

REPRESENTATIONS OF THE SYMETERIC GROUP AS SPECLAL CASES OF THE BOSON POLYNOMIALS IN U(n)

AUTHOR(S):
 L. C. Biedenharn

J. C. Louck

	SUBMITTED TO: Springer-jerlag (For puilication in proceedings of conference: "The Permuta:ion Group and its Applications in Physics and Chemistry" University of Bielefeld, wermany, July 3 July 12, 1978.)	
oopy to pormil ability.	RPORT ARE ILLEGI roduced iromino bost ava it the broadostpossible	$\begin{aligned} & \frac{2}{2} I_{0} \\ & 2 b_{1} \\ & 20 \end{aligned}$

This report was prepued at
 United Statet nor the United States Department of
Enerig. nor any of theis employees, nem any of thin contractors, subernitiations, of their employees, makes libhley or eapores or implied, or asumes any hagal os usefulnes of any information, appantua, troduct or proseu dieclosed, of hepresints that tis us would not ringe privately owned rithts

By acceptance of this article for puilication, the publisher recornizes the Govarmment's (licence) rirhts in any copyright and the Govornment and its authorized representatives have unreatrigied right to reproduce in whole or in part eaid article under uny copyright ecured by the publisher.
The Los Alamos Sciontific Baboratory requests that the publisher identhyathis arcigas work performed under the auspices of the USERDA.

of the Universify of Califernia
LOS ALAMOS, NEW MEXICO 87544

An Altirmative Action/Equal Oppertunity Employur

REPRESENTATIONS OF THE SYMMETRIC GROUP as special cases of the boson POLYNOMIALS IN U(n)

L.C. BIEDENHARN*

Physics Department, Duke Oniveraity Durham, North Carolina 27706, USA
J.D. LOUCR**

Group T-7, Theoretical Division
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545, USA

ABSTRACT

The set of all real, orthogonal irreps of S_{n} are realized explicitly and non-recursively by apecializing the boson polynomials carrying irreps of the unitary group. This realization makes use of a calculus of:: patterns', which is discussed.

$$
37 \text { nifferances }
$$

*Paper presented by L.C. Biedenharn. Work supported, in part, by the National Science Foundation.
*Work performed under the auspices of the USERDA.

I. Introduction

The purpose of the present paper is to show how some recent investigations in the unitary group -- motivated by applications to quantum physics -- can be specialized to yield interesting -- and we hope, useful -- results for the symmetric group. Our main result is to obtain an explicit, non-recursive, set of real, orthogonal irreps for S_{n}, whose realization by means of the patterr caiculus (as explained below) is (we believe) new.

Let us indicate, very briefly, why the unitary group figures so prominently in quantum physics. The state, ψ, of a quantal system is a ray in Hilbert space of unit length; observables are self-adjoint operators, 0 , mapping the Hilbert space into itself. A symmetry is a mapping of states into states, and operators into operators such that the probability $|<\phi| 0|\psi>|$ is preserved. The fundamental theorem (Wig-ner-Artin) -- essentially the fundamental theorem of projective geometry -- now states: any symmetry can be implemented by a semi-linear unitary transformation. It follows that the unitary group is of basic interest in quantum physics.

Let us remark abso that the study of the symmetric group by broadening the investigation to the unitary group is itself a familiar technique; it was used extensively by Weyl, and is one of the principal themes in G. de B. Robinson's monograph on S_{n}.

It is necessary to explain now precisely what is meant by a "boson", and by a "boson operator". These terms are pnysicist's jargon for concepts known to mathematicians as the Weyl algebra, (or as it is_also called the generators of the Heisenberg group). The boson, a, and its conjugate, \bar{a}, are elements of an algebra (Weyl algebra) satisfying the comutation rule: $[\bar{a}, a]=1$, where 1 is the unit operator. More generally, we consider n bosons: $a_{i}, i=1,2, \ldots n$ and their conjugates, \bar{a}_{i}, $i=1, \ldots n$ obeying the rules:

$$
\left[a_{i}, a_{j}\right]=\left[\bar{a}_{i}, \bar{a}_{j}\right]=0 ;\left[\bar{a}_{i}, a_{j}\right]=\delta_{i j} .
$$

[The name "boson" contrasts with the physicist's term "fermion", which replaces commutation in the rules above by anti-commutation.]

Boson polynomials are simply polynomials (over (4) with the bosons - \{aik as indeterminates. There is a natural scalar product associated to the boson polynomials by the commutation rule, if we define the abstract vector $\mid 0>$ to be annihilated by all conjugate bosons:
$\bar{a}_{1}|0\rangle \equiv 0$. Then to the boson monomial $\left(a_{i}\right)^{k}$. we associate the Hilbert space vector: $\left(a_{i}\right)^{k}|0\rangle \equiv|\psi\rangle$, and the scailar product: $\langle\psi \mid \psi\rangle=\langle 0|\left(\bar{a}_{i}\right)^{k}\left(a_{i}\right)^{k}|0\rangle=k j$.

We remark that the technique of boson operator construction can be phrased in the language of the umbral calculus.

II: - young tableaux, Weyl tableaux, and Gel'fand pattenns

One of the first problems that one confronts in discussing the irreducible representations of the unitary group $U(n)$ is that of devising a comprehensible notation. This problem was solved in an elegant way by Gel'fand and zetlin[1] by utilizing the Weyl branching law ${ }^{[2]}$ for $U(n)$. In order to explain this notation in familiar terms, it is convenient to appeal to the concept of standard Young tableaux of the symmetric group s_{n} since the relationship of these tableaux (to the irreducible representations of S_{n}) is well known to the participants of this conference.

The first concept required is that of a Young frame: a Young frame $Y_{[\lambda]}$ of shape $[\lambda]=\left[\lambda_{1} \lambda_{2} \ldots \lambda_{n}\right]$, where the λ_{i} are non-negative integers satisfying $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$, is a diagram consisting of λ_{1} boxes (nodes) in row l_{1}, λ_{2} boxes in row $2, \ldots, \lambda_{n}$ boxes in row n, arranged as illustrated in Fig. 1.

