sin2FCR 

sin2FCR 

sin2FCR 

sin2FCR 

COS2I|J 

COS2IJJ 

cos2<jJ 

COS2I(J 

cos2it 

cos2i|) 

COS2'JJ 

COS2I(J 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

sin2if) 

sin2\Ji 

sin2ijj 

sin2i|) 

sin2iJJ 

sin2i(J 

sin2ij) 

sin2ijj 

[t2f . cos2FCI cosA -

[t_. . cos2FCI cosA -2fci 

[-t„ . 2fci 
[-t2fci 

I-^fci 
t-^fci 

[ ^ f c i 
[ ^ f c i 

cos2FCI cosA 

cos2FCI cosA 

cos2FCI cosA 

cos2FCI cosA 

cos2FCI cosA 

cos2FCI cosA 

sinA( 

smA(-

- sinA 

- sinA 

- sinA 

- sir.A 

- sinA 

- sinA 

Hc+ + 

fclc" + 

'"tic" 

< t l c + 

' - ! c + 

( + tlc" 

( + tlc" 

<-lc + 

t 

t 

+ 

+ 

-

-
-

,, . sin2FCI + 2fci 
2fci s i n 2 F C I + 

t,_ . sin2FCI 2fci 
t 2 f . sin2FCI 

t2fci s i n 2 F C I 

t_, . sin2FCI 2fci 

t 2 f . sin2FCI 

t 2 f . sin2FCI 

t 

t 

+ 

+ 

-

-
-

2wi s i n 2 W I > 1 
2w. sin2WI)] 

t 2 w i 

fc2wi 

fc2wi 

2wi 

fc2wi 
fc2wi 

sin2WI)] 

sin2WI)] 

sin2WI)] 

sin2WI)] 

sin2WI)] 

sin2WI)] 

^1 o 
I 
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TABLE VII TABLE VII 
VALUES OF THE PARAMETERS 

(IN DEGREES) 

6 Ac 
6Cc 

6Pc + t l p 

fc2p 

1.088 
1.128 
1.353 
0 .021 

fclc-

t2c~ 

- 3.4527 
- 1.653 
- 0.4286 
- 0.1633 

+ Corresponds to Q = 45° 
- Corresponds to Q = 135° 

-lfci 
:lfci 
:lfcr 
"'lfcr 
:2fci 
:2fci 
:2fcr 
:2fcr 

cos2FCI = 
sin2FCI = 
cos2FCR = 

0.1102 
0.0014 
0.0078 

sin2FCR = + 0.2415 
sin2FCI = 0.0443 
cos2FCI = - 0.1424 
cos2FCR = - 0.2525 
sin]FCR = 0.0742 

Stagnant Cell Windows 

t2wi c o s 2 W I + t2wr c o s 2 W R = 0.0050 
t 2 w r sin2WR = 0.0172 

t„ . sin2WI = 2wi 0.2281 

Vacuum Chamber VJindows 

- 1.54 

- .03 

+ .6322 



TABLE VIII 
COMPLETE EQUATION FOR STANDARD ANALYZER AZIMUTH FOR ZONE Bl TAB 

A = ijj - (SAc+Sg cos2<*i) + (SCc+SB) sin2i); cosA + h t.^~ sin2i(i sinA + t- sin2i(i - h t-f cos2FCI sin2ijj cosA 
- h t 2 f c i sin2FCI sin2i)i sinA + k t l f c r cos2FCR sin2* - h t l f c r sin2FCR cos2iJj - h t2 sin2WI sin2ijj sinA 

From measurements made while the ellipsometer is in the straight-through position (no specimen) 
- Without the Faraday cells or the cell windows. 
Simplifications Reduced Equation 

A = i|i - 6Ac + <5Cc + t 1. No terms for the Faraday cells or cell windows. 
2. (58 = 0 
3 . A° = 0° ■» cosA° = 1, s inA° = 0 
4 . ip° = 45° ■• sin2'Jj° = 1 

2p 

From measurements made using a dielectric as a specimen 
A. Without the Faraday cells or cell windows. 
B. With the Faraday cells, without the cell windows. 
A. Simplifications 

1. No terms for the Faraday cells or cell windows. 
2. A° = 0° =» cosA° = 1, sinA° = 0 

A. Reduced Equation 
A = ijj - <5A + <5C sin2ij> + t , _ s in2i ) j 

B. Simplifications 
1. No terms for the cell windows. 
2. A" = 0° =► cosA" = 1, sinA" = 0 

B. Reduced Equation 
A = iji - SA + 6C sin2iji + t , sin2ijj 

h t. sin2FCR COS2IJJ 

From measurements made using a polished metal as a specimen 
A. Without the Faraday cells or cell windows. 
B. With the Faraday cells, without the cell windows. 
C. With both the Faraday cells and the cell windows (complete equation). 

A. Simplifications 
- No terms for the Faraday cells or cell windows. 

A . Reduced E q u a t i o n 
A = lp 6A + SC sin2ijj cosA + t 2 sin2ijj 

+ h t l c sin2ijj sinA 

Simplifications 
- No terms for the cell windows 

Reduced Equation 
A = i)i - 6A + SC sin2i(j cosA + t - sin2ijj 

+ ^ t . sin2i)j sinA 

h t n cos2FCR sin2i)j 
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APPENDIX B. AN APPROXIMATE DETERMINATION OF ty AND A 

Once the parameter values describing component imperfections have 
been determined, experimental azimuths may be transformed to the relative 
phase A and relative intensity parameter ty. The specimen mispositioning 
error 63 (equation 52, p. 45) is the only correction term which varies 
between experiments. This term affects only \\>, and has the magnitude 

| S31 = |63 [cos2cj) + sin 2a sin2p]| 

where <j> is the angle of incidence. For the corrected 4-zone measurements 
on Cd (p. 5 2 ) , |6ip| = 0.213, 0.236, 0.108, and 0.109 degrees. 

A graphical correction procedure may be used if reduced computation 
time justifies the uncertainty in \\> introduced by neglecting 63. Computer-
generated plots are constructed for each set of the 20 parameter values, 
with 63 = 0. The corrections to A and ty due to component imperfections 6A 
and 6ip are presented as functions of the polarizer and analyzer azimuths 
p and a. Figures Bl and B3 show the corrections for q = 45°; Figures B2 
and B4 show the corrections for q = 135°. The parameter values in Table VII 
(Appendix A, p. 71 ) with the stagnant cell windows have been used. The 
correction terms 6A and 6xJLi are added to the values of A and i|> calculated 
by assuming ideal components. 

