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__ABSTRACT

The set of all real, orthogonal irreps of sn are realized expli-
citly and non-recursively by specializing the boson polynomials carrying
irreps of the unitary group. This realization makes use of a 'calcu-

lus -of: patterns', which is discussed.‘3h7 “lfﬁ, YL
' / . N, )
/ :
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I. Intnodyction

The purpose of the present paper is to show how some recent in-
vestigations in the unitary group -- motivated by applications to

 quantum physics -- can be specialized to yield interesting =-- and we

hope, useful =- results for the symmetric group. Our main résult is

to thqin an explicit, non-recursive, set of real, orthogonal irreps

for Spe whose realization by means of the patterr calculus (as explained
below) is (we believe) new.

Let us indicate, very briefly, why the unitary group figures so
prominently in quantum physics. The state, v, of a quantal system is
a nray in Hilbert space of unit length; observables are "self-adjoint
operators, 0, mapping the Hilbert gpace into itself. A symmetry is a
mapping of states into states, and operators into operators such that
the probabiiity |<¢|0jv>| is preserved. The fundamental theorem (Wig-
ner-Artin) -- essentially the fundamental theorem of projective geome-
try -- now states: any symmetry can be implemented by a semi-linear
dﬁitary transformation. It follows that the unitary group is of basic
interest in quantum physics.

Let us remark also that the study of the symmetric group by broad-
ening the investigation to the unitary group is itself a familiar tech-
nique; it was used extensively by Weyl, and is one of the principal
themes in G. de B. Robinson's monograph on Sn'

It is necessary to explain now precisely what is meant by a
*boson", and'by a “boson oéerator". These terms are physicist's jar-

.gon for concepts known to mathematicians as the Weyl algebra, (or

as it iB_also called the generators of the Heisenberg group) .

The boson, a, and its conjugz . a, are elements of an dgebra (Weyl
algebra) satisfying the commu®ation rule: [a,a)=1, where 1 is the
unit operator. More gener&ily, we consider n bosons: as i=1,2,...n
and their conjugates: Ei, i=1,...n obeying the rules:

(ai.aj] - (3;.35] = 0; (Ek.aj] = ‘ij .

[The name "boson" contrasts with the physicist's term "fermion", which
replaces commutation in the rules above by anti-commutation.]
Boson polynomials are simply polynomials (over ¢) with the bosons

‘ {di} as indeterminates. There is a natural scalar product associated

tc the boson polynomials by the commutation rule, if we define the
abstract vector |0> to be annihilated by all conjugate bosons:



Ei|0$so. Then to the boson monomial (ai)K, we associate the Hilbert
space vector: (ai)k|0>s|¢>, and the scalar product:
wl=<o| @) @)%[0> = xi.

We remark that the technique of boson operator construction can
be phrased in the language of the umbral calculus.

IX. - Young tableaux, Weyl tableaux, and Gel'fand patterns

One of the first problems that onre confronts in discussing the
irreducible representations of the unitary group U(n) is that of devis-
ing a comprehensible notation. This problem was solved in an elegant
way by Gel'fand and Zetlin[¥] by utilizing the Weyl branching 1aw[2]
for U(n). 1In order to explain this notation in familiar terms, it is
convenient to appeal to the concept of standard Young tableaux of
the symmetric group R since the relationship of these tableaux (to the
irreducible representations of Sn) is'well known to the participants
of this conference. .

The first concept required is that of a Young frame: a Young
frame Y[A] of shape [A]=[A1x2...xn], where the Ay are non-negative
integers satisfying Al >‘A2 - TP 4 Ap? is a diagram consisting of Ay
boxes (nodes) in row 1, Az boxes in row 2,..., xn boxes in row n,
arranged as illustrated in Fig. 1.