Fig. 1

A Weyl tableau is a Young frame in which the boxes have been "filled in" with integers selected from $1,2, \ldots, n$. A Weyl tableau is standard if the sequence of integers appearing in each row of Y [λ] is nondecreasing as read from left to right and the sequence of integers appearing in each column is strictly inchzasing as read from top to bottom. The weight or content (W) of a Neyl tableau $Y_{[\lambda]}$ is defined to be the row vector $(W)=\left(w_{1}, w_{2}, \ldots . w_{r} ;\right.$, where w_{k} equals the number of times integer k appears in the nattern. If $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}=N_{1}$, then also $w_{1}+w_{2}+\ldots+w_{i i}=N$. We shall call [λ] a partition of N into n parts, or more often, a partition when N is unspecified. We generilly count the $0^{\prime} s$ in determining the parts of a partition. For example, the
partitions of 4 into 3 parts are $\left[\begin{array}{lll}4 & 0 & 0\end{array}\right]$, $\left[\begin{array}{lll}3 & 1 & 0\end{array}\right]$, and $\left[\begin{array}{lll}2 & 2\end{array}\right]$. When the number of parts is understood, one frequently omits the zeroes (writing [4], [3 1], and [2 2] in the examples).

Example. The standard Weyl patterns corresponding to the Young frame ${ }^{\boldsymbol{P}}$ are:

Young's ${ }^{[3]}$ interest was in invariant theory, utilizing the symmetric group, and he considered frames with n nodes filled in with integers 1 to n. To our knowledge Weyl ${ }^{[4]}$ was the first to use Young frames filled in with repeated integers. We therefore refer to these latter tableaux as Weyl tableaux, reserving the term young tableaux for the more restricted case.

Gel'fand patterns. An elegant geometrical notation for codifying the constraints imposed on the entries of a Young patiern is provided by a Gel'fand jattern which we now define.

A Gel'fand pattern is a triangular array of n rows of integers, there being one entry in the first row, two entries in the second row, \ldots... and n entries in the nth row. The entries in each row 2, 3,..., $n-1$, are arranged so as to fall between the entries in the row above and below, as illustrated below:

The integral entries $m_{i j}, i \leqslant j=1,2, \ldots, n$, in this array are required to satisfy the following rules:
(i) $\quad m_{1 n}>m_{2 n}>\ldots \geqslant m_{n n}$;
(ii) for each specified partition $\left[m_{n} \ldots m_{n n}\right.$], the entries in the remaining rows $j=n-1, n-2, \ldots, 1$ may be any integers which satisfy the "betweenness conditions"

$$
\begin{equation*}
m_{1 j+1} \geqslant m_{2 j} \geqslant m_{2 j+1} \geqslant m_{2 j} \geqslant m_{3 j+1} \geqslant m_{3 j} \geqslant \ldots \geqslant m_{j-1 j} \geqslant m_{j j} \geqslant m_{j+1 j+1} \tag{5}
\end{equation*}
$$

These betweenness conditions are, in fact, just the Weyl branching law for the chain of unitary subgroups given by:

$$
\begin{equation*}
U(n) \supset U(n-1) \supset \ldots \text {. . } \cup \cup \cup(2) \supset U(1) \text {. } \tag{6}
\end{equation*}
$$

Example. For $n=3$, and $\left[m_{13} m_{23} m_{33}\right]=\{210]$, there are eight Gel'fand patterns as displayed below:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & 1 & 0 \\
2 & 1 \\
2
\end{array}\right) \quad\left(\begin{array}{ccc}
2 & 1 & 0 \\
2 & 1 \\
1
\end{array}\right) \\
& \left(\begin{array}{lll}
= & 1 & 0 \\
2 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
2 & 1 & 0 \\
2 & 0 \\
1
\end{array}\right) \quad\left(\begin{array}{ccc}
2 & 1 & 0 \\
2 & 0 \\
0
\end{array}\right) \\
& \left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 \\
1
\end{array}\right) \quad\left(\begin{array}{ccc}
2 & 1 & 0 \\
1 & 0 \\
0
\end{array}\right) \\
& \left(\begin{array}{lll}
2 & 1 & 0 \\
2 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Mapping between Gel'band patterns and Standard Weyl tableaux. There is a one-to-one correspondence between the set of Gel'fand patterns (m) having nth row $\left\{m_{1 n} m_{2 n} \ldots m_{n n}\right.$ (with $m_{n n} \geqslant 0$) and the set of atandard Neyl tableaux of this shape.

The mapping between Gel'fand patterns and standard Weyi tableaux is described as follows: The shape of the frame is $\left[m_{2 n} m_{2 n} \ldots m_{n n}\right]$, onf the rown of the frame are filled in according to the following rules


```
    \(:-\)
```



```
rown:
\(m_{n n} n^{\prime}\).
```

Using the rule (8), we see that the set of Gel'fand patterns (7) is mapped to the set of Weyl tableaux (2). Conversely, from each standard Weyl tableau (2), we construct in an obvious way the Gel'fand pattern in the set (7).

The weight or content of a Gel'fand pattern (m), is the row vector (w) $=\left(w_{1} w_{2} \ldots w_{n}\right)$, where w_{j} is defined to be the sum of the entries in row j of (n) minus the sum of the entries in row $j-1\left(w_{1} \equiv m_{11}\right)$:

$$
\begin{equation*}
w_{j}=\sum_{i=1}^{j} m_{i j}=\sum_{i=1}^{j-1} m_{i j-1} \tag{9}
\end{equation*}
$$

Clearly, this definition of weight coincides with that given earlier for a standard Weyl tableau.

The constraint in a standard Weyl tableau that each row (column) should comprise a set of nondecreasing (strictly increasing) nonnegative integers is realized in a Gel'fand pattern by the 'geometrical' rule that the integers ($m_{i f}$) satisfy the betweenness conditions. III. Carrier spaces of the representations of the symmeiric group.