It should be noted that graphical procedures introduce human error 
in the reading of the plots. For data acquisition systems with computa
tional capabilities, a form of the computer program in Appendix C 
should be used. 
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Fig. Bl. Correction to A due to component imperfections. Quarter 
wave compensator at 45°, specimen mispositioning error 63 = 0. 
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0 60 120 
Polarizer azimuth p (deg) 

180 

XBL774-3297 

Fig. B2. Correction to A due to component imperfections. Quarter 
wave compensator at 135°, specimen mispositioning error 
63 = 0. 
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q = 45° 

p= polarizer azimuth 

0 60 120 180 
Analyzer azimuth a (deg) 

XBL774-3296 

Fig. B3. Correction to ty due to component imperfections. Quarter 
wave compensator at 45°, specimen mispositioning error 
63 = 0. 
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0 60 120 180 
Analyzer azimuth a (deg) 

XBL774-3295 

Fig. B4. Correction to ijj due to component imperfections. Quarter 
wave compensator at 135°, specimen mispositioning error 
63 = 0 . 
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APPENDIX C. PROGRAM COMPER 

The computer program COMPER calculates values of the relative phase 
A and the relative amplitude parameter ^ using the error analysis outlined 
in this report. In addition, the corrected values of A and ifj may be 
displayed graphically by the CALCOMP plotter. 

The program is structured to interpret sets of one-zone measurements 
from experiments on changing surfaces. Before initiating the surface 
changes, a 4-zone measurement should be taken on a reference state of the 
surface, to allow calculation of the specimen mispositioning error 63 
(equation 52 p. 45 ). From this 4-zone measurement, the Res A (p. 45) 
and the 4-zone averages of A and if; (Table V, Appendix A) must be calculated 
and entered as input data to the program. 

Input Variables 

INUMBER 

WPLOT 

is the number of data sets in the input file. 

controls plotting on the CALCOMP plot. If WPLOT =1., 
a graphical display of ty vs. A is given. If WPLOT =0., 
plotting statements are ignored. 

TITLE,RANGE 

INDCAT 

are 80 character alphanumeric labels for the output. 

indicates the specimen orientation. For INDCAT = 1, 
the specimen is vertical and the measured azimuths 
are in rotated form. For INDCAT =0, the specimen 
is horizontal and the measured azimuths are in 
standard form. 

NO is the number of data points in the set. 

C is the quarter-wave plate setting (either 45° or 135°). 
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DELTAV 

PSIAV 

RESA 

PHI 

A(I),P(I) 

is the 4-zone average of A. 

is the 4-zone average of if/. 

= A2+A4 for q=45° or Q= 135°; 
= A1 +A3 for q = 135° or Q= 45°. 

is the angle of incidence (degree). 

are the analyzer and polarizer azimuths for data 
point I (degree). 

A Sample Data Set 

Column; 

one 
set 

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 

INUMBER WPLOT 
TITLE ► 
RANGE ► 
INDCAT NO C DELTAV PSIAV RESA PHI 
A(I) P(I) A(I+1) P(I+1) A(I+2) P(I+2) A(I+3) P(I+3) 
A(J+1) P(J+1) etc., through NO number of points 

Note: Fixed-point variables (first letter is I-N) must be right-justified 
in its column. 

The computer program with sample output follows. 
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PROGRAM COMPEF(INPUT,OUT PUT,TAPE 98,PLOT,TAPE99=PLCT) 
COMMON/CCPOOL/X MlN,XflAX,YMIN,YMAX,3CXMlN,CCXMAX,CCYMIN,CCY>1AX 
COMMON/CCFACT/FAC10R 
DIMENSION T I T L E < e ) , RANGE ( 6 ) , P S I C U O O Q ) , Dt LTAO (100 0) 
DIMENSION P S l ( l O O O ) , OfeLTA( lOOO), A ( l C q C ) , P( IQOO) 
INTEGER HG 

C 
REAO 1 0 0 , IMUM8F,WP_3T 

1G0 FORMAT ( 1 9 , F I G . 0 ) 
ITRACK = 0 

C 
C INUMBR IS THE NUMBER OF DATA SETS TO EE REAO I N . ITRACK IS USED 
C TO Kr.EF TRACK CF THi. NUMBER OF DATA SETS THAI HAVE BEEN RUN 
C THROJGH THr PROGRAM. 
C 
C I F WPLOT=l . ,A PLOT OF THE CORRECTED VALUES IS GIVEN BY 
C THE CALCOMP PLOTTED. I F WPLOT=0., NO PLCT. 
C 
C THE VALUES OF T b t CONSTANT PARAMETERS THAT APPEAR I N THc EQUATIONS 
C FOR PSI AND OFLiA AC,f. S?,T. 
C 

DELAC ; - 1 . 0 8 8 
OELCC = 1 .128 
DUPC = i.S->3 
TIP = 0. 
T2P ~ . 0 2 1 
T1CP = -3 ,1 -327 
TICt" = - i . f c 1 ^ 
T2CP = - ,« .28E 
T2CM = - . 1 6 3 . 5 

C 
C I N THf FOLLOWING VARIABLE NAMfS, I AND R ARE ABBREVIATIONS FOR 
C INCIDENCE AND REFL fCT ION, F£ SFCCTI V tL Y. 3N AND CS ARE A8BRE.VIA-
C TIONS FOR SINE AND C O S I N l . F REFERS TO THE FARADAY CELLS, AND 
C W REFERS TO 1h£ GLASS WINDOWS OF THE FLOW CELL. 
C THE VARIABLE NAMfcS C A N BE INTERPRETED AS FOLLOWS 
C T2SNWI STANDS FOR T2WISIN2WI - - - - T25NWR FOR T2WRSIN2WR 
C T1SNFI FOF T i F I S l C N ^ F I TlSNFR FOR T1FRSIN2FR 
C T l C S F I FOR T1F ICOS2F I TlOSFR FOF T1FRCOS2FR 
C T2SNFI FOR T 2 F I 5 1 N 2 F I T23NFR FOR T2FRSIN2FR 
C T2CSFI FOR T 2 F I C 0 S 2 F I - - - - T20SFR FOR T2FRCOS2FR 
C SCSWIR FOR THE SU«1 OF T2WICQS2WI AND T2WRCCS2WR. 
C 

TlCSFI = - , 1102 
T1SNFI s - . 0 0 1 4 
T1CSFR 5 - . 0 0 7 8 
T13NFR = .ZkXl 
T2CSFI = ,!3-*<-3 
T2SNFI = -.li.dk 
T2CSFP = - t 21-25 
T2SNFR = .07U2 
T2SNWI = - . 2 2 8 1 
T2SNWP = , 0 1 7 2 

http://-.li.dk
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SCSWIR = .005 
C 
C THE NEXT F1V& VARIABLES, WHICH ARE PART OF THE CALCOMP SUBROUTINE, 
C PROVIDE FOR A 12 BY 10 INCh GRID FOR PLOTTING DELTA AGAINST PSI. 
C 

