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ABSTRACT.—

The set of all real, orthogonal Irrepe of Sn are realized expli-

citly and non-recursivelyby specializingthe boson polynomials carrying

irreps of the unitary group. This realization makes use of a ‘calcu-

Ius.ofipatterns’, which is discussed. -
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I. Introduction

The purpose

.

of the pre~ent paper is to show how some recent in-

vestigations in the unitary group -- motivated by applications to ,

quantum physics -- can be specialized to yield interesting -- and we

hope, useful -- results for the symmetric group. Our main result is

to ?btain an explicit, non-recursive, set of real, orthogonal irreps

for Sn, whose realization by means of the patter~ ca2culus (as explained

below) is (we believe) new.

Let us indicate, very briefly, why the unitary group-figures so

prominently in quantum ”physics. The 4tate, ~, of a quantal System iS

a JUZgin Hilbert space of unit length; ob~ehvubla~ are-self-adjoint

operators, O, mapping the Hilbert space into itself. A Agmmethy is a

mapping of states into states, and operators into operators such that

the prob~ility 1<0101$>1 is preserved. The fundamental theorem (Wig-

ner-Artin) -- essentially the fundamental theorem of projective geome- .

try -- mw states: any symmetry can be implemented by a semi-linear

u“tiitarytransformation. It follows that the unitary group is of basic

interest in quantum physics.

Let us remark also that the study of the symmetric group by broad-

ening the investigation to the unitary group is itself a familiar tech-

nique; it was used extensively by Weyl, and is one of the principal

themes in G. de B. Robinson’6 monograph on Sn.

It is necessary to ex@ain now precisely what is meant by a

“bosm”, and by a “boson o~erator”. These terms are physicist’s jar-

,gon for concepts known to mathematicians as the Weyl algebra, (or

as it i~.also called the genera~rs of the Heisenberg group).

The boson, a, and it8 conjug ,

v

~, are elements of an~gebra (Weyl..
algebra) satisfying the commu tion rule: [~,a]=l, where 1 is the

r>
unit operator. More gener~lly, we consider n bosons: ai? i=l~21.*.n

and their conjugates: =i~ i=l,...n obeying the rules:

.

[ai,ajl - [qq
- 0; ‘Si’a+ = % “

I

[The name “boson” contrasts with the physicist’s term “fermion”, which ‘

zeplacea commutation in the rules above by anti-commutation.] I

Boson polynomials are simply polynomials (over $) with “thebosons

“ {ai} as indeterminate. There is a natural scalar product associated

tc the boson polynomials by the commutation rule, if we define the

abstract vector 10> to be annihilated by all conjugate bosons:



EJO>EO. Th& to the boson monomial (ai)k, we associate the Hilbert

space vector: (ai)klOasl~>, and the scalar product:
●<*[*z=<OI(=i)k(ai)klO> = ki.

We remark that the technique of boson operator construction can

be phrased in the language of the umbral calculus.

XI”.‘Young Zabteaux, Weyl Xabteaux, and Gel’dand pat$ehn~

One of the first problems that one confronts in discussing the

irreducible”representations of the unitary group U(n) is that of devis-

ing a comprehensible notation. This problem was solved in an elegant

‘1] by utilizing the Weyl branching lawway by C331°fandand Zetlin [21

for U(n). In order to explain this notation in familiar terms, it is

convenient to appeal to the concept of standard Young tableaux of

the syxmnetricgroup Sn since the relationship of these tableaux (to the

irreducible representations of Sn) is$well known to the participants

of this conference.

The first concept required is that of a Young {fiama: a Young

frame y[~l of A~UPC [Al=[A1A2*C~Anl~ where the ~i are non-negative

integers satisfying Al > A2 > ...> An, is a diagram consisting of Al

boxes (nodes) in row 1, AO boxes in row 2,..., a. boxes in row n,

arranged as illustrated i: Fig. 1.
Za

‘1

‘2

(1)