Two important pattern reaults for the symmetric group $S_{\mathbf{n}}$ are: (a) The set of irreps of s_{n} is in one-to-one correspondence with the set of partitions ($[\lambda]$) of n into n parts; (b) the set of basis vectors of a carrier epace of irrep $[\lambda]$ of s_{n} is in one-to-one correspondence with the set of standard Yeung tableaux of shape [λ] having weight $(w)=(1,1, \ldots, 1)$. [The number of basis vectors (the number of standard patterns) is then the dimension of the irrep.

This latter result may, of course, also be expressed in terms of Gel'fand patterns. For example, the irreps of s_{3} are enumerated by the partitions of 3 into 3 pares [300], [2 1 0], and [lllll. The standard Young tableaux of weight ($1,1,1$) having these ohapes, respect-

Thus, the irreps [300], [2 100$]$, and $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ are of dimensions 1,2 , and 1 , respectively. These same results are enumerated by the Gel'fand patterns

$$
\left(\begin{array}{ccc}
3 & 0 & 0 \tag{11}\\
2 & 0
\end{array}\right) ;\left(\begin{array}{cc}
2 & 1
\end{array} 0.0\left(\begin{array}{cc}
2 & 1 \\
2 & 0 \\
1 & 1
\end{array}\right) ;\left(\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1
\end{array}\right)\right.
$$

The standard Young tableaux for S_{n} are often enumerated by another indexing scheme -- the Yamanouchi symbol

$$
\begin{equation*}
(y)=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right) \tag{12}
\end{equation*}
$$

Here y_{n-j+1} is the positive integer equal to the row in which j appears In a given standard Young tableau of shape [λ] and weight ($1,1, \ldots, 1$). Y_{n-j+1} is aiso the position (counting from the left) in which 1 occurs in the set of differences

$$
\begin{equation*}
m_{1 j} m_{1 j-1}, m_{2 j} m_{2 j-1}, \ldots, m_{j-1 j} m_{j-1 j-1} m_{j j} \tag{13}
\end{equation*}
$$

formed from the entries in the corresponding Gel'fand pattern $\left[m_{1_{n}} \ldots m_{n n}\right]=\left[\lambda_{1} \ldots \lambda_{n}\right]$ having weight (1,1,....1). For example, the Yamanouchi symbols for the Young tableaux (10) [and Gel'fand patterns (11), are, respectively,

$$
(1,1,1) ; \quad(2,1,1), \quad(1,2,1) ; \quad(3,2,1)
$$

IV. Carrier spaces of the representations of the rotation group.

The important pattern results for the rotation group [SU(2)] are: (a) The set of irreps of the rotation group is in one-to-one correspondence with the set of partitions [2j 0], j $=0,1 / 2,1, \ldots$ (b) the Bet of basis vectors of the carrier apace of irrep [2j 0$]$ in in one-to-one correspondence with the set of Gel'fand patterns having the partition [2J 0]:

$$
\begin{equation*}
(2 j .0), m=-i,-i+1, \ldots, j . \tag{14}
\end{equation*}
$$

[Observe that the betweenness rule embodies in a natural way the fact that the projection quantum number m runs over the values: $m=-j, \ldots, j . j$ The Weýl tableau corresponding to the Gel'fand pattern (14) is the one-rowed pattern

The notation above fier $S U(2)$ is a special case of $U(2)$ for which we now give an explicit construction of the basis vectors in terms of boson operators.

The standard Weyl tableau of two rows corresponding to the Gel'fand pattern

$$
\begin{equation*}
m_{12} \quad m_{11} \quad m_{22} \quad \text {, where } m_{12} \geqslant m_{11} \geqslant m_{22} \tag{16}
\end{equation*}
$$

is

A mapping from Weyl tableaux to bosons is given by
[The Weyl tableau $\frac{1}{2}$ corresponds to antisymmetrized bosons made up of two independent bosons a_{i}^{1} and $a_{i}^{2}(i=1,2$,$) .]$

Using the correspondence (18), we obtain the following boson state vector, corresponding to the Gel'fand pattern (16) and the Weyl tableau (17):

$$
\begin{equation*}
\left|\binom{m_{12}}{m_{11}}\right\rangle=M^{-1 / 2} \cdot\left(a_{12}^{12}\right)^{m_{22}}\left(a_{1}^{1}\right)^{m_{11}-m_{22}}\left(a_{2}^{1}\right)^{m_{12}-m_{11}}|0\rangle \tag{19}
\end{equation*}
$$

where the normalization factor is given by:

$$
\begin{equation*}
M=\frac{\left(m_{12}+1\right)!\left(m_{11}-m_{22}\right)!\left(m_{12}-m_{11}\right)!\left(m_{22}\right)!}{\left(m_{12}-m_{22}+1\right)!} \tag{20}
\end{equation*}
$$

The angular momentum labels for the states (19) are

$$
\begin{equation*}
j=\frac{m_{12}-m_{22}}{2}, \quad m=m_{11}-\frac{m_{12}+m_{22}}{2} \tag{21}
\end{equation*}
$$

[The $2 m_{22}$ anti-symmetric (paired) bosons are inert as far as angular monentum is concerned, that is, al2 is invariant uncier unitary unimoduZar transformations.]
V. Double tableaux and the notation matrices.