FACTOR = 100. 
CCXMIN = 2. 
CCXMAX = ik. 
CCYMIN =0.0 
CCYMAX = ICC 

C 
C THF. OATA FOR THE (TX̂ E RIMEHT IS READ IN. 
C 

lil READ 200, TITLE, RAMGt 
200 FCRMAT (8A10/8A10) 

READ 300, INCCAT, NO, C, OELTAV, PSIAV, RESA, PHI 
300 FCRPAT (I9,I10,5F1C.0) 

C 
C INDCAT IS S<£T TO 1 IF THE INPUT A AND P VALUES REFER TO THE 
C ROTATED AZIMUTH ANGLES. IT IS' SET TO 0 IF THE A AND P VALUES 
C RaFfR TO STANDARD AZIHUTH ANGL-.S. 
C NC IS THE NUMBER OF DATA POINTS. 
C C IS THE QUARTER WAVE PLATE ANGLL. (EITHER ki, OR 135 DEGREES). 
C 

DO 20 I = l,NO,4 
READ 4 0 0 , A ( I ) , P ( 1 ) , A U U ) , P ( H - 1 > , A ( I + 2 > ,P ( 1 * 2 ) ,A< I+3> , P < H - 3 ) 

20 CONTINUE 
<»O0 FCRMAT ( F 9 . 0 . 7 F 10. 0> 

C 
Q * ♦ * » * * * * * * »» * » * » * ♦ * » 
f 

C THE FOLLOWING VARIADLFS, T I C , T 2 C , I , HAVE TWO POSSIBLE VALUES 
C WHICH OfcPtND ON THE VALUE OF C. ( I CONTROLS THE + ANO - SIGNS 
C I N THE EXPRESSION FOR R.) 
C 

I F ( ( I N D C A T . E Q . 0 ) . A > J O . ( C . t . Q . < * ; . ) > GO TO 25 
I F < ( INDCAT.bQ. 1) .AND. ( C ! Q . 1 3 5 . ) ) GO TO 25> 
T I C = TlCM 
T2C = T2CM 
I = 1 
GC TO 27 

25 T I C = T1CP 
T2C = T2CP 
1 = 2 

C 
C THE VARIABLES J , K, AND L CCNTROL THE + AND - SIGNS I N THE EXFRES-

C SIONS FOR R ANC DELS. THEIR VALJfcS CEPCNO ON THE GROUP THAT 
C DELTAV BELONGS TO. 
C 

27 IF ( ( O E L T A V . G E . O . ) . A N O . (Of L T A V . L E . 9 u . ) ) , GO TO 32 
I F ( ( D F L T A V . G E . . 9 0 . ) . A N D . ( D E L T A V . L E . 1 8 0 . ) ) GO TO ik 
I F ( (DELTAV. GE'. 18 . . . ) .ANO. (DELTAV. L t . 2 7 0 . ) ) GO TO 36 
I F ( ( D E L T A V . G E . 2 7 0 . ) . A N D . ( D E L T A V . L E . 3 6 0 . ) ) GO TO 38 

32 J = 2 
K = 1 
L = 2 
GO TO 39 

3k J = 1 
K = 1 
L = 1 
GO TO 39 

36 J = 1 

http://LTAV.LE.9u
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K = 2 
L = 2 
GO TO 39 

8 J = 2 
K = 2 
L = 1 

THE SUBROUTINE DLGRAD CHANGES DcGReg ML ASURcMENT S TO RADIANS. 

9 CALL OF. GRAO(PHI) 
CALL OEGRAO(PSIAV) 
CALL OEGRAD(OLLTAV) 

SINE AND COSINE FUNCTION'S WHICH APPEAR MORE THAK ONCE I N THE 
EXPRESSIONS FOk R AND DELE ARE CALCULATED. 

C S 2
D

S I = C O S ( 2 , * P S I " V ) 
SN2PSI = S I N ( ? , « P S I A V ) 
COSDEL = COS(D( LTAV) 
SINDFL = SIN(OELTAV) 

* * » * * * »* * * * * ♦ * * * * » * * 

R = S N 2 P S I * ( ( ( - 1 ) * '
4
J ) * C 0 S 0 E L * T 2 C S F I *■ S INDEL * ( ( ( - 1) * * K ) * ( T2SNFI + T c 

CSNWI) + ( < - D * » ( K + I ) ) * T l C ) ) + ( ( - D * » I ) * C S 2 P S I * T 1 S N F R 

DELB IS TH! AZI-1UTH CORRFC1ION A N G „ " . 

D t L 8 = ((K - R ( S A ) / 2 . * ( ( - l ) " * ( J * l ) ) * S N 2 P S I * C O S D E L * D E L C C - OELAC) 
C / ( < ( - l ) * » J ) * S N 2 = SI*CDSD-.L ♦ C O S ( 2 . * P H I ) » 

DrLC = JELCC ♦ OE IB 
Dt LP = Of LPC ♦ DE' Li) 
Dl LA = U E L H C ♦• i>E.LS*COS(2.*FHI> 

* » * * * * * * »* * * » * «* ♦» * ♦ 

THE FOLLOWING LOOP CALCULATES DEL1AO, P S I C , DELTA, AND P S I , 

DO 3 0 I = l , N O 

THE EQUATIONS FOR DELTA, P S I , OELTAQ, AND PSIO ARE WRITTEN IN 
TERMS OF THL STANDARD AZIMLTH ANGLES. I F THE INPUT A AND P 
VALUES AH. ROTATED A7IMUTH ANGLES - — I F INDCAT = 1 THEY 
MUST BE EXPRESSED IN AM EQUIVALENT STANDARD AZIMUTH ANGLE FORM. 
THE SUBROUTINE CONVdT MAKES THE TRANSFORMATION FROM ROTATED 
ANGLES TO STANDARD ANGLES. 