An
.,

A Wtg~ Zabteau is a Young frame in which the boxes have been “filled

in” with integers selected from 1, 2,...,n. A Weyl tableau is &tandahd

if the sequence of integers appearing in each row of YIAI is non-

dechea&4ng as read from left to right and the sequence of integers

appearing in each column is 444icflg inch?a~ing as read from top to

bottom. The weight or content (W) of a %?eyltableau YIAI is defined

to be the row vector (W)=(W1#W2tSOO~Wr.~~ where Wk equals the number of

. times integer k appears in the pattern. ‘f ‘1+A2+’”
,+Xn=N, then

also w1+w2+...+w,~=N. we shall call [xl a pakLL~ion of N into n Parts!.
or more often, a partition when N IS unspecified. We generclly count

the 0’s in determining the parts of a partition. For examplet the
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partitions “of4 into 3 parts.are [4 O 01, [3 1 01, and [2 2 01. When
the number of parts is understood, one frequently omits the zeroes

(writing [41 , [3 11, and [2 21 in the examples).

Exumpte. The standard Weyl patterns corresponding to the Young

framy 1+ are:

-PEP

EP.EP P ~
.

P

.

(2)

young’s[3] interest was in invariant theory, utilizing the

symmetric group, and he considered frames with n nodes filled in with

integers 1 to n. To our knowledge Weyl [4] was the first to use Young

frames filled in with ,repeatedintegers. We therefore refer to these

latter tableaux as Uegt Xableaux, reserving the term Young Iabteaux.
for the more restricted case.

Gel’(and patte~n~. An elegant geometrical notation for codify-

ing the constraints imposed on the entries of a Young pattern is pro-

vided by a Gel’fand pattern which we now define. /

~ Gel’fand pattern is a.triangular array of n rows of integers,

there being one entry in the first row, two entries in the S@GOnd row,

...8 and n entries in the nth row. The entries in each row 2, 3,....

n-it are arranged so as to fall between the entries in the row above

-and below, as illustrated below:

‘ln ‘2n “ “ “ ‘nn

()(

●

[ml
● *

“ (m) =
9* ●

●

%; ‘23 %3
)

’12 ’22

(3)

“%1
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.

The integral entries m,~, i < j = 1,2,...,n, in”this array are required

.

G6 satisfy the

(i) ‘ln

-(U) for

remaining rows

followi& ruies:

>m2n>... *mnn; (4)
.

each specified partition [min...mnn], the entries in the

j=n-1, n-2,...,l may be any integers which satisfy the

“betweenness conditions”

.

‘lj+l > ‘Ij ‘m2j+l ‘m2j ‘m3j+l ‘m3j > ““”> mj-lj ‘mjj ’>mj+lj+l.
,/ ●

✌☛ (5)

These betweenness conditions are, in fact, just the Weyl branching law

for the chain of unitary subgroups given by:

U(n) ~U(n-1) ~ ... 3U(2) ?U(l) . “ (6)
.-

~.
Examp.tc. For n=3, and [m~3m23m33] = [2 1 01, there are eight

Gel’fand patterns as displayed below:

(i;oj [l;.O)

()21011. 1

()210200

There is & one-to-one correspondence between the set of Gel’fand pat-

terns (m) having nth row [m1nm2n...mnn] (with mnn > O) and the set

of standard Weyl tableaux of this shape.

The mapping between Geltfand pa$terns an; standard Weyi tableaux.
is described as follows: The shape of the frame is [m1nm2n~=.mnn],

(7)

,,

--a ~~n vau= of the frame are filled in according to the following rules
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‘a 1: %1 1’” ‘12-%1 2’s’ ‘13-m23 3“ ““’mln%n-l “s

ruw 2:
.

’22 2~s, 3’s, . ..tm2ni2n21-1n’s‘23-m22

rw j.: Q,j j’B. ‘jj+l-mjj (j-l)’S,...,~jn_mjn_l n’s

row n: mnn n’s .

Usimg the rule (8),we see that the set of Gel’fand patterns (7)

is mapped to the set of Weyl tableaux (2). Conversely, from each stand-

ard Weyl tableau (a),we construct in an obvious way the Gel’fand -

pattern in the set (7).

The weight or content of a Gel’fand pattern (m), is the row vector

(W) = (w1w2.. .wn), where wj is defined to be the sum of the entries in

row j of (m) minus the mm-of the entries in row j-1 (wl=mll):

~ j-1 .

‘j. i-l= 1 ‘ij = ~~1 ‘ij-l “ (9)

.