A closer inspection of the basis vectors (19) reveals that the Weyl tableau (17) has been used to assign the subscripts to the bosons. One sees, in fact, that the superscript assignment originates from the Weyl tableau

correspording to the maximal Gel'fand pattern

$$
\left(\begin{array}{lll}
m_{12} & & m_{22} \tag{23}\\
& m_{12} &
\end{array}\right)
$$

A more descriptive notation for the state vector (19) uses a double Weyl tableau or a double Gel'fand pattern:

$$
\begin{align*}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & \ldots . & 1 & 1 & \ldots . & 1 & 2 & \ldots . \\
\hline
\end{array} \left\lvert\, \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline & \ldots & \ldots & \frac{1}{2} & 1 & \ldots & 1 & 1 & \ldots . .1 \\
\hline 2 & \ldots & 2 & \\
\hline
\end{array}\right. \tag{24}\\
& =\left|\left(m_{12}^{m_{12}} m_{22}\right)\right\rangle \equiv M^{-1 / 2}\left(a_{12}^{12}\right)^{m_{22}}\left(a_{1}^{1}\right)^{m_{11}}{ }^{-m_{22}\left(a_{2}^{1}\right)^{m_{12}-m_{11}}|0\rangle}
\end{align*}
$$

where we observe that
(i) the Young frames have the same shape;
(ii) by convention the second Gel'fand pattern (23) is inverted over the first one (16) in order to depict explicitly the shared labels $\left[m_{12} m_{22}\right.$] giving the common shape of the Young frame:
(iii) the mapping from the double Weyl tableau to bosons is obtained by pairing off the columns occurring in the same positions in the two Weyl tableaux

$$
\begin{equation*}
\left.\left\{\frac{1}{2}\right] \cdot\left[\frac{1}{2}\right]\right\} a_{12}^{12}\left\{[\square .[1]\} \rightarrow a_{1}^{j}, 1,1 \cdot 1,2 .\right. \tag{26}
\end{equation*}
$$

[In the patterns in (24) the column pair

$$
\left.\left\{\frac{1}{2}\right] \cdot \frac{1}{2}\right\}
$$

occurs m_{22} times; the column. pair ($\left.\square\right]$. D) occurs $m_{11}-m_{22}$ times, ald the column pair \{[], [2] occurs $m_{12}-m_{11}$ times.]

The significance of rewriting Eq. (19) in the form of Eq. (24) it that one now recognizes that the latter result generalises the wept tableau \ln the second position (the upper Gel'fand patten) may be taken to be any standard tableau corresponding to the shape (may may). The mapping (25) then assigns definite state vector (boson polynomial) to each pair of standard Weyl tableaux of the came shape.

- The method outlined above for associating boson polynomial a to double standard tableaux is the natural extension of sq . (21) and is of interest in its own right leaf. Doublet, Rota and stein ${ }^{(R)} 1$, hut it leads to nonorthogonal boson state vectors, except for the apecial case (24) (cf. Eq. (35) below]. We therefore develop an alternative method, used primarily by physicists, which utilises repented appliene sion of lowering operator,

$$
\begin{equation*}
z^{21}=\sum_{1=1}^{2} a_{1}^{2} a_{1}^{2} \tag{26}
\end{equation*}
$$

to the vector (24), thereby gcanrating orthonormal bosun tate veebern. These orthonormal vectors may be expresead in an elegant eembinaforio form:

$$
\begin{equation*}
\left.\left\lvert\,\binom{ m_{12}^{m_{12}^{\prime} m_{m_{22}}}}{m_{11}}\right.\right)=M^{-31} \text { B } \left.\binom{m_{12}^{m_{1}^{\prime}} m_{m_{22}}}{m_{11}}(A) \right\rvert\, 0 \geqslant \tag{bi}
\end{equation*}
$$

where

An which (W) and (W') are, respeotively, welghts of the Gel'fane patcerne

$$
\left(\begin{array}{ll}
m_{18} & m_{28} \tag{29}\\
m_{11} &
\end{array}\right) \text { and }\left(\begin{array}{ll}
m_{12} & m_{22} \\
m_{j 1} &
\end{array}\right)
$$

and the evmetion le ever add nonnegative integers aj auch that the catime hae the fined row and column aums given by (W) aric (W '), thes to.

$$
\begin{aligned}
& \left.0_{1}^{1} \cdot a_{1}^{1} \cdot w_{1}-a_{1}^{1} \cdot m_{1}^{1} \cdot w_{1} a_{1}^{1}+a_{2}^{1} \cdot w_{1}^{1} \cdot a_{1}^{2}+a_{2}^{2}-w_{2}^{1}\right)
\end{aligned}
$$

Oberve thet while the double oel'fand paterne in Eq. (27) are int onentenene onrracrandenee with the double otandard Weyd tableaux, we on lenyer heve almple rule for radidny off the general form (28).

Wo will nat give ane delalde here of the derivation of Eqe. (27) ond (00), but let un nele eqveral dmpertant properties of the double Dof'dend palfoan pofynemials !20)!
(1) The oet of deuble del'fand patiern polynomiale of welght (W, W') te e lifnearlf independenty hesie of the veotor epaoe apannad my all menmialo in the besena (ef) whioh contaln w_{d} nocurrencel of

(46) The ent of deuble 0 -l'fand pattern polynomialo correspondify te ell peritilane $|m|$ of the nonneganive integer N de baele of the vegtar opaee of humaneneaun ondynemials of degree N in the bosons $10\left\{\begin{array}{l}1 . \\ 1 \\ 1\end{array}\right.$
(14d) The mosifin (m) (A) having olement in row $m_{21}\left(m_{22} m_{22}, \ldots, m_{22}\right)$
 to unibery redueible rmpiewintation of the group $U(2)$ when the cetide A do repineod by e untiory iny matrin.
(iv) if we replace the besoni of in Eq. (20) by the elements u_{i}^{j}
 D- remesentalions of oulil (rotation matriees)l

$$
\pm \quad 111=\left|0 \int^{\mid+m^{\prime}}\right| \quad 111
$$

VI. The general boson polynomials of $U(n)$

Let us turn now to the description of the $U(n)$ boson polynomials stating some of their important properties. There is a vast literatore on this subject (cf. Ref. 7-25 and references therein). Our presentation is based on results which may be found in Refs. 6, 9, 10, 11, 14, 17, 18, and 23, to which we refer for further details and proofs. We first sketch the relationship of the $U(n)$ boson polynomials to double standard tableaux. Consider the double standard Weyl tableau of shape $[\lambda]=\left[\lambda_{2} \lambda_{2} \cdots \lambda_{n}\right]$:

Alternatively, this double standard tableau may be denoted by the doubile Gel'fand pattern

$$
\left(\begin{array}{l}
\left(m^{\prime}\right) \tag{33}\\
{[n:]} \\
(m)
\end{array}\right\}
$$

where the left and right tableaux in (32) correspond, respectively, to the upper and lower Gal'f and patterns in (33).