“Fig. 1

(1)

A Weyl tableau iz a Young frame in which the boxes have been "filled
in" with integers selected from 1, 2,...,n. A Weyl tableau is standard
i€ the sequence of integers appearing in each row of Y[A] is non-
decreasing as read from left to right and the sequence of integers
appearing in each column is étaictly 4incr:asing as read from top to
bottom. The weight or content (W) of a Weyl tableau ¥[,, is defined
to be the row vector (W)=(w,,w,,....W ., where W) equals the number of
times integer k appears in the nattern. 1If A1+x2+..\+xn-N, then

also wytw ... 4w =N. We shall call [)\] a paatition of N into n parts,
or more often, a partition when N is unspecified. We generclly count
the 0's in determining the parts of a partition. For example, the



partitions of 4 into 3 parts are [4 0 0), [3 1 0), and [2 2 0). When
the number of parts is understood, one frequently omits the zeroes
(writing [4), [3 1), and [2 2] in the examples).

Example. The standard Weyl patterns corresponding to the Young

fram'e F are:

| R E
5

(2)

IR

Young's[3] interest was in invariant theory, utilizing the
symmetric group, and he considered frames with n nodes filled in with
integers 1 to n. To our knowledge Weyl[4] was the first to use Young
frames filled in with repeated integers. We therefore refer to these
latter tableaux as Weyt tabfeaux, reserving the term Young tablfeaux
for the more restricted case.

Gel' fand patterns. An elegant geometrical notation for codify-
ing the constraints imposed on the entries of a Young patiern is pro-
vided by a Gel'fand pattern which we now define.

A Gel'fand pattern is a triangular array of n rows of integers,
there being one entry in the first row, two entries in the secgond row,
eesy, @&and n entries in the nth row. The entries in each row 2; 3,000,
n-l, are arranged so as to fall between the entries in the row above
-and below, as illustrated below:

([m]) . . .
‘Am) | © . (3)



The integral entries mij, i<j=1,2,...,n, in this array are required
to satisfy the following rules:

(<) m, . > m,. S ie. P Mo - (4)

}ii) for each specified partition [m ...mnn!, the entries in the
remaining rows j=n-1, n-2,...,1 may be any integers which satisfy the

*betweenness conditions”

m1j+1 s mnm lj >m23+1 2 m 23 >m3j+1 >m3j > "'>mj-1j >mjj‘> mj+1j+1.

P 1 | : (5)
These betweenness conditions are, in fact, just the Weyl branching law
for the chain of unitary subgroups given by:

U(n) 2 U(n=-1) D ... DU(2) Du(l) . (6)
{ -
Example. For n=3, and [m13m23m33] = [2 1 0], there are eight
Gel'fand patterns as displayed below:

210 210
21 21
2 1
221 0 210 210
0 2 0
2 1 20 (7
210 210
10 10
1 0
210
11
1

Mapping between Gel'fand patteans and Standard Weyl tableaux.
There is & one-to-one correspondence betweern the set of Gel'fand pat-
terns (m) having nth row {mlnmzn...mnn] {(with B # 0) and the set
of standard Weyl tableaux of this shape. .
The mapping between Gel'fand patterns and standard Weyi tableaux
',ii described as follows: The shape of the frame is [mlann...mnn},
=nA +ha rows of the frame are filled in according to the following rules



- ' -
row 1: m, 1's, m, "M, 2's, m, 4 m23 3's ""mln-mln-l n's

Tow 2: m,, 2's, m,3=m,, 3'5,....m2n-m2n_1 n's

. (8)
row i mjj i's, “jj+1-mjj (3-1)'9,...,mjn-mjn_1 n's
row n: mnn n's .

Using the rule (8), we see that the set of Gel'fand patterns (7)
is mapped to the set of Weyl tableaux (2). Conversely, from each stand-
ard Weyl tableau (2), we construct in an obvious way the Gel'fand
pattern in the set (7).

The weight or content of a Gel'fand pattern (m), is the row vector
(W) = (wlwz...wn), vhere "j is defined to be the sum of the entries in
row j of (m) minus the sum of the entries in row j-1 (w15m11)=

3 3=l
wy = 1£1 m, 4 151 Migey (9)

Clearly, this definition of weight coincides with that given earlier
for a standard Weyl tableau.

" The constraint in a standard Weyl tableau that eazh row (column)
should comprise a set of nondecreasing (strictly increasing) nonnega-
"tive integers is realized in a Gel'fand pattern by the 'geometrical’
rule that the integerF (mij) satisfy the betweenness conditioms.