Clearly, this definitionof weight coincideswith that given earlier

for a standard Weyl tableau.

The constraint in a standard Weyl tableau that eaeh row (column),
should caprise a set df nondecreasing (strictly increasing) nonnega-

tive integers h realized in a Gel’fand pattern by the ‘geometrical’

rule that the integers {mij)satisfy the betweenness conditions.

Two importantpattern results for the symmetric group Sn are:

(a) The met of irreps of Sn is in one-to-one correspond~:~cewith the

●et of partitions ([AI) of m into n parts: (b) the set of basis vectors

of a carrier space of Irrep [A] of Sn is in one-to-one correspondence

with the set of standard Ycuag tableaux of shape [A] having weight

(w) = (1,1,...,1). [The number of basis vectors (the number of stand-

ard patterns) is men the dixmmion of the irrep.]

This latter result may, of course, also be expressed in terms of

Gel’fand patterns. For example, the irreps of S3 arei enumerated by the

partitions of 3 into 3 parts [3 O 0], [2 1 01, and [1 1 11. The
•tand~d young t~leaux of we~g~t (1,1,1) hawing theme ●hapes, respest-
. ..-. ___
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-Em IF BP
.

; s ; Ill 9
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“..

Thus, the irreps [3 O O], [2 1 01, and [1 1 1] are of dimensions 1, 2,
and 1, respectively. These same results are enumerated by the Gel’fend
pattern8

.“

r’?);(?0s(’T)‘ (1+7●

(11)

The standard Young tableaux for S are often enumerated by another
n [5]

indexing scheme -- the Yamanouchi~gmbol

(12)

‘ere ‘n-j+l is the positive integer equal to the row in which j appears

in a given standard Young tableau of shape [Xl and weight (1,1,...,1).

Yn-j+l ‘s a2s0 the position (counting from the left) in which 1 occurs

in the set of differences

‘lj-mlj-l’ ‘2]-m2j-1’””0’mj-lj-mj-lj-l’ ‘jj (13)

formed from the entries in the corresponding Gel’fand pattern

[mln===~nnl=[~l...An] having weight (ltl~...~l). For example, the

Yamanouchi symbols for the Yaung tableaux (10) [and Gel’fand Fatterns

(11), are, respectively,

(1,1,1): (2,1,1), (1,2,1); (3,2,1) ●

-Theimportant pattern results for the rotation group [SU(2)I ase:

(a) Ths set of irreps of the rotat~on group is in one-to-one coxrespond-

●nce with the Set of partition~ [U 01 # j - 0tV2~l~..c: (b) the set

of basis vectors of the carrier space of irrep [2j O] ia in one-to-one

correspondence with the set of Gel’fand patterns having the partition

[2j O]t .
-. #

. (14)
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. .

[Observe that the betweenness rule embodies in a natural way the fact

that the projection quantum number m runs over the values: m=-j,...,j.]

The Weyl tableau corresponding to the Gel’fand pattern (14) is

the one-rowed pattern

.

8 I I* (15)
~j+m -j-m —4,

The notation above fer SU(2) is a special case of U(2) for which

we now give an explicit construction of the basis vectcrs in terms of

boson operators.

The standard Weyl tableau of two rows corresponding to the Gel’fand

pattern

’12 ‘22 , where m12 > mll > m22 , (16) “
’11

is

(17)

A mapping from Weyl tableaux to bosons is given by

(“)10+ 1
1+ ~

al ‘

‘() 12+10 0+
. a2 ‘ 1 2

() ()

al al 12
1+11+

2 1
det

12
= a12 “

a2 a2

(18)

El[The Weyl tableau ~ corresponds to antisymmetrized bosons made up of

two independent bosons a; and a: (i=l,2,).]

Using the correspondence (18), we obtain the following boson state

vectors corresponding to the Gel’fand pattern (16) and the Weyl tableau

, (17):

lr12m1?2)) =M-%a,2) , ~ z
12 m22(al)m11-m22(al)m12-mll

10> .(~g)

where the normalizationfactor is given by:

(m12+l)l(m11-m22)!(m12-mll)l(m22)1
M- —m

(m12-m22+1)1
(20)



.8.