With each pair of columns in corresponding positions in the left and right patterns of the double standard Weyl pattern (32), we now associate a determinantal boson by the rule

$$
\left\{\begin{array}{ll}
i_{2 k} & j_{1 k} \\
i_{2 k} & j_{2 k} \\
\vdots & \vdots \\
i_{\lambda^{\prime} k^{k}} & j_{\lambda^{\prime} k^{k}}
\end{array}\right\} \quad \begin{aligned}
& j_{2 k} \cdots j_{\lambda^{\prime} k^{k}} \\
& a_{i_{1 k}} \cdots i_{\lambda^{\prime} k^{k}}
\end{aligned}
$$

where

$$
{n_{1}}_{j_{1}}^{j_{1}} \ldots j_{k}=\operatorname{det}\left(\begin{array}{ccc}
a_{i_{1}}^{j_{1}} & \ldots & a_{i_{1}}^{j_{k}} \tag{34}\\
\vdots & \vdots \\
j_{1} & & j_{k}
\end{array}\right)
$$

A boson polynomial corresponding to a double standard Weyl tableau is defined as the product of the determinantal bosons (34) taken over all columns l,2,..., λ_{1} of the frame. Using the double Gel'fand patterns to denote the polynomials, we have:

We note two special cases of Eq. (35)

$$
\begin{align*}
& P\left(\begin{array}{l}
\left(m^{\prime}\right) \\
{[m]} \\
(m a x)
\end{array}\right) \quad(A)=\sum_{k=1}^{n}\left(\begin{array}{lll}
12 & \ldots & k \\
12 & \ldots & k
\end{array}\right)^{m_{k n^{-m}} k+1 n} \quad . \tag{36}\\
& P\binom{(\max)}{[\operatorname{sem}]-\max)}(A)=\prod_{k=1}^{n-1}\left(\begin{array}{lll}
12 & \ldots k \\
12 & \ldots & k
\end{array}\right)^{m_{k n-1}}{ }^{-m m_{k+1 n}} \tag{37}\\
& \times \underset{k=1}{\substack{n}} \quad\left(\begin{array}{lll}
12 & \ldots & k-1 k \\
a_{12} & \ldots & k-1 n
\end{array}\right) \quad m_{k n}-m_{k n-1}
\end{align*}
$$

where $m_{i j} \equiv 0$ for $i>j, a_{l 2 \ldots k-12}^{l 2 \ldots k-1 n} \equiv a_{n}^{k}$ for $k=1$, and special pattern notations have been introduced:

The weight (W, W^{\prime}) or content of the double atandard tableau (32) (and of the double Gel'fand pattern (33) is defined to be [cf. EqB. (1) and (9)]

$$
\begin{equation*}
\left(w, w^{\prime}\right)=\left(w_{1}, \ldots, w_{n}, w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right) \tag{40}
\end{equation*}
$$

where (W) and (W^{\prime}) are, respectively, the waights of the left and right standard tableaux (upper and lower Gel'fand patteras).

An noted earlier the boson state vectors corresponding to the polynomiala (35) ara not. in aenaral. orthoconal [cf. Ea. (44)-(46) below],
and the main emphasis in physics has been on the construction of orthonormal basis vectors denoted in the double Gel'fand pattern notation by

$$
\left.-\left|\left(\begin{array}{l}
\left(m^{\prime}\right) \tag{41}\\
{[m]} \\
(m)
\end{array}\right)\right\rangle \quad \equiv[\mathcal{M}([m])]^{-\frac{1}{2}} \quad B\left(\begin{array}{c}
\left(m^{\prime}\right) \\
m \\
(m)
\end{array}\right)(A) \right\rvert\, 0>
$$

where

$$
\begin{equation*}
M([m])=H^{[m]}=\prod_{i=1}^{n} p_{i j}!/ \prod_{i<j}\left(p_{i n}-p_{j n}\right) \tag{42}
\end{equation*}
$$

in which

$$
\begin{align*}
p_{i n} \equiv m_{i n}+n-i, & \left(p_{\text {in }}\right. \text { is called a } \tag{43}\\
& \text { partial hook") } .
\end{align*}
$$

The boson polynomials

$$
B\left(\begin{array}{c}
\left(m^{\prime}\right) \tag{44}\\
{[m]} \\
(m)
\end{array}\right) \quad(A)
$$

occurring in Eq. (41) and the double tableau polynomials

$$
P\left(\begin{array}{c}
\left(m^{\prime}\right) \tag{45}\\
{[m]} \\
(m)
\end{array}\right) \quad(A)
$$

span the same vector spaces. However, only for the patterns

$$
\left(\begin{array}{c}
(\max) \tag{46}\\
{[\operatorname{m}]} \\
(\max)
\end{array}\right],\left(\begin{array}{c}
(\max) \\
{[\operatorname{m}]} \\
(\operatorname{semi}-\max)
\end{array}\right], \quad\left(\begin{array}{c}
(\text { semi-max}) \\
{[\operatorname{m}]} \\
(\max)
\end{array}\right)
$$

do the polynomials agree (up to a normalization factor).
We will now state the form of the boson polynomials (44) referring to Refs. 11, 13, 17, and 23 for a discussion of the properties which characterize these orthonormal forms and for the derivations of the results below.