III. Carnier spaces of the representationd of the symmeinic group.

Two important pattern results for the symmetric group sn are:

(a) The set of irreps of § is in one-to-one correspondence with the
set of partitions ([1])) of n into n parts; (b) the set of basis vectors
of a carrier space of irrep (1] of sn is in one~to-one corrxespondence
with the set of standard Ycung tableaux of shape [A] having weight

W) = (1,1,...,1). [Tha number of basis vectors (the number of stand-
ard patterns) is then the dimension of the irrep.])

This latter result may, of course, also be expressed in terms of
Gel'fand patterns. For example, the irreps of 53 are enumerated by the
partitions of 3 into 3 parts [3 0 0], (21 0], and [1 1 1]. The
standard Young tableaux of weight (1,1,1) having these shapes, respect-



-IED :

3 EFl ’ EFJ ’ E] * (10)
Thus, the irreps [3 0 0}, [2 1 0], and [1 1 1] are of dimensions 1, 2,
and 1, respectively. These same results are enumerated by the Gel'fand

patterns
300 210 210 111
( 20 5 ( 2 0 ) ’ ( 11 ) 3 ( 11 ) . (11)
1l 1 1l 1l

The standard Young tableaux for sn are often enumerated by another
indexing scheme -- the Yamanouchi symbol

(y) = ﬁyl,yz,....yn) . (12)

Here Yn-j+1 is the positive integer equal to the row in which j appears
in a given standard Young tableau of shape [\] and weight (1,1,...,1).
Yn-j+1 is also the position (counting from the left) in which 1 occurs
in the set of differences

formed from the entries in the corresponding Gel'fand pattern

[mln... nn]-(xl...xn] having weight (1,1,...,1). For example, the
Yamanouchi symbols for the Young tableaux (10) [and Gel'fand patterns
(11), are, respectively,

(1,1.1); (2,1.1), (1,2,1); (3,2,1) .

IV. Cannien spaces of the nepresentations of the notation group.

The important pattern results for the rotation group [SU(2)] are:
(a) The set of irreps of the rotation group is in one-to-one correspond-
ence with the set of partitions (2§ 0], § = 0,1/2,1,...; (D) the Bet
of basis vectors of the carrier space of irrep [2] 0] is in one-to-one
correspondence with the set of Gel'fand patterns having the partition
{23 0):

(25 ; 0\ em s =i 441,000, . (14)



[Observe that the betweenness rule embodies in a natural way the fact
that the projection guantum number m runs over the values: m=-j,...,J.]
The Weyl tableau correspondiﬂg to the Gel'fand pattern (14) is

the one-rowed pattern '

g ) 1lafatl... 121 212¢... 12

-3

s 1 .
q_.3+m—____".+_j-m
U ’ '

The notation above fcr SU(2) is a special case of U(2) for which
we now give an explicit construction of the basis vectors in terms of
boson operators.
' The standard Weyl tableau of two rows corresponding to the Gel'fand
pattern
m
11

m2

m 22 , Where m,, > my, >rm22 v (16)

is
- ) ' |
My ————My oMy, ————y M)

i_:%_T P I N B PP TTTE] an

21 ...12

A mapping from Weyl tableaux to bosons is given by

1 (1 . 0) 5 ai ,

- 1

5 (1 0 0) N (18)
1, {1 1 R W

2-> ( 1 \) »> det 1 2 =232 *

[{The Weyl tableau EE corresponds to antisymmetrized bocsons made up of
two independent bosons ai and ai (i=1,2,).]
Using the correspondence (18), we obtain the following boson state

vector, corresponding to the Gel'fand pattern (16) and the Weyl tableau

(17):
m m m m m m m
12 22) -1/2 12,722, 1,7117"22, 1. ™ 2”
= . 11
( 11 M (a12) (al) (az) |0> +(19)

where the normalization factor is given by:

(m)+1) 1 (myy=m, ) L(my =My o) 1 (my,) !
‘1m12-m22+1)!

M= (20)



The angular momentum labels for the states (19) are

m, .~m
§ = 212 22

‘M. 4N
522, - 12 22 . (21)

nEMy T
[The 2m22 ahti-symmetric (paired) bosons are inert as far as angular
monmentum is concerned, that is, aig is invariant under unitary unimodu-

iar transformations.]
" V. Double tableaux and the notation matrices.