The angular momentum labels for the states (19) are

“’12-m22
“ j=~t

“n12+m22

‘=”mll-~ “ (21)

[The 2m22 ahti-symmetric (paired) bosons are inert as far as angular
12momentum is concerned, that is, a12 is invariant under unitary unimodu-

lar transformations.]

v. Voub.tetableaux anti$he ho$atiun ma%~iced.

A closer inspection of the basis vectors (19) reveals that the

Weyl tableau (17) has been used to assign the ~ub~c~ipt~ to the bosons.

One sees, in fact, that the superscript assignment originates from the

Weyl tableau
I

. .

(22)

corresponding to the maximal Gel’fand pattern

(’12 ‘22
‘12 )

● . (23)

A more descriptive notation for the state vector (19) uses a double

(dUjt

I
“1

$ableau or a double Get’{and pa.ttehn~

,11
11...11121...12[ 11..0 1 11...11111...11

2 2

‘)

(24)...

ml2

))
ZM‘1/2(a~~)m22(a~)m11-m22@ ‘12-mll ~>

‘12 ‘22
’11

where we observe that

(i) the Young frames have the Aurne~lmpe;

(ii) by convention the second Gel’fend pattern (23) is inverted

over the first one (16) in order to depict explicitly the shared labels

~m12 ’22] giving the common shape of the Young frame;

(iii) the mapping from the double Weyl tableau to bosons is obtained

by pairing off the columns occurring in the ~ame poA&hn6 in the two

Weyl tableaux ~



8’

ElH 12{pJ,~}+.~.1 )+a12{1,2 ‘J t,j S 1,21
2

(2$)

[In the patterns In (24) the column pair

BB1}
{1”, ~

2

occurs m

Id
2

pair { ,
...

The

that on.

times; the column, pair{~ ,m ) occurs mjl-m22 tlme$, M th. CO]UIM

‘~} occurs m12-mll tlmw, ] I
●

tigniflcanca of rewriting Eq. (19) in tho form Of Xqg (24) ie

now rocognizas that tho latter ro.ult gon.raliso.~ Th4 I#cgt

, mm:

,

where

B

...

I
I

.

(A)

k“



Aw

o

(29)

(30:
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VI. The gtmeaut bo~on potgnomiah 06 U(n)

Let us turn now to the description of the U(n) boson polynomials

stating some of their important properties. There is a vast litera-

ture on this subject (cf. Ref. 7-25 and references therein). Our

presentation is based on results which may be found in Refs. 6, 9, 10,

11,-14, 17, 18, and 23, to which we refer for further details and

proofs. We first sketch the relationship of the U(n) ‘I&on polynomials

to double standard tableaux. Consider the double standard Weyl tableau

of shape [A] - [A1A2.. .Anl:

w’
TnJq--J-l

e
.
.

GEEIm

(32)

Altarnativoly, this double standard tableau may be denoted by the dou-

ble Gel’fand pattern

[(m’ )

d

[ml
(m)

(33)

whine the laft and right tableaux in (32) correspond, respectively,

to tha upp~r ●nd lower Gtal’fandpatterns in (33).

With .ach pair of columns in corresponding positions in the left

●nd right patt~rns of the double staridard Weyl pattern (32), we now

associate a determinantal boson by the rule

‘lk

‘2k

jlk

j2k

whare

b

‘h
●

●

●

9

(34)



A boson polynomial corresponding to a double standard Weyl tableau

is defined as the product of the determinantal bosons (34) taken over

all columns l~2f.. ., ~ of the frame. Using the double Gel’fand patterns

to denote the polynomials, we have:

(35)

We note two special cases of Eq. (35)

(37)

..-x;
[. 112 . . . k-lk ‘kn-mkn-l
a12k-l . . . k-in

●

...k-lk
‘here ‘ij

~ O for i z j, a~~OoOk-in E ax for kml, and special pattern

notations have beer~introduced:

I
*

[1[

‘1 n ‘2n ● “”
[ml “. ●.

‘n-in ‘nnn

(MM) E
“mln ● ‘2n

D

‘1 n J

(u)

( H[ml
‘1 n ‘2n ““” ‘n=ln ‘..

(sf:!;~x) = ‘n-in-l “ 1 (39)
‘h-l ‘2n-l . . .

(max)
. ... .