We begin with the statement of the simplest polynomials which are those corresponding to a Young frame having 1 row with p boxes so that $[m]=[p 0 \ldots 0]=[p 00]:$
where [W] and [W '] denote the weights of the lower and upper Ge:'fand patterns, respectively, and 6 denotes the following square matrix of ponnegative integers with constraints on the sums of the entries in

$$
\cdots=\left[\begin{array}{cccc}
\alpha_{1}^{1} & \alpha_{1}^{2} & \cdots & \alpha_{1}^{n} \tag{48}\\
\cdots \\
\alpha_{2}^{1} & \alpha_{2}^{2} & \cdots & \alpha_{2}^{n} \\
& \vdots & & \\
w_{1}^{1} & \alpha_{n}^{2} & \cdots & \alpha_{n}^{n} \\
w_{n}^{\prime} & w_{n}^{\prime} & w_{n}^{\prime} & w_{n}^{\prime}
\end{array}\right.
$$

The symbols $w_{i}\left(w^{\prime}{ }_{j}\right)$ written to the right of row i (below column j) designate that the entries in row i (column j) are constrained to add to $w_{i}\left(w_{j}^{j}\right)$. The sum over [a] in $E\left(x_{1}\right.$. (47) is to be taken over all nonnegative integers a_{i}^{j} (for $i, j=1,2, \ldots, n$) which satisfy these constraints.

The general result has a form similar to Eq. (47):

$$
B\left(\begin{array}{l}
\left(\dot{\square} n^{\prime}\right) \tag{49}\\
{[m]^{\prime}} \\
(m)
\end{array}\right)(A)=M^{1 / 2}([m]) \underset{\alpha}{\sum} C\left(\begin{array}{l}
\left(m^{0}\right) \\
{[m]^{\prime}} \\
(m)^{2}
\end{array}\right)(\alpha) \times \underset{i, j=1}{n}\left(\alpha_{i}^{j}\right)^{\alpha_{i}^{j}} /\left[\left(\alpha_{k}^{j}\right)!\right]^{1 / 2} ;
$$

where the coefficients C in this result are given by

In which $\left(\begin{array}{cc}{\left[w_{i}\right.} & \delta] \\ \alpha_{i}\end{array}\right)$ denotes the Gel'fand pattern

$$
\binom{\left[w_{1} 0\right]}{\left(\alpha_{i}\right)}=\left(\begin{array}{c}
\alpha_{i}^{1}+\alpha_{i}^{2}+\ldots+\alpha_{i}^{n} \tag{51}\\
0 \ldots 0 \\
a_{i}^{j}+\alpha_{i}^{2} \\
a_{1} \\
a_{1}^{1}
\end{array}\right)
$$

where $\left(\Gamma_{k}\right)$ is the operator pattern which is uniquely determined by the Δ pattern

$$
\begin{align*}
& {\left[\Delta\left(r_{k}\right)\right]=\left\{m_{2 k} m_{2 k} \cdots m_{k k}^{\delta\}}\right.} \\
& \tag{52}\\
& =\left[m_{2 k-1} m_{2 k-1} \cdots m_{k-1 k-1}{ }^{\delta}\right]
\end{align*}
$$

special case of interest for S_{n}. It is sufficient here to note that the general coefficients (50) are explicitly known.

We complete this general discussion with several observations on the properties of the boson polynomial (49): The impontant properties (i) and (ii) noted earlier (end of sec. V) apply as stated to the double Gel.'fand pattern polynomials

$$
B\left(\begin{array}{c}
\left(m^{\prime}\right) \\
{[m]} \\
(m)
\end{array}\right)(A)
$$

Property (iii) also generalizes to the group $U(n)$, where the nows and columns of the matrix $\dot{B}^{[m]}(A)$ are now to be enumerated by the $\mathrm{U}(\mathrm{n}-1)$ Gel'fand patterns ((m),(m')). [Similar statements also apply to the polynomials (35).] Finalky, we have also the transformation property under the combined left and right translations of the boson matrix.

$$
\begin{equation*}
-A \rightarrow \dot{U} A V, \quad U, V \in U(n) \tag{53}
\end{equation*}
$$

given by

where - denotes matrix transposition, and

$$
\begin{equation*}
\left\{D^{[m]}(U) \mid U \in U(n)\right\} \tag{55}
\end{equation*}
$$

is the (unitary) matrix representation of $U(n)$ sbtair.ed by the identification

$$
D_{(m)\left(m^{\prime}\right)}^{[(U)}(U)=B\left(\begin{array}{c}
\left(\begin{array}{l}
\left(m^{\prime}\right) \\
{[m]} \\
(m)
\end{array}\right) \tag{56}
\end{array}\right)(U) .
$$

VII: The Young-Vamanouchi real, proper orthogonal inneducible repre-, sentations of S_{n}.

Let us begin by considering the Cayley $n \times n$ permutation representation of s_{n}. For this one lats P denote a permutation by the rule:

$$
P=\left(\begin{array}{llll}
1 & 2 & \ldots & n \tag{57}\\
j_{1} & y_{2} & \cdots & i_{n}
\end{array}\right)
$$

Then the correapondence

$$
\begin{equation*}
P \rightarrow\left[e_{1} e_{i_{n}} \cdots e_{1_{-}}\right] \equiv I_{p} ; \tag{58}
\end{equation*}
$$

where e_{i} denotes a unit column vector with l in row i and zeroes elsewhere - is a representation of S_{n} by $n \times n$ matrices.