A closer inspection of the basis vectors (19) reveals that the
Weyl tableau (17) has been used to assign the subscai{pts to the bosons.
~One sees, in fact, that the superscript assignment originates from the
Weyl tableau '

p——Td, Hm, "M, ——
Tl .. i) ... 11 ' (22)
(21 2]...12

correspor.ding to the maximal Gel'fand pattern

m m,.
(12 n,, 22) . (23)

A more descriptive notation for the state vector (19) uses a double
Weyl tableau or a double Gel'fand patitenn:

I 1], ..

. 1)
I 21...12

ll‘..lllzl...lzll—% L) _%-l LK N ] 11 5 8 8 1 (24)

- -m
_ (mlz :12 "‘22) EM-l/z(aig)mzzcai)’“n m22(a%)m12 .11|0>
11
where we observe that .
(/) the Young frames have the same shape;

{i{) by convention the second Gel'fand pattern (23) is inverted
over the first one (16) in order to depict explicitly the shared labels
[m12 mzzl giving the common shape of the Young frame;

(ii4) the mapping from the double Weyl tableau to bosons is obtained
by pairing off the columns occurring in the same positions in the two

Weyl tableaux



E E""g([ﬂ 0m)"..io‘oj'102- (28)

[In the patterns in (24) the column pair

e

occurs m,, times; the column.pair {{T] [T} occurs my,-my, times, |nd the column
pair {[If 2]} occurs myp=my, times, ] ;

The significance of rewriting Eq. (19) in the form o! Eq. (24) {e
that one now recognizes that the latter result generalises: The Wey?
tableau 4Ln the second posdtion (the upper Gel'fand patiern) may be
taken to be any stardard tableau corresponding Lo the shape (m, LIS
The mapping (25) then assigns a definite state vector (boson pnlynomial)
to each pair of standard Weyl tableaux of the same shape.

. The method ocutlined above for associating boson polynomials to
double standard tableaux is the natural extension of Eq. (24) and is of
interest in its own tiqﬁt (cf. Doubilet, Rota and leoln‘g) ), Dut i
leads to nonorthogonal boson state vectors, except for the apecial
case (24) [cf. EqQ. (35) below). We therefure develop an alternative
method, used primarily by physicists, whioh utilises repeated applica-
~ion of a lowering operator,

2
2la t Wdal (26)
im)
to the vector (24), theradby gcaarating orthonormal boaun state veetars,
These orthonormal vectora may be expressed in &n elegant combinaterie

‘form:

oM 4 o [

12 M2 em™ 8 M2 22| (W) 0> ()
™ ™1

where
m"i‘m N "2
B 1712 22| (A) = tw‘l w2|w‘|w‘|] (u )

™

| ke - '

__l>"'i <J>’<;L> ‘(-') b )
@

(a1 (a1 (ah)1 u,n



in whieh (W) and (W') are, respectively, weights of the Gel'fan® pat-
torne
" "n| , [Me "
"l " (29)

and She summatrion ie over all nonnegative integers °2 such that the
0tPin o has the fined row and column sums given by (W) anc (W'),
thae |,

i B (30;
“t %"
R

(ot'.{‘!..c} 0n:°w.. 0:00:°N:.u‘;*q§'w;.)

Cheorve shat while the double Oel 'fand patterns in Eq. (27) are in
ONe-4A-BN0 enrrecpondence wWith the double standard Weyl tableaux, we
ne longer have a simple rule for reading off the general form (28).

Wo will netv give the deralls here of the derivation of Eqs. (27)
ond (00), But leot un nete several important properties of the double
Qol'fand pattorn polynem(als 120)

(() ®he aet of deuble Oel'fand patiern polynomiale of weight
(W, %) 4o o (Linoarly independent; Losis of the veotor space spannad
by all meneniale in the besons (u}) whioh eontain w, Gccurrences of
the auhaeript | and w! eevurrences of \he superseript j.