The weight (W,W’) or content uf the double standard tableau (32)

@nd of the double Gel’fand pattern ‘(33)is defined to be [cf. Eqe.

(1) and (9)]

(W#W’) = (W~#... #Wn8 Wi#. ..#W~) # (40)

where (W) and (W’) are, respectively, the weights of the left and right

standard tabl.aux (upper and lower Ge’1’fandpatterns) .

Am notad earlier the bmon state v-ctorm eorreaponding to tho poly-

ncnnialm (3SI arm not. in aanaral. orthogonal [cf. Ea. (44)-(46) hlow]~
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and the main emphasis in physics has baen on the construction of

ofithonotmu~ ba~i~ vectoh~ denoted in the double Gel’fand pattern nota-

tion by . .

-1[1(m’ )

[1

(m’) -
[m] z s
(m)

CM([ml)] ‘% B (A)l()>
(:)

where

U(h)) = H[m) = n& Pijli ~ ‘Pin-Pjn)
i<j

in which

me boson polynomials

[1
(m’)

B [ml (A;
(m)

occurring in Eq. (41) and

[1

(m’)
P [ml (A)

(m)

(41)

(42)

+ n-i . (p. is called a

“p%ial hook”).

the double tableau polynomials

. (45)

(43)

(44) “

*pan the same vector spaces. However, only ~or the patterns

do the polynomials agree (up to a normalization factor).

We will now state the form of the boson polynomials (44) referring

to Refs. 11, 13, 17, and 23 for a discussion of the properties which

characterize these orthonormal forms and for the derivations of the

xeeults below.

We begin with the statement of the simplest polynomials which are

thos~ corresponding to a Young frame having 1 row with p boxes so that

[m] = [pO... 0] = [pm

vl_
(m’) - - 1/2 J

: (Wt)!(w;) ! x~ ; (a:)alB[pbl (N =

[()
/(a:) 1m I,j=l

(47)
m 1=1

.

where [W] and [W’] danote the weig~td of the lower and upper Ge:’fand

.-.~ttarns,raspectivaly, and E denotes the following square matrix of

nonnegative integers with constraints on the sum of the entries in



.14,,.
,-

i
.,.

i

.—
. . .

c1a=

., ,

4 4*””4
12a2 a2... +

●

●

‘i ‘i ‘A
The symbols wi(w’j) written to/..’W: .

,.

‘1
(48)

‘2

tin

the right of row i (below column j)

“designate that the entries in row i (column j) are constrained to add

to Wi(w;). The sum over ~ in Eq. ,(47) is to be taken over all non-

j (for i,j = 1,2,....n,negative integers ai ) which satisfy these con-
straints. . .

Z%b general result has a form similar to Eq. (47):

()
f~fis).

()(m’) j
(A) = M1’2([m]) X C [m]

a.
B [m] (a) x ; (a~)

(m) a (mj
%(U:N*;

i,j=l.
(49) “

where the coefficients C in this result are given by

c

in

()(m$)
IX#

which

(

N[Wi 6]
denotes the “Gel’fandpattern

ai

()(

12
“ [Wi 6]

)

ai+%+””’+a! %:::0

(ai) = ●?O o
J2

ai+ai ~

“ ai

.,,. (51)

where (I’k) is the operator pattern which is uniquely determined by

~t~e A pattern*. i

- [mlk-1m2k-1’”*n 6k-lkml ] ‘ (52)

We can not go Lnto an ●xplanation here of the general structure of the
._L_m a—_ &L.
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special case of interest for.Sn. It is sufficient here to note that

the general coefficients ,(50)are explicitly known..
We complete this general discussion with several observationson

the propertiesof the’bosonpolynomial (49): The ~po~tant phopefittu

(Z)--f (ii] notaf eatieh (end of Sec. V) apptg a4 Ata%ed 20 the
doub.te Ge.t’~and pattehn po&ynom.tab

.“
(mQ)

‘()
B [m] (A) .

(m)

uta$hix, .