Since the general boson polynomial admits of an interpretation of the argument A by an nxn indeterminate, it is a well-defined operation to replace A by I_{p}, in Eq. (49). One obtains

$$
\begin{align*}
& B\left(\begin{array}{l}
\left(m^{\prime}\right) \\
(m) \\
(m)
\end{array}\right)\left(I_{p}\right) \\
& =[M([m])]^{1 / 2} \delta_{w_{i} w_{i_{1}}} \delta_{w_{2}^{\prime} w_{i_{2}}} \cdots \delta_{w_{n}^{\prime} w_{i_{n}}} C\left(\begin{array}{c}
\left(m^{\prime}\right) \\
(m] \\
(m)
\end{array}\right)\left(a_{p}\right) \ldots \tag{59}
\end{align*}
$$

where a_{p} denotes the nxn numerical array

$$
\begin{equation*}
\left(a_{p}\right)=\left\{w_{i_{1}} e_{i_{1}}, w_{i_{2}} e_{i_{2}}, \ldots, w_{i_{n}} e_{i_{n}}\right\} \tag{60}
\end{equation*}
$$

Let us next specialize to representations having labels [m] which are partitions of n, and at the same time restrict the two Gel'fand patterns (m) and $\left(\mathrm{m}^{\prime}\right)$ such that the weights $[\mathrm{W}]=\left[\mathrm{w}^{\prime}\right]=[i]$. It follows at once from Eq. (59) that these special boson polynomials take the form:

$$
B\left(\begin{array}{l}
\left(m^{\prime}\right) \tag{61}\\
{[m]} \\
(m)
\end{array}\right)\left(I_{p}\right)=[M([m])]^{1 / 2} \mathrm{C}\left(\begin{array}{l}
\left(m^{\prime}\right) \\
{[m]} \\
(m)
\end{array}\right)\left(I_{p}\right) .
$$

It is useful to give a special notation to these objects; let us define

$$
D_{(m),\left(m^{\prime}\right)}^{[m]}(P)=B\left(\begin{array}{l}
\left(m^{\prime}\right) \tag{62}\\
{[m]} \\
(m)
\end{array}\right) \quad\left(I_{P}\right)
$$

Then

$$
\begin{equation*}
\left\{D^{[m]}(P) \mid P \in S_{n}\right\} \tag{63}
\end{equation*}
$$

is an irreducible real, orthogonal representation of S_{n}.
Consider now the specific form taken by the matrix elements of these irreps. From Eq. (50) we obtain

for $P=\left(\begin{array}{llll}1 & 2 & \ldots & n \\ i_{1} & i_{2} & \ldots & i_{n}\end{array}\right)$.
where dim[m] denotes the dimension of the irreducible representation ..- . . . - mell now exnlain in detail the meaning of the quanti-
(i) The symbol

$$
\left\langle\begin{array}{lll}
{[1} & r & 0 \tag{65}\\
& i & i
\end{array}\right)
$$

denotes a fundamental Wigner operator of $U(n)$ [cf. Refs. 9, 17, 18] in which (${ }_{i}{ }_{i}^{0}$) is an abbreviated notation for the n-rowed Gel'fand pattern which has weight $[0 \ldots 010 . . .0]$ with the 1 appearing in position i; similarly, $\left({ }_{1}{ }^{\gamma} 0^{\prime}\right)$ denotes the inverted Gel'fand pattern which has weight [0...0 1 0....0] with the 1 appearing in position γ. Thus, we have:

$$
\begin{equation*}
i, \gamma=1,2, \ldots, n \tag{66}
\end{equation*}
$$

in the symbol (65). For example, for $n=3$, there are 9 fundamental Wigner operators, a typical example being

$$
\left\langle\begin{array}{lll}
1 & 2 & \dot{0} \tag{67}\\
1 & 0
\end{array}\right\rangle=\left\langle\begin{array}{cc}
1 & 0 \\
1 & 1_{1}^{0} \\
0 & 0 \\
1_{1}
\end{array}\right\rangle .
$$

(We will see below that, while upper and lower patterns in Eq. (65) run over the same numerical patterns, the role of the two patterns in the definition of a fundamental Wigner operator (65) are qualitatively different.]
(ii) The sequence in integers

$$
\begin{equation*}
\left(r_{n} \cdot r_{n-1}, \cdots \cdot r_{1}\right) \tag{68}
\end{equation*}
$$

appearing in the upper patterns in Eq. (64) is the Yamanouchi symbol of the Gel'fand pattern

$$
\begin{equation*}
\binom{[m]}{\left(m^{\prime}\right)} \tag{69}
\end{equation*}
$$

[Cf. Eqs. (12) and (13).]
Our remaining task is to define the concept of a fundamental Wigner operator in $U(n)$ and to show how the ccefficients in Eq. (64) are calculated.

Let $H^{[m]}$ denote a carrier space for irreducible representation [m] of $U(n)$. Then an orthonormal basis of the space $H^{[m]}$ is:

$$
\begin{equation*}
\{|(m)\rangle \quad \text { (m) is a Gel'fand pattern of the }\} \tag{70}
\end{equation*}
$$

The fundamental Wigner operator denoted by
($\left.{ }_{\tau}^{\dot{0}}\right)$. [If $m_{\tau n^{+1}}<m_{\tau+1, n^{\prime}}$ then $H^{[l n]+\Delta(\tau)}$ contains only the zero vector.] The mapping (71) is now defined explicitly by giving its action on each basis vector (70) of $H^{[m]}$:

$$
\begin{align*}
& \text { where } \tag{72}
\end{align*}
$$

denotes a real number (matrix element) which we now describe.
For the description of the numbers (73), we require a detailed notation for the entries in the rows of a Gel'fand pattern. We introduce the notation $[m]_{k}=\left[m_{1 k} \ldots m_{k k}\right]$ for the entries in row k, the notation [$1 \dot{0}]_{k}$ for the row vector [$10 \ldots 0$] of length k, and $\Delta_{k}\left(\tau_{k}\right)$ for the row vector of length k which has 1 in position $\tau_{k}\left(1 \leqslant \tau_{k} \leqslant k\right)$ and zeroes elsewhere. In terms of this notation each matrix element (73) may be described in the following manner: Each matrix element (73) is zero unless the Gel'fand pattern

$$
\binom{[m]+\Delta(\tau)}{(m)}
$$

has the form

$$
\left(\begin{array}{c}
{[m]_{n}+\Delta_{n}\left(\tau_{n}\right)} \\
{[m]_{n-1}+\Delta_{n-1}\left(\tau_{n-1}\right)} \\
\vdots \\
{[m]_{i}+\Delta_{i}\left(\tau_{i}\right)} \\
{[m]_{i-1}} \\
\vdots \\
{[m]_{1}}
\end{array}\right)
$$

where for each prescribed pair, τ and $i(1<\tau<n, 1<i \leqslant n)$, the sequence of integers $\tau_{n} \cdot \tau_{n-1} \cdots \cdots \tau_{i}$ satisfies

$$
\begin{equation*}
\tau_{n}=\tau \text { and } 1<\tau_{k}<k \text { for } k=n-1, \ldots, i \tag{75}
\end{equation*}
$$