I F ( INDCAT.2 (J .1 ) CALL CON VRT (A , P , I ) 

THF FOLLOWIMG I F STATEMENTS Otl'CRMIME THE ZONE AND GROUP OF THE 
INPUT SET OF A AND P ANGLES. M ANO N ARE ASSIGNED CERTAIN 
INTEG'-R VALUES OSPENDINb ON THE R A N G L CF P AND A. L , A LINEAR 
COMBINATION OF M A*JD N GIVES THE LINE NUMBER OF THE CORRECT SET 
OF EQUATIONS FOR UELTAO AND PSIC, THE FIRST EIGHT SiiTS OF 
EQUATIONS ARE FOR C = 4 5 , INDCAT s 0 OR C ~ 1 3 5 , INOCAT s 1 . 
THU S'CONC EIGHT SETS ARE FOR C = 1 3 5 , INDCAT = 0 OR C = 4 5 , 
INOCAT r i , 

I F ( ( P ( I ) . G E . O . ) . A N 3 . ( P ( I ) . L E . 4 S . ) ) M = 1 
I F ( ( P ( I ) . G Z . * j . ) .AMD. (P ( D . L c . 9 0 . ) ) M = 2 
I F ( ( P ( I ) . G f c . 9 0 . L A N D . (P ( D . L F . 1 3 5 . > ) M = 3 
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c 
c 
c 
c 
c 
c 
c 

I F ( ( P ( I ) . G £ . 1 3 T . ) . 1 N 0 . ( P ( I I . L E . 1 8 0 . ) ) M = 4 
I F ( ( A d ) .Gu . .O . ) .AN:>. ( A l l ) . L E . 9 Q . ) ) N = 1 
I F ( ( A ( I ) . G P ; . 9 0 . ) . A N D . (A ( D . L E . l d O . ) ) N = 2 
L = 2*M + N - 2 
I F ( ( I N O C A T . E Q . 1 ) . A N D . ( C . 6 U . 4 5 . ) ) L = L + 8 
I F ( ( I N D C A T . E Q . O . A v l D . ( C . E Q . 1 3 ' J . ) ) L = L ♦ 8 
GO TO ( l , 2 , 3 , « . f 5 , b , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , K , l ? , 1 6 ) 

** ** 

IGROUP IS ASSIGNED THF VALUES 1 , 2, 3, 
GROUP A, 6 , C, OR D, R; S'FtCT IVL L Y. 

OR k I F A AND P FALL INTO 

* * * * * GROUP CI 
P S I O ( I ) = A l l ) 
DELTAO( I ) = 270 . 
IGROUP = 3 
GO TO 50 

- 2 , * P ( I ) 

* * * * * G^OUP A l 
P S I O ( I ) = 1 8 0 . - A ( I ) 
D E L T A C ( I ) = 
IGROUP = 1 
GO TO 50 

* * * * * GROUP 82 
3 F S I O ( I ) = A ( I ) 

9 0 . - 2 . * P ( I ) 

DELTAO( I ) = 
IGROUP = 2 
GC TO 50 

270- 2 . * P ( I ) 

* * * * * GROUP 02 
P S I O ( I ) = 1 8 0 . - A ( I ) 
OELTAO( I ) = kiO. - 2 . * P ( I ) 
IGROUP = * 
GO TO 50 

* * * * * GHOUP A3 
5 P S I O ( I ) = A ( I ) 

O F L T A O ( I ) = 270 , 
IGROUP = 1 
GC TO 50 

- 2.*F(I ) 

***** GROUP C3 
PSIO(I) = 180. - A(I) 
OELTAO(I) = A*o. - 2.*P(I I 
IGROUP = 6 
GC TO 50 

C 
C 

c 
c 

7 

8 

***** GROUP Ok 
PSIO(I) = A(I) 
OELTAO(I) = 630. 
IGROUP = 4 
GO TO 50 
***** GROUP BU 
PSIO(I) = 180. -
DELTAO(I) = <*50. 
IGROUP = 2 
GO TO 50 

- 2.*°(I> 

A(I) 
- 2.*P(I) 

c 
c ***** GROUP Bl 
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9 PSIO(I) = A(I) 
DFLTAO(I) = 90. ♦ 2,*P(I) 
IGROUP = 2 
GC TO 50 

C 
C ***** GROUP Dl 

10 PSIQ(I) = 180. - A(I) 
DELTAC(I) = 2.*°(I) + 27

0. 
IGROUP s 4-
GO TO 50 

C 
C ***** GROUP C2 

11 PSIO(I) = A(I> 
OFLTAO(l) = 2,*P(I) + 90. 
IGROUP i 3 
GO TO 50 

C 
C ***** GROUP A2 

12 PSIO(I) = 130. - A(I) 
DELTAO(I) = 2.*P(I) - 90. 
IGROUP = 1 
GC TO 50 

C 
C ***** GROUP 03 

13 PSIO(I) s A(I) 
OFLTAO(I) = 2.*P(I) «• 90. 
IGROUP x 4-
GC TO 50 

C 
C ***** GROUP B3 

14 PSIO(I) = 180. - A(I) 
DELTAO(I) = 2.*P(I) - 90, 
IGROUP 1 2 
GO TO 50 

C 
C ***** GROUP hit 

15 PSIO(I) = A(I) 
DELTAO(I) = 2.*P(I) - 270. 
IGROUP x 1 
GC TO 50 

C 
C ***** GROUP C* 

16 PSIO(I) = 180. - A(I) 
DFLTAC(I) s 2.*P(I) - 90. 
IGROUP = 3 

C 
Q ** ** ** ** ** *». ** ** ** ** 
c 
C A(I) ANP P(I) ARE CONVERTED TO RADIAN MEASUREMENT. NOTE, HOWEVER, 
C THAT XA AND XP ARE ACTUALLY TWICE THE RAOIAN EQUIVALENTS OF A(I) 
C AND P(I). 
C 

50 XA = (ACOS(-l.)*A(I))/90. 
XP = <ACOS(-l.) *P(I) )/9'. . 

C 
C SINE, COSINE, ANO COTANGENT TERMS WHICH APPEAR SEVERAL TIMES IN 
C THE EQUATIONS FCR PSI AND DELTA ARE COMPUTED. 
C 

C0S2A = COS(XA) 
SIN2A = SIN(XA) 
CCS2P = CCS (XP) 
SIN2P = SIN(XP) 
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C0T2A = C O S ( X A ) / S I N ( X A ) 
C 
Q * * * * * * * * * * * » * * * * * * * * 
c 
C D E L T A ( I ) ANO P S I ( l ) ARE THE CORRECTED (FOR COMPONENT IMPERFtEC-
C TIONS) VALULS OF OELTAOU) AND P S I O ( I ) . 
C 
C THE VARIABLES J Z , K Z , J G , KG, LG, MG, NG, AND M CONTROL THE * ANO 
C - SIGNS IN THf. EQUATIONS FOR PSI ( I ) ANC D E L T A ( I ) . J Z , KZ , AND M 
C OEPEND ONLY ON THE ZON£, NG DEPENDS CNLY ON THE GROUP, AND T h t 
C OTHF.H VARIABLE S PsPtNO ON BOTH THE GROUP AND THE ZONE. 
C 