‘JL+~AV, U, V c U(n) , (53)

(54)

(55)

#nl pro (u)

, Of O(m’)(u) = B [ml .. \()):m
(56)

Let us begin by considering the Cayley n x n permutation represent-

●tion of Sn. For tb,ia one lats P denote a permutation by the rule;

(1 2 ● OO n

)
p=jlj20.0in ●

Thn the ~orrespondenca

(57)

(58)
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.

where ei”denotes a unit column vector with 1 in row i and zeroes

elsewhere - is a representationof Sn by nxn matrices.

Since the general boson polynomial admits of an interpretation of

the argument A by an nxn indeterminate, it is a well-defined operation

tozreplace A by lP, in Eq. (49). One obtains

()(m$)
B [ml (Ip)

(m) .

IM([ml)ll’26 - 6
()

“ (m’)
= C [m]...6w@w. (ap) # (59)

‘iwil ‘;wi2 nl (m) .
n

where am denotes the nxn numerical array
.6 .-

(ap) = [w e
il i~’ ‘i2ei2C”*”#wi ‘i 1 ●

(60)
nn

Let us next specialize to representations having labels [ml which

partitio~s of n, and at the same time he~tnict the ZWO Get’fund

pu2tean4 (m) and (m’) Auch that Xhe weight~ [W]:[W’]=[!.]. It follows

at once from Eq. (59)”that these special boson polynomials take the

form:“ ..

(m’)

() ()

(m’)
B [m] (Ip) = [U([ml)]1~2 C [ml (Ip) . (61)

(m) (m)

Xt is Useful to give a special notation to these objects; let us define

[m”)
(~t)

‘(m)~(m’) ()
(P) = B [m] (Ip) . (62)

(m)

Then
(63){D[m](P)lP c Sn}

is an irreducible real, orthogonal representation of Sn.

,Consider now the specific form taken by the matrix elements of ,,

these irrepso From Eq. (50) we obtain

~hnl(m),(Jii$)(p)-[nl~dim[mlll’2 x (()[ml
On)

whera dim[m] danotes the dimension of the irreducible representation
●..-_a m W- -~-11 nnw mcnlain in detail the meaning of the quanti-



. .

(i) The Symbol

(65)

denotes a dunclamenkt Uigncfiopefiatomof U(n) [cf. Refs. 9, 17, 181

in which (1 ~~ ) is an abbreviated notation for the n-rowed Gel’fand

pattern which has weight [0 ...0 1 0...0] with the 1 appearing in posi-

tion i; similarly, (lye) denotes the inverted Gel’fand pattern which has

weight [0...0 1 0...0] with the 1 appearing in position y. Thus, we

have:

ijy = 1,2,...,n (66)

in the symbol (65). For example, for n=a, there are 9 fundamental Wig-

ner operators, a typical example being
. .

(67)

[We will see ~elow that, while upper and ‘lowerpatterns in Eq. (65)

run over the same numerical patterns, t,herole of the two patterns in

the definition of a fundamental Wigner operator (65) are qualitatively

different.]

(ii) The sequence in integers -

(68)

appearing in the upper patterns in Eq. (64) is the Yamanouchi symbol of

the Gel’fand pattern
,

.()
[ml
(m’) “ (69)

[Cf. Eqs. (12) and (13).1
Our remaining task is to define the concept of a fundamental Wigner

operator in U(n) and to shw how the coefficients in Eq. (64) are cal-

culated.

Let H[m] denote a carrier space for irreduciblerepresentation [ml

of U(n). Then an orthonormal basis of the space H[m] is:

II(Ii)> (m) is”a Gel’fand pattern of the
Young frame Y[ml 1

● (70)

The fundamental Wigner operator denoted by
.,

(71)



lb
.,

(T). [lf ‘Tn+l < mT+l,n, then H[lnl+A(T) contains only the zero

vector.] The mapping (71) is now defined explicitly by giving its

action on-each basis vector (70)of ff~m]: n

01)Sl;b] [m) =
(m)

where

(h] +A (T

(:’) (m’)

\

( 1([m]+A(T)[
(m’)

1(

)[

1;6)
)

1)[ml
(m)

x [R)]+A(T) )(m’) ‘ (72)

(73)

denotes a real number (matrix element) which we now describe.