(44) The 20t of double Ge)'fand patiern polynomiale correspondirg
ve o)) parsiviens (m) of the nonnegative integer N is a basis of the
verter Space Of hemegenesus polynomials of degree N in the bosons
‘.I.‘

dd4d) The madrin I"' (A) having element in row LY (mllnmlz'....mzz)
and o0lumn n“ (m I"I!"""Il’ given by the bosnn polynomials (20)
to o unitary § vedueib\a repiesppntation of the group U(2) when the
Betsin A (o replaced by & unitary 2nd matrin.

(év) 1f we replacse the basont ct in Bq. (20) by tle elements ui
of o Ind unisary unimadular mativin U, we obtain the (unitary) trreduci-
ble vepresentations of BU(2) (rotation matrices):

o shaa l.*m:] ti\ (AR



V1. The general boson polynomials of U(n)

Let us turn now to the description of the U(n) boson polynomials
stating some of their important properties. There is a vast litera-
ture on this subject (cf. Ref. 7-25 and references therein). Our
presentation is based on results which may be found in Refs. 6, 9, 10,
11, 14, 17, 18, and 23, to which we refer for further details and
proofs. We first sketch the relationship of the U(n) ‘boson polynomials

to double standard tableaux. Consider the double standard Weyl tableau
of shape [)\] = lxlxz...xnlz

: w
n fhe| I‘le ' | - Sy
- HAP (32)
21 [Y22]-- ‘2x2 3211 J22 ...[ﬁ“zxz
1n'l 1n2 ceo 1nx nl Jn'll jn?. o jnx
L _ n
4

Alternatively, this double standard tableau may be denoted by the dou-
ble Gel'fand pattern

|(m )

[n] (33)
(m)

wheve the left and right tableaux in (32) correspond, respectively,
to0 the upper and lower Gel'fand patterns in (33).
With each pair of columns in corresponding positions in the left

and right patterns of the double stardard Weyl pattern (32), we now
associate a determirnantal boson by the rule

1yx 1k
i 3
2k
.2k . . 51k"'jx'kk
. . | ]
. . ol SRR S
{ j 1k A kk
[ ]
X'kk A kk
where - .31 .jk (3u)
1 e e 8 i
1l 1l
jl...jk . .
a B det . .
110051 . []



A boson polynomial ceorresponding to a double standard Weyl tableau
is defined as the product of the determinantal bosons (34) taken over

all columns 1,2,..., ﬁ.of‘the frame. Using the double Gel'fand patterns
to denote the polynomials, we have: ' .

e s J 1 . i
(m') Mo I A,k
plimd’| ) = moa .ik (35)
(m) k=1 ]k S : ,
We note two special cases of Egq. (35)
n Men Mk+1n )
) | = [}g :] o o (36)
(max) k=1 L .
(maX) | n'] 12 k mkn"1-mk+]n
Pl - naf |
(semi-max) (37)
h 12 ... k-1k| "kn"Mkn-1
o [ 12 ... k-1n ’

‘ L B - k
where mij =0 for 1 » j, aig...t_iﬁ S an for k=1, and special pattern

notations have been introduced:

' (m3 ™in M2n .- Ma-in "nn |
m - . .. !
[(max)] = meC My , (38)
{ Mn J
(m] [ Mn Mn *** Mn.in Mn (39)
(sgm!-mex)) = Mast ™nel ... Mpctn-d

‘A (max)

~ The weight (W,W') or content of the double standard tableau (32)
(and of the double Gel'fand pattern (33) is defined to be [cf. Egs.
(1) and (9)]

(W,W') = (wl,....wn. wi....,wﬁ) ’ (40)

where (W) and (W') are, respectively, the weights of the left and right
stundard tableaux (upper and lower Gel'fand patteras).

) As noted earlier the boson state vectors corresponding to the poly-

namials (38) are not. in aenaral. orthoaonal [cf. Ea. (44)~-(46) below],
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and the main emphasis in physics has been on the construction of
orthonoamal basis vectors denoted in the double Gel'fand pattern nota-
tion by ’

(m ) - (m')
= M(Cml)3 B| m (R)] 0> (41)
(m) (m)
where ) n
[m]
= H = -
R([m]) i: ‘ij!/ nJ (pin pjn) (42)
in which
Pip ¥ My, + n-i (p;,, is called a (43)

"partial hook").
The boson polynomials P

(m') - | -
B | [m] (A) (44)
(m)

occurring in Eq. (41) and the double tableau polynomials

P m A - 4

span the same vector spaces. However, only for the patterns

(max) (max) (semi-max)
» [m]
(max) (semi-max) (max) (46)

do the polynomials agree (up to a normalization factor).