I F ( ( I G f . O U P . E Q . l ) . O R . ( I G R 0 U F . E Q . 3 ) ) GO TO 52 
IG = 2 
KG = 1 

GO TO 54-
52 IG = 1 

KG = 2 
54 I F ( (IG.ROUP.CQ. D . O x . <IG"OOP. E (J. 2 ) ) GC TO 56 

JG = 2 
LG = 1 
NG = 2 

GC TO 56 
E'6 JG = 1 

LG = 2 
NG = 1 

08 I F ( ( IGROUP. E Q . l ) . OK. (13 RCUP . f'Q . - ) ) GO TO 60 
HG = 1 
MG = 2 

GO TO 61 
60 HG ~ 2 

MG = 1 
61 IF ( ( M . E Q . i ) . O R . ( M . E O . O ) GC TO o2 

JZ = 2 
JG - JG *■ 1 

GO TO 64-

62 JZ - 1 
64 I F ( ( t U E Q . l ) .OR. (M .EQ.2 ) ) GO TO 66 

KZ = 2 
MG = MG ♦ 1 
KG = KG + 1 

GO TO be 
66 KZ = 1 
68 I F < ( M . E Q . I ) . O R . <M.£Q.3>) GC TO 70 

HG = HG t 1 
IG = IG + 1 
LG : LG U 

C 
70 D E L T A ( I ) r OELTf lO( I ) ♦ ( ( - 1 ) * * I G ) * 2 . * ( T 1 P + DELP) ♦ < ( - 1 ) * * N G ) * T 2 C * C 

COS2P + ( ( - 1 ) * * ( 2 G U ) ) * 2 . *OELC «• SCSWIR + T2CSFR - COT2A * (T 2 SNWR*T2 
CSNFR) + ( < - l ) , * * L G ) * T 1 C S F I * S I N 2 P + ( ( - 1 ) **HG ) * T 1 S N F I * C 0 3 2 P 

C 
P S K I ) = P S I O ( I ) H S I N 2 A * < ( < - l ) * * J G ) * T 2 P + S I N2P* ( ( ( - 1 ) * * K Z )*T2CS F 

C I / 2 . + ( ( - 1 ) * * ( K Z + 1 ) ) * O E L O + C0S2=* ( ( ( - 1 ) * * ( JZ+1) ) * (T2SNFI +T2SNWI 
C) + ( < - l ) * * K G ) * 1 1 0 ) / 2 . ) + < ( - l ) * * M G > * D E L A + ( ( - 1 ) * * J G ) * ( T l C S F R * S I N 
C 2 A ) / 2 . + ( ( - D * * ( J G + l ) ) * ( T l S N F R * C 0 S 2 A ) / 2 . 

30 CONTINU: 
ITRACK = ITRACK + 1 
I F ( W P L O T . t ' Q . O . ) GO TO t 5 0 
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c 
C THF FOLLOWING SECTION CONTAINS Tht CAL-CC^P PLOTTER COMMANDS. 
C 

XMIN = 360. 
XMAX = 0. 
YMIN = 180. 
YMAX = 0. 
00 9 0 J = 1,N0 

I F ( Q E L T A ( J ) . L l . X M I N ) XMIN r OcLTA(J ) 
I F ( D E L T A U ) .GT.XMAX) XMAX = OE.LTA(J) 
I F ( » S I ( J ) . L T . Y M i N ) YMIN = P S I ( J ) 
I F ( P S I ( J ) . G T . Y M A X ) YMAX = P S I ( J ) 
I F ( O f L T A O ( J ) . L T . X M I N ) XMIN = DE.TAO(J ) 
I F (DELTAO(J) .GT.XMAX) XMAX= OELTAO(J) 
I F ( P S I O ( J ) . L T . Y M I N ) YMIN = P J I O ( J ) 
IF ( P S I O ( J ) .GT.Y-1AX) YMAX = P S I D ( J ) 

90 CONTINUE 
SXMIN = XMIN 
SXMAX = XMAX 
SYMIN = YMIN 
SYMAX = YMAX 

C 
C THE! X (DELIA) SCALE I S 12 INCHES LONG, WITH 20 SMALL SQUARES TO 
C THE INCH. THE Y ( P S I ) SCALE I S 10 INCHES LONG, ALSO WITH 20 
C SMALL SQUARED TO THf. I N C H . 
C 

XFACTR : 1.2 
YFACTP = l . u 
X S C A L E - ( X M A X - X M : N > / 2 4 - 0 . 
Y S C A L E = ( Y M A X - Y H I N ) / 2 0 G . 
SCALtF = 0. 
I F ( X 5 C A L r . < - Q . F L 0 A T ( I F I X ( X S C A L £ ) ) ) XSCALE = XSCALE + 0 . 0 0 5 
I F (YSCALE. FQ. FLOAT ( I FIX ( YSCALE ) ) ) YSCALE = YSCALE <• 0 . 0 0 5 

C 
C THF SU3P0UTINF G S C A L L CALCULATES A CONVENIENT UNIT OF MEASURE FOR 
C THi. SMALL SQUAF S ON THE GRAPH. 
C 

XMID = (XMIN + X M A X ) / 2 . 
YMIO = (YMIN + YMAXI /2 . 
IXMIO = I F I X ( X M I D * 0 . 5 ) 
I F ( M C D ( I X M I D , 2 ) . M e . G ) IXMIO = IXMIO + 1 
IYMIO = I F I X t Y M I D <0 . 5 » 
I F (MOD( IYMID ,2 ) .NE .O) IYMIO ~ IYMIO + 1 

72 CALL GSCALE(XSCALL,SCALcF,XFACTR) 
XMIN = F L O A T ( I X M I D ) - SCALEF 
XMAX = FLOAT( IXMIO) + SCALEF 
I F ( ( 5 X M N . G P . X M I N ) . AND. (SXMAX.LE.XMAX) ) GO TO 74 
CALL FXSCALfXSCALE ) 
GO TO 72 

74 CALL GSCALE (YSCALE,SCALEF.YFACTR) 
YMIN =

 c
L O A T ( I Y M I D ) - S C A L E F 

YMAX = FLOAT( IYMID) «■ SCAL-1F 
I F ( ( S Y M I N . G E . Y f I N ) . A N D . (SYMAX.LE.Y1AX) ) GO TO 76 
CALL FXSCALtYSCALE) 
GO TO 7<V-

C 
: X M I N , XMAX, Y M I N , Y1AX APL THL, JPPER AND LOWER L I M I T S ON THE 
C VALUIS OF DELTA ANO P S I kHlCh WILL BL PLOTTED BY CAL-COMP. 
C 

76 WRITE ( ^ 9 , 4 0 ) 
UQ FORMAT (1H=) 

CALL C C G R I 0 ( l , 6 , 4 , b H N 0 L 3 L S , 1 , ^ , 4 ) 
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CALL F I X L 8 L ( 6 , 5 , 2 , - 1 , - 1 ) 
CALL CCLTR(b .6 3 , - 0 . 3 , O , 2 , 5 H O E L T A ) 
CALL C C i - T M l . 1 2 , 5 . 0 , 0 , 2 , 3HPSI ) 
CALL C C L T F ( 2 . 2 5 , 0 , 5 , 0 , l , 4 9 H T H f IOCAL VALUE'S OF OELTA AND PSI ARET R 