For the description of the numbers (73), we require a detailed

notation for the entries in the rows of a Gel’fand pattern. We intro-

duce the notation [m]k = [mlk...~kj for the entries in row k, t% -

notation [1 ~]k for the row vector [1 O...0] of length k, and Ak(Tk)

for the row vector of length k which has 1 in position Tk (1 < Tk ~ k)

and zeroes elsewhere. In terms of this notation each matrix element

(73) maybe described in the following manner: Each matrix element

(73) is zero unless the Gel’fand pattern

has the form

[ml + An(Tn)
n

, (
[mln-l + An-l(Tn-l)

●

●

~ Ai(~i)
)

e
1, [ml ~

●

(74)

8

where for each prescribed pair, T and i (1 < T <n, 1 < i < R)I the ,

oequence of integers 7n0Tn-lSoOOtki satisfies

=~andl<~k<k for k=n-18... ,i. (75)
‘n

Denoting th8 Gel’fand pattern (74) by the notation

()

[m]
(m) 9

Tn.o.t i

(76)
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. .

izes in the following manner:

“ ((l::).i...il([<bl)l~::)
.

(77)

n

‘(

[m]k+Ak(Tk)
-It
k=i [m]k-~+Ak-~(Tk-l)I[l;%] :;:-l) 8- “

in which, by convention, Ti-l = i and Ai-l(i) = [~]i_l*

Each of the real numbers

in tne product (77) is called a Zeduced U(k): U(k-1) rnatfiixelcrncnt

and has a very simple interpretation in terms of the pzttt?znCU4CLAL6

MLteb developed in Ref. 7. We state these rules here for the special

case required--toevaluate the factor (78):

The puttekn catculu~ JLU4eA (cf. Ref. 14).

(i) Write out two rows of dots and assign the numerical entries of

Ak(Tk) and Ak-~(?k-~)# aS shown:

(position Ik)

o 0 01 0 0 0
● ● ● ✎✎✎ ✎ ✎✎✎☛ ● ● row k

● ● ● ’a ●

o 0 ““” 1 “=”3 o
(position lk-~)

rcw k-1

(ii) Draw an arrow between each point labelled ky 1 (tail of ar-

row) to each point labelled by O (head of arrow). Once this arrow-

pattern is drawn, remove the O’s and 1’s from the diagram.

(iii) In the arrow-pattern assi9n the Partial hook pik to Point i

(i-ltz,.=.tk from left to ri9ht) of r- k and the Partial hook pik-1

to point i (i=ls28...:k-1) in row k-1 (pij~mij+j-i).

(iv) Assign a numerical factor to each arrow in the arrow-pattern

using the rule
1
i

ptail - %ead
/

+ ‘tail ‘
.

‘here ‘taii -1 if the tail of the ar~ow is on row k-1 and etail-O if tail

. of the arrow is on row k. /
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.

‘N = product of all factors for arrows going between rows,

The

‘here s‘Tk-l-Tk)‘s ‘1 ‘or ‘k-1 > ‘,C ‘d ‘1 ‘or ‘k-l<%

.
D = product of all factors for arrows going.wiZfIinrows.

reduced U(k):U(k-1) matrix element (78) is then given by

~ 1/2

[1 (79)s(Tk+-Tk) ~ e

Example. FOr k=3, t3=l, TZEZ the aHOW-patterII iS
..- .- ——.—

.-

‘=’
P12 P

22

and the reduced matrix-element (78) has the value given by

[

1/2
(P~3-P~~)(P22-P33+11(P~2-P33+l)

=-
(p@?23)(p~’-p3’) (p22-p~~+l) 1 . (80)

The result of applying these rules to Eqs. (78) is:

[

k (PT k-l-psk+1) k-~ ‘p?kk-ptk_l)
k-1 1)11/2

n‘(tk-l-Tk) ~
‘P?kk-psk)

(81)
S=l t=l ‘P?k-lk-l-ptk-l+

●

#?k t#Tk-~

Remamh. Using the above results from the pattern calculus, Eq.

Thus we have achieved our stated goal of obtaining the real ortho-

I

onal Sn irreps in an explicit~ non-recursive~ way. The techniques we
ave used, in particular the pattern calculus, seem to be a natural ex-

tnension of the ideas underlying the concept of a ‘hook” (due to Nakayama,

d to Frame, et al.

obinson formul&27]

‘26]) as applied in ‘hook productn of the Hall-

1
s

I

,
8
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