We will now state the form of the boson pclynomials (44) referring
to Refs. 11, 13, 17, and 23 for a discvssion of the properties which
characterize these orthonormal forms and for the derivations of the
results below.

We begin with the statement of the simplest pulynomials which are
those corresponding to a Young frame having 1 row with p boxes so that
[m) = [p0...0) = [pd):

(m:) —n _ =11/2 uj
sl 1 ) ) = |1 o |z 1) ey (a7)
\(m) i=) o 1.4 !

vhere [W) and [W'] denote the weights of the lower and upper Ge: 'fand
_patterns, respectively, and @ denotes the following square matrix of
nonnegative integers with constraints on the sums of the entries in



P LT

- 1 2 n
Gl a1--o ] Wl
- 1 2 n (48)
[=) a; O ... OylW,
i Y2 "

- The symbols wi(w'j) written to the right of row i (below column j)

""designate that the entries in row i (column j) are constrained to add
to wi(wi). The sum over [a] in Eq. (47) is to be taken over all non-

(for i,j = 1,2,...,n) which satisfy these con-

Py

negative integers a
straints. .
The general result has a form similar to Eq. (47):

la')\ - (m*) n c?
B([m] ) @A) = m/2(m) & e ([m] ) (@) x T (ai) 1/l(ai“ll/z;
(m) a (m) ilj.:l
: (49)

where the coefficients C in this result are given by

(m*) (r) (r.) (r.)
¢ (im) ) (a) = ({Im w , 2 01) oo (tw, 2 81) (1w, L &)
) (al)

(m) (m') (Qn ((‘2)
(50)
w, 0
in which ia denotes the Gel'fand pattern’
. 1, 2 n
[wi 6] °i+“i+o.-+ui 0::.:0 (51)
¢ - o . ° ca
i (ay) ,i 0
2
ajtay
.9y

where (rk) is the operator pattern which is uniquely determined by
‘the & pattern _
. 4

lA(rk)l-lmlkmzk...mkkb)

TR ST (52)

= Im)yaaMak-a

We can not go into an explanation here of the general structure of the

- & _ s A &_ .. s
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special case of interest for,sn. It is sufficient here to note that
the general coefficients (50) are explicitly known.

We complete this general discussion with several observations on
the properties of the boson polynomial (49): The Lmbontant propenties
(4) and (ii) noted eanfier (end of Sec. V) apply as stated %o zhe
double Gel'gdand pattean polynomialas

(m*)
B ([m] ) (a) .
(m) :

Propenty (ii4i) also genenralizes to the group U(n), where the rows
and columns of the matrix B[ml(A) are now to be enumerated by the
U(n-1) Gel'f{and patteans ((m),(m')). [Similar statements also apply
to the polynomials (35).] Finally, we have also the transformation
propenty under the combined Left and night translations of the boson
matrix, '

™ A+UAV, U, VeU , (53)
"gdven by |

B ( ém;)) (UAV) o™ . ()p™ (V)B (ful')) (a), (54)
m ’ - 8 " ' m '
(m) (w) (u") (v) (mj (v*) (m*) (m)

where = denotes matrix transposition, and
o™ () |u ¢ uln)) : (55)

48 the (unitany) mataix nepresentation of U(n) obtained by the identi-
§ication

plml (U) = B ;:l')\ (u) | (56)
) ) \ ] @

V1I: The Voan-Vamanouchi heal, proper orthogonal Linneducible repre-
sdentations of sn'

Let us begin by considering the Cayley nxn permutation represent -
ation of sn' For this one lats P denote a permutation by the rule:

(1 2 ...n :
Pely, s, m*n) . (57)