CEFRES
f NTEC) 

CALL CCITR<2. 2 5 , 0 . 2 5 , 0 , 1 , 4 7 H BY A ° L U S , THL CORRECTt 0 VALUES 3Y A 
C DIAMOND.> 

CALL UCLTR(2 .25 , 9 . 7 5 , 0 , 2 , T I TLE,80) 
CALL CCLTR(2 .2 5 , 9 . 5 , 0 , 2 , P A N G E , 8 U ) 
CALL CC°L CT( DELTA, P S I , NO, 6 H N 0 J 0 H * , 6 , 1 ) 
CALL C C ° L C T ( D E L T A C , D S I 0 , N 0 , 6 H N 0 J U I N , 2 3 , 1 ) 
CALL C C L T R ( C C X M A X , 0 . , 0 , 1 , 1 H ) 
CALL CCNEXT 

C 
Q * * * * * * * * * * * * * * * * * * * * 
c 
C THE LAST S'TCTIOh CONTAINS TE-E OLTPUT COMMANDS ANO FORMATS. 
C 

650 CONTINUE; 
PRINT i n , T I T L : , R'iNGt 

101 F C R M A T ( * 1 * , 3 A 1 0 / B A 1 0 ) 
PRINT 201,C 

201 FORMAT ( * C * , * T H t QUARTER WAVE PLATE AZIMUTH I S * , F u . O , * Of-GRELS.*) 
PHI = ( P H 1 * 1 8 0 . )/ACOS ( - 1 . ) 
PRINT 3 C 1 , P H I 

301 FORMAT <*0* , *THE * N G L : OF INCIDENCE I S * , F 6 . 3 , * DEGRr.ES.*) 
PRINT 4 0 1 , DELS 

4 0 1 FCRMAT < * 0 * , * T H t AZIMUTH CORRt-ClION EPEOR IS * , F 8 . 3 , * DLGPLES.*) 
I F ( I N D C A T . E Q . 3 ) Fr.INT =i 0 1 
I F ( I N D C A T . E Q . l ) PRINT f 0 3 

5 0 1 F C R M A T ( * 0 * , * A AND P R
f
FER TO T H . STANDARD AZIMUTH ANGLES CF THE AN 

CALYZEP ANC POLATIZ T. , RE S P.. CT ]Vf L Y. * ) 
503 F C K M A T ( * 0 * , * A AND P FEFER TO THC ROTATtT AZIMUTH ANGLES OF 1HL" ANA 

CLYZER ANO POLARIZE.R, RE.S P..CTI Vt L Y. *) 
PRINT 6 1 , NO 

6 0 1 FCRMAT < * Q * , *NUMBL
r
' OF DATA PCINTS - - * , I 4 > 

PRINT 701 
701 FORMAT ( * C * , 1 J X , * A * , 1 1 X , » P * , 9 X , * J E L T A * , 6 X , * O E L T A Q * , S X , * P S I * , 8X ,»PS 

C I C * ) 
C 
C I F INDCAT = 1 , A AND P ARL CONVERTED BACK TO ROTATED AZIMUTH 
C ANGL-.S. 
C 

DO 80 1=1,NO 
I F ( I N D C A T . E Q . l ) CALL CONVR 1 ( A , F , ] ) 
PRINT 8 0 1 , A ( I ) , P ( I ) , O E L T A ( l ) , D E L T A O ( I ) , P S I ( I ) , P S I O ( I ) 

80 CONTINUE 
8 0 1 FCRMAT ( * 0 * , 6 X , 5 ( F 8 . 3 , 4 X ) , F 8 . 3 ) 

I F ( ITRACK.NF. INUM8R) GO TO 111 
I F ( W P L O T . E Q . l . ) CALL CCENC 
STOP 
END 
SUBROUTINE GSCALL(SCALE I ,SCALEF,FACTR) 
I F ( S C A L E I . G E . 0 . 9 ) GO TO b5 
I F ( S C A L E I . L T . 0 . 0 9 ) SCALE" = S C A L - " I * 1 0 0 . 
I F ( ( S C A L E I . G E . 0 . 0 9 1 . A N O . ( S C A L t l . L T . 0 . 9 ) ) SCALE = S C A L E I * 1 0 . 
ISCALE = I F I X ( S C A i e ) ♦ 1 
I F ( S C A L E . E Q . F L O A T d F I X ( S C A L t ) )> ISCAL6 = I F I X ( S C A L E ) 
I F ( ( I S C A L L . E Q . D . O R . ( ISCAL i . S Q . 5 D GO TO 75 
I F (MODdSCALE , 2 > . N „ . 0) ISCALE = ISCALL ♦ 1 
I F ( I S C A L L . E Q . 6 ) ISCALE = 8 

75 I F ( ( S C A L c . G T . 2 . ) . A N D . ( S C M L E . L T . 2 . > ) ) GO TO 85 
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I F ( S C A L h I . L T . 0 . 0 9 ) S C A L L F = (FLCAT( ISCALE) ) *FACTR 
I F ( ( S C A L t l . G L . C . C 4 ) . A N O , ( S C A L - I . L T . 0 . 9 ) ) S C A L F F = (FLOAT ( I SCALE)) 

C*10 . *FACTR 
b5 I F ( ( S C A L - I . G C . 0 . 9 ) . A N D . ( S C A L L I . L L . 1 . 0 ) ) SCALtF s (FLOAT( ISCALE>>» 

C1CC.*FACTR 
I F ( S C A L C I . G T . 1 . 0 ) SCALfF = 1=0.*FACTR 
GO TO 9C 

85 I F ( S C A L E I . L T . u . 1 9 ) SCALfF = 2 . i * F A C T R 
IF ( ( S C A L F I . G E . 0 . 0 9 ) . A N D . (SCALt I . L T . 0 . 9 ) ) SCALEF = 2£ . *FACTR 

95 RETURN 
END 
SUBROUTINE C O N V ^ T ( A , P , I N ) 
DIMENSION A ( I O O O ) , =<1U00) 
I F ( P ( I N ) . G T . 1 8 . . ) - M I N I = P ( I N ) - 1 8 0 . 
I F ( ( A ( I N ) . G E . 9 0 . ) . « N O . (M ( I N ) . L l . 1 8 0 . ) ) GO TO 24 
A ( I N ) = A ( I N ) + 9 0 . 
GO TO 2c 

24 A ( I N ) = A ( I N ) - 9 0 . 
26 I F ( ( P ( I N ) , G E . 9 0 . ) . S N O . ( P ( I N ) . L E . 1 8 0 . ) ) GO TO 28 