Denoting the Gel'fand pattern (74) by the notation

$$
\begin{equation*}
\binom{(m]}{(m)}_{\tau_{n} \cdots \tau_{i}} \tag{76}
\end{equation*}
$$

sizes in the following manner:

$$
\begin{aligned}
& =\underset{k=1}{n}\left(\begin{array}{l}
{[m]_{k}+\Delta_{k}\left(\tau_{k}\right)} \\
{[m]_{k-1}+\Delta_{k-1}\left(\tau_{k-1}\right)}
\end{array}\left|\left[\begin{array}{lll}
& { }^{\tau_{k}} & \\
{[1]_{k-1}} & & \\
& \left.\tau_{k}\right]_{k}
\end{array}\right]\right| \begin{array}{l}
{[m]_{k}} \\
{[m]_{k-1}}
\end{array}\right),
\end{aligned}
$$

in which, by convention, $\tau_{i-1}=i$ and $\Delta_{i-1}(i)=[0]_{i-1}$.
Each of the real numbers

$$
\left\langle\begin{array}{l}
{[m]_{k}+\Delta_{k}\left(\tau_{k}\right)} \tag{78}\\
{[m]_{k-1}+\Delta_{k-1}\left(\tau_{k-},\right)}
\end{array}\right|\left[\begin{array}{lll}
l^{\tau_{k}} & & \\
{ }^{\tau_{k-1}} & & \\
&]_{k-1}
\end{array}\right]\left|\begin{array}{l}
{[m]_{k}} \\
{[m]_{k-1}}
\end{array}\right\rangle
$$

in the product (77) is called a reduced $U(k): U(k-1)$ matrix element and has a very simple interpretation in terms of the pattern calculus rules developed in Ref. 7. We state these rules here for the special case required to evaluate the factor (78):

The pattern calculus rules (cf. Ref. 14).
(i) Write out two rows of dots and assign the numerical entries of $\Delta_{k}\left(\tau_{k}\right)$ and $\Delta_{k-1}\left(\tau_{k-1}\right)$, as shown:

(ii) Draw an arrow between each point labelled ty 1 (tail of arrow) to each point labelled by 0 (head of arrow). Once this arrowpattern is drawn, remove the $0^{\prime} s$ and $l^{\prime \prime s}$ from the diagram.
(iii) In the arrow-pattern assign the partial hook $p_{i k}$ to point i (i-1,2,....k from left to right) of row k and the partial hook $p_{i k-1}$ to point $i(i=1,2, \ldots, k-1)$ in row $k-1\left(p_{i j}=m_{i j}+j-i\right)$.
(iv) Assign a numerical factor to each arrow in the arrow-pattern using the rule

$$
P_{\text {tail }}-P_{\text {head }}+e_{\text {tad } / 1}
$$

where $e_{\text {tail }}=1$ if the tail of the arrow is on row $k-1$ and $e_{\text {tail }}=0$ if tail of the arrow is on row k.
$N=$ product of all factors for arrows going between rows,
$D=$ product of all factors for arrows going within rows. The reduced $U(k): U(k-1)$ matrix element (78) is then given by

$$
\begin{equation*}
S\left(\tau_{k-1} \tau_{k}\right)\left[\frac{N}{D}\right]^{1 / 2} \tag{79}
\end{equation*}
$$

where $S\left(\tau_{k-1}{ }^{-\tau_{k}}\right)$ is +1 for $\tau_{k-1} \geqslant \tau_{, k}$ and -1 for $\tau_{k-1}<\tau_{k}$
Example. For $k=3, \tau_{3}=1, \tau_{i}=2$ the arrow-pattern is

and the reduced matrix element (78) has the value given by

$$
\begin{gather*}
\left\langle\begin{array}{c}
m_{13}+1 m_{23} m_{33} \\
m_{12} m_{22}+1
\end{array}\right|\left[\begin{array}{l}
1_{1}^{1} 1_{0}^{1} 0_{0}^{0}
\end{array}\right]\left|\begin{array}{cc}
m_{13} & m_{23} \\
m_{12} & m_{22}
\end{array}\right\rangle \\
=-\left[\frac{\left(p_{13}-p_{12}\right)\left(p_{22}-p_{33}+1\right)\left(p_{22}-p_{33}+1\right)}{\left(p_{13}-p_{23}\right)\left(p_{13}-p_{33}\right)\left(p_{22^{-p}} p_{12}+1\right)}\right]^{1 / 2} . \tag{80}
\end{gather*}
$$

The result of applying these rules to Eqs. (78) is:

Remarks. Using the above results from the pattern calculus, Eq. (64) is a completely explicit general result, giving for each $\mathrm{P}_{\varepsilon} \mathrm{S}_{\mathrm{n}}$, every element of the irreducible matrix representation $D^{[m]}(P)$.

Thus we have achieved our stated goal of obtaining the real orthodonal S_{n} irreps in an explicit, non-recursive, way. The techniques we have used, in particular the pattern calculus, seem to be a natural extension of the ideas underlying the concept of a "hook" (due to Nakayama, and to Frame, et al. [26], as applied in "hook product" of the Hallfobinson formula ${ }^{[27]}$.

REFERENCES

1. I.M. Gel'fand and M.L. Tseitlin, Matrix Elements for the unitary groups, Dokl Akad. Hauk SSSR (1950), 825-828.
2. M. Weyl, Gruppentheorie und Quantenmechanik", Hirzel, Leipzin: 1st ed., 