Then the correspondence

P« "1.‘1.""i ] s Ip - (58)
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where ei'denotes a unit column vector with 1 in row i and zeroes
elsewhere - is a representation of S by nxn matrices. ‘

Since the general boson polynomial admits of an interpretatlon of
the argument A by an nxn indeterminate, it is a well-defined operation
to_replace A by I,, in Eq. (49). One obtains

B (:“‘;’) (1)
m I
(m) P

H(m) 12, s s C.(:m])) (ag) (59)
= m ' eee m a . (59
wlwil wéwizA wéwin (m) P’
where ap denotes the nxn numerical array
(a.) = [w, e w, e ceesW, €. 1 (60)
P i, il' i, iz' ' in i

Let us next specialize to representations having labels [m] which
'gre-partitiogé of n, and at the same time ne&tn@ct the two Gel'gand
patterns (m) and (m') such that the weights (Wi={w'1=[1). 1t follows
at once from Eq. (59) that these special boson polynomials take the
form:

(m') 1/2 (m')
B {Im]) (IP) = [M([m])]™® C {Im] (IP) . (61)
(m) (m)

It is useful to give a special notation to these objects; let us define

[m) (m') 2
(m) (m’ )(P) = B E:g (IP) . (62)

Then -
™ () |p ¢ 8,) | (63)

48 an irreducible real, orthogonal representation of Sn'
_Consider now the specific form taken by the matrix elements of
these irreps. From Eq. (50) we obtain

Yn 72 71 °
plm (P)=[n!/dinn] 1372 & (““’) (n 61)...{rn “81)(rx “oy)|tol
Ptm) , () (m) ‘. L ‘)

1l 2 «oe N » ) ‘
for P = il 12000 1 ’ (64)

where dim{m] denotes the dimension of the irreducible representation
s s _2 = wa ahall nAw avnlain in detail the meaning of the quanti-
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(i) The symbol
Sy, .
(1 0] ' : (65)

i o
denotes a fundamental Wignen operator of U(n) [cf. Refs. 9, 17, 18]
in which (1i ) is an abbreviated notation for the n-rowed Gel'fand
pattern which has weight [0 ...0 1 0...0] with the 1 appearing in posi-
tion i; similarly, (lyo) denotes the inverted Gel'fand pattern which has
weight [0...0 1 0...0) with the 1 appearing in position y. Thus, we
have:

i,y =1,2,...,n (66)

in the symbol (65). For example, for n=2, there are 9 fundamental Wig-
ner operators, a typical example being

2 10 \ .
z 0
(1 : o) - 11200) . (67)

[We will see below that, while upper and lower patterns in Eq. (65)
run over the same numerical patterns, the role of the two patterns in
the definition of a fundamental Wigner operator (65) are qualitatively
different.]

(ii) The sequence in integers

(Yn'Yn-l,‘..'Yl) (68)

appearing in the upper patterns in Eq. (64) is the Yamanouchi symbol of
the Gel'fand pattern '

| (ml )) . | (69)
[C£. Egs. (12) and (13).] '

Our remaining task is to define the concept of a fundamental Wigner
operator in U(n) and to show how the ccefficients in Eq. (64) are cal-
" culated.

l Let H[m] denote a carrier space for irreducible represéntation [m]
of U(n). Then an orthonormal basis of the space H(m] is:

- (m) is a Gel'fand pattern of the
{l(m)> Young frame Y * (70)
| (m)
The fundamental Wigner operator denoted by
Y 4
n o6 (71)
1 i .

fon? fmlaAlfan



18

10 o .
( x Y. [I1If m1n+1 < mr+1'n contains only the zero
vector.] The mapping (71) is now defined explicitly by giving its

action on each basis vector (70) of HI™,

, then H(ln]"‘A (T)

i\ | m) | mi+a ()| (aray Y m1) | tmisaco

A9 1 (m) (;.)( my |\ ) X T ) 02
\

e (s (1156} | i
m)+A m
44 s [1i61> (m) > (73)

denotes a real number (matrix element) which we now describe.