P ( I N ) = P ( I N ) * 9 0 . 
GC TO Id 

28 P ( I N ) = P ( I N ) - 9 0 . 
22 RETURN 

END 
S U B R O U T I N L DLGRAD(X) 
x = ( A C O S ( - I . ) * x ) / i s r . 
RETURN 
END 
SUBROUTINE FXSCAL(SCALcI> 
I F (SCALEI .LE . 0 . 1 ) SCALEI = S C A L L I * . 0 1 
I F ( S C A L E I . G T . 0 . 1 ) SCALEI = SCALwI <• 0 . 1 
RFTURN 
END 
SUBROUTINE F I X L P L ( N A l , N Y 1 , K S I h. ,NXX,NYY) 
CO MMON/CCPOOL/XMIN,XMAX,YMIN,YMAX.CCXMIN.CCXMAX,CCYMIN,CCYMAX 
CCMMON/CCFACT/FAC10K 
NXP=NXX J NYP=NYY 
N X P s M I N ' ( N X P , 7 ) % NYP=MIN (NYP.7 ) « FACT=KSIZfc/FACTOR 
XFCTR=1.0 { YFCTR=1.0 
CCXINT=(CCXMAX-CCXMINI /NX1 $ CCYINT=(CCYMAX-CCYKIN) /NY1 
X INT=ABS(XMAX-XMIN) /NX1 $ Y I N T ^ A 3 S ( Y M A X - Y M I N ) / N Y l 
T F = 3 . 0 * F A C T J SF=7.C*FACT 5 N0DKX=1 $ NDFRY=1 

C X - A X I S NORMALIZATION 

VMV=AMAX1 ( A B S ( X M N ) ,ABS(XMAX) ) + 1 . 0 E - 1 0 $ XM = 1 0 . 0 * * N X P 
I F ( ( N X P , E Q . 0 > . O K . < ( N X P . 3 T . Q ) . A N O . < V - 1 V . G t . X M . O R . 

2 ( X I N T . L T . ( 0 . 1 - 1 . 0 5 - 1 0 ) ) ) ) . O R , ( ( N X P . L T . 0 ) . A N D . 
3 ( X I N T . L T . ( X M - 1 . 0 E - 1 0 ) ) ))GO TO 46 

I F ( N X P . L T . 0 ) N D P ? X = - M X P 
NXP=P B GO TO *>: 

46 Z=ALOG10(VMV) B Z r S I G N ( ( A 6 S ( Z ) + 1 . 0 E - 8 ) , Z ) S NXP=Z 
I F ( Z . L T . O ,0)NXP = NXP-1 J XFCTR=10.0* *NXP 

C Y - A X I S NORMALIZATION 

E0 VMV=AMAX1 ( A B S ( Y M N ) , A 3 S ( Y M A X ) ) + 1 . 0 E - 1 0 J YM = 1 0 , 0 * * N Y P 
I F ( ( N Y P . F O . 0 ) .OR. ( ( N Y P . G T . 0 ) .AND. (V- tV .GE. YM.OR. 

2 ( Y I N T . L T . U . 1 - 1 . 0! - 1 0 ) ) I ) . OR . ( (NY^. LT. 0 > . ANO. 
3 ( Y I N T . L T . ( Y M - 1 . 0 E - 1 0 ) ) ))GO TC 53 

I F ( N Y P . L T . C ) N D P ' Y = - N Y P f NYP = ,' $ GO TO 60 
53 Z=ALOGlU (VMV) S Z=S IGN ( (A BS (Z )+ 1 . 0E-8 ) , Z ) J NYP=Z 
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I F ( Z . L T . O . O ) N Y P = N Y P - 1 J YFCTR=10.0* *NYP 
60 XINT = XINT/XFC1R $ YINT= Y M T / Y FCTR $ YMF=YMIN/YFCTR 

C Tf ST THi X-LA3LLS Fi„P I.ON-INTE GL ft VALUES 

X = XMIN /XFCT^ -X l r ' T % XM = XM AX/XFCT K + l . CE - 8 
64 X=X+XINT $ I F ( X . G T . X N ) GO TO 6 5 5 AX=ABS(X) 

T"P=A3S (FLOAT ( INT ( A x t O . E ) )-A X) I 1-( T MP . LC . 1 . OE-8) GO TO b-+ 
GO TO t>~ 

65 NCPRXrO 

C TEST TH"„ Y-LABt LS FDR NON-INTEGtR. V A L U E S . . . . 

66 YM=YMAX/YFCTk + l . 01 -■! J Y= YMIN /YFCTR- YINT 
68 Y=Y+YINT S I F ( Y . G T . Y H ) 30 TC 69 5 AY=ABS(Y) 

TMP=ABS (FLOAT ( INT (AY4-0.5) ) - A Y ) $ I F ( T MP. L£ . 1 . OE-8) GOTO 68 
GC TO 70 

69 NDPRY=0 

C LABEL THF. X - A X I S . , 

70 CCX=CCXMIN { CCY=CCYMlN- lb .0 *FACT $ X=XMN/XFCTR 
75 I F ( X . G T . X M ) G O TO 9

r 

CALL FIXX1(NTEMP,NC,NP,NDPRX,X) 
NMD=MOD ( N C 2 ) 
I F (NMD.. Q,

r
. >XT = CCX--ACT* ( 3 . 5 * N C + v . 5 ) 

I F (NMO.NF..0 J X U C C X - F A C T * ( 3 . 5 * ( N C - 1 ) + 9 . 0 ) 
CALL CCLTR(XT,CCY , 0 , K S I Z E ,NTEMP,NP) 
CCX=CCX+CCXINT $ X=XtXINT $ GO T J 7' 

C LABEL T <; Y - A X I S . . . . . . . . . . 

90 CCY=CCYMIK-TF 
Y = YMF 

95 I F ( Y . G T . Y M ) K F T U T N 
CALL FIXX1(NTLM

D
,KC,NP,NDPRY,Y> 

I F ( Y . f Q . Y M F ) C C Y r C C Y + T F 
CCXrCCXMIN-SF*NP 
CALL CCLTR(CCX,CCY,U,KSIZ ' t ,NTEMP,N

3
) 

I F ( Y . t Q.YMF)CCY = CCY-1 F 
CCYrCCY + CCYIf.T i Y=YtYINT 6 GO TO 93 
END 
SUBROUTINE F I X X K t . T ' MP, NC , NP, NDF ^X , X X ) 
DIME NSION NFMT(1) 
DATA NHOLO/?3

l 5
r 5t» l u E 343 3 S7u 0 S23 / , H P / 0 . 99999 9 / 

DATA N H O L D 2 / 7 7 7 7 7 7 7 7 ? 7 7 7 7 r 7 7 B / , N H O L D 3 / 5 5 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ( B / 
DATA NHOLD' . /463300a i j00C0 ' j0Q00U0UB/ , NH C L D 5 / 7 7 B / , N Z E R 0 / 4 H 0 / 
X=XX J AX=ABS(X) t I F ( A X . L T . l . r - 7 ) 30 TO 79 i NDPL=1 
IF(AX.G: . 1.3) GO TO 76 J NN = 7 5 bO TO 761 

76 IF(AX.G>" . 10.0) NOP L= NO PL* (ALCG10 (AX) + 1. OE-10) 
NN=8-NDPL 

761 ENC0D'.(lJ,77,NTP)Nf. 
77 F C R N A T d l G ) 

J E M = 6 - * ( I U P . A N D . N H 0 L 0
l : ) 

NFMT=NHOLD.OR.JEM 
ENCOOt ( 10 ,NFMT,NTf M->) X 
I F ( A X . G - . T M P . O R . X . ^ a , 0 . 0 ) G O TO 78 
NTEMPrNTEMF.AND.NH0LD2 
I F ( X . G : . 0.0 ) NTE MP=l,TE MP. OR. NHCL0 3 
I F ( X . L T . O . O l N T f MP= ^TEMP.OR.NHCL34 

78 NC=NDPL 5 NP=NOPL+l 
I F I N O P P X . L Q . O . O K . X . t Q . O . 0 ) FFTUEN I N1=NDPRX+1 $ NC=NC+N1 
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NP=NP«-N1 
RETURN 

79 NTLMP=.N7'^RO i NPri+ 5 NC=1 
RETURN 
END 

) 
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ZN IN 0.5 M KOF 
CONSTANT POTENTIAL E= - 1 . 2 VOLTS VS HG/HGO 

THE QUARTER WAVE PLATE AZIMUTH IS 45. DEGREES. 

THF ANCLE OF INCIDENCE IS 75.000 DECREES. 

THE AZIMUTH CORRECTION TRPOR IS - . 0 29 DEGREES. 

A ANO F REFER TO THE STANDARD AZIMUTH ANGLFS CF THE ANALYZt"R AND POLARIZER 
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APPENDIX D. THE GROUP DEPENDENCE OF THE SIGNS 
OF THE PARAMETER VALUES. 

The parametric equations describing component imperfections were 
derived for Group B (Tables I la and lib, Appendix A). Many of the terms 
in the equations are multiplied by trigonometric functions of the polarizer 
and analyzer azimuths. Allowance for the sign changes of sin2P and 
cos2P (vectors b and a in Figure Dl) must be made in applying the 
derivation to Groups A, C, and D. 

The signs of the parameters for all groups (Tables lie and lid, 
Appendix A) were obtained by using Group B as a standard. As an example 
(Figure Dl), the terms multiplied by sin2P change sign in zones CI and 
D4 from the equation describing B2. Similarly, the terms multiplied by 
cos2P for zones Al and A3 have signs opposite those in the expression for 
B2. The same allowance was made in obtaining expressions for calculating 
A and \\> from rotated polarizer and analyzer azimuths (vertical specimen). 
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2p 

n 
1 b 

a N, 

J 
Zone C1 

<l -a / 

Zone A3 

Zone B2 Zone D4 

XBL774-3292 

Fig. Dl. Group dependence of the signs of the parameter values. 
Vector components a and b represent sin2P and 
cos2P. 
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APPENDIX E. MEASUREMENTS USED TO 
DETERMINE PARAMETER VALUES. 

For the following experimental measurements, the notation NW and 
NFC refers to the absence of windows and Faraday cells. Five sets of 
4-zone measurements, with re-alignment of the specimen between each set, 
were made on the dielectric and metal surfaces to allow averaging out 
the specimen mispositioning error S3. The horizontal surfaces faced up 
and the angle of incidence was 75°. 

I. Straight-through Position; NW, NFC 
q a p Zone 

45.00 
45.00 
135.00 
135.00 

134.97 
44.94 
44.97 
134.96 

45.01 
134.92 
135.98 
44.93 

A4 
A2 
Al 
A3 

I la. Reflection from a dielectric surface; NW, NFC, (j> = 75°. 
q a p Zone 

45.0 
45.0 
135.0 
135.0 

135 
135 
45 
45 

116.26 
64.02 
63.98 
116.26 

116.21 
64.07 
64.03 
116.47 

45.78 
135.78 
133.92 
43.94 

44.03 
134.05 
135.65 
45.47 

A4 
A2 
Al 
A3 

A3 
Al 
A2 
A4 
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Ila. (continued) 

a p Zone 

45 
45 
135 
135 

135 
135 
45 
45 

45 
45 
135 
135 

116.21 
63.94 
64.09 
116.37 

116.42 
64.12 
64.08 
116.40 

116.40 
64.03 
64.12 
116.42 

45.76 
135.79 
134.06 
43.99 

43.96 
133.98 
135.97 
46.02 

45.85 
136.00 
133.85 
44.00 

A4 
A2 
Al 
A3 

A3 
Al 
A2 
A4 

A4 
A2 
Al 
A3 

lib. Reflection from a dielectric surface; NW, <J> = 75°. 

q a p Zone 

135 
135 
45 
45 

116.60 
64.35 
64.26 
116.58 

44.13 
133.98 
135.99 
45.84 

A3 
Al 
A2 
A4 

Ilia. Reflection from a metal surface; NW, NFC, <b = 75°. 

q a p Zone 

135 
135 
45 
45 

62.70 
122.53 
120.28 
60.46 

86.84 
176.46 
92.93 
3.52 

B4 
B2 
Bl 
B3 



-96-

11la. (continued) 

a p Zone 

60.53 
120.15 
122.29 
62.67 

62.56 
122.40 
120.27 
60.43 

62.56 
122.44 
120.31 
60.38 

60.20 
120.50 
122.64 
62.46 

3.57 
93.26 
176.85 
86.38 

86.77 
176.73 
93.00 
3.29 

86.98 
176.67 
93.21 
2.83 

2.44 
92.25 
177.24 
86.92 

B3 
Bl 
B2 
B4 

B4 
B2 
Bl 
B3 

B4 
B2 
Bl 
B3 

B3 
Bl 
B2 
B4 

Reflection from a metal surface; NW, cb = 75° 

a p Zone 

62.36 
122.47 
120.34 
60.14 

Reflection from 

62.11 
122.06 
119.94 

87.45 
177.29 
92.10 
2.38 

a metal surface; 

87.75 
177.85 
91.47 

B4 
B2 
Bl 
B3 

<b = 75° 

B4 
B2 
Bl 

59.92 2.06 B3 
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