For the description of the numkers (73), we require a detailed
notation for the entries in the rows of a Gel'fand pattern. We intro-
duce the not?tion [m]k = [mlk...mkkj for the entries in row k, the
notation [1 0], for the row vector [1 0...0) of length k, and 8y ()

. for the row vector of length k which has 1 in position 7, (1 < v, & k)
and zeroes elszwhere. In terms of this notation each matrix element
(73) may be described in the following manner: Each matrix element

. (73) is zero unless the Gel'fand pattern

(lm]+A(1))
(m')

has the form
[m]n + An(tn)

(ml _; T A ( )
: ’ (74)
[“‘]1 + Ai(ri)

n-1'Tn-1

wvhere for each prescribed pair, r and { (1 € t €n, 1 i <n), the
sequence of integers Ta?Tn=1'°°"""74 satisfies

-rn--rand1<tk<k for k = n-1,...,1. (75)
Denoting the Gel'fand pattern (74) by the notation

[m] . . (76)
(m) Tnc ooTi
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azes in the following manner:

[m) T [m) '
n "1
Cp [ Iml () " [ml
= [1 01 ’
k=i \ [mly %8y (ryy) R L

in which, by convention, 7, , = i and 4, _; (i) = [6]1_1.
Each of the real numbers :

[m]k+Ak(1k) .
[ o1,
(m), 1 #8p_y {1y s) r'_"l

(78)

in tne product (77) is called a neduced U(k): U(k-1) matrix ef<ment
and has a very simple interpretation in terms of the pattean cafculus
rules developed in Ref. 7. We state these rules here for the special
case requiredhio evaluate the factor (78):

The pattenn cateulus nules (cf. Ref. 14).

(i) Write out two rows of dots and assign the numerical entries of
Ak(Tk) and Ak_l(Tk_l), as shown:

(position rk)
0 0 0 1l 0 0 0

) ® e*'°“® *°° @ ™ ) row k
) rcw k-1

o
oe
-
(]
oe

(position . _;)

(1i) Draw an arrow between each point labelled ky 1 (tail of ar-
row) to each point labelled by 0 (head of arrow). Once this arrow-
pattern is drawn, remove the 0's and 1's from the diagram.

(iii) In the arrow-pattern assign the partial hook P;ix to point i
(i-1,2,...,k from left to right) of row k and the partial hook p,, _,
to point i (i=1,2,...:k-1) in row k-1 (pijsmij+j-i).

(iv) Assign a numerical factor to each arrow in the arrow-pattern

using the rule !

Ptail ~ Pheaa ¥ eta#l '

whgre °ta11'1 if the tail of the ar&ow is on row k-1 and etail'o if tail

" of the arrow is on row k. /
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‘N = product of all factors for arrows going between rows,
D = product of all factors for arrows going within rows,
The reduced U(k):U(k-1) matrix element (78) is then given by

T N 1/2
8(t)_1-7) [5] . (79)
where S(t, _;-7,) is +1 for Ty = T, and -1 for 1, ;<7
Example. For k=3, 13=1, 12=2 the arrow-pattern is
pl p23 p!!
P P2
and the reduced matrix element (78) has the value given by
my3*l my3 My [11(1,00] M3 M3 M3
M)z Mpatl 190 M2 My
- - - 1/2
__[try37Ryp) tBypmRa 5t By, p33+1)] _ 50,
(P13-p231 (P13-p33) (922'P12+1) )
The result of applying these rules to Eqs. (78) is:
k  (Pr  x-1Pex*l) k-1 Py x"Pyx—3) 1/2
S(Tk-l-"k) n (k-l - ) I ( k -— +1) . (81)
s=1 Pr Xk Psk t=1  Pr _ x-1"Pek-1
8¥ Ty ¥ Ty1

Remarks. Using the above results from the pattern calculus, Eq.

(64) {48 a completely explicit general r28ult, giving for each PeS_,
every element of the irnreducible matrix representation D[m](P).

Thus we have achieved our stated goal of obtaining the real ortho-
onal sn irreps in an explicit, non-recursive, way. The techniques we
ave used, in particular the pattern calculus, seem to be a natural ex-
ension of the ideas underlying the concept of a "hook" (due to Nakayama,

d to Frame, et al.lzs]) as applied in "hook product”™ of the Hall-

1obinson formula 21 .

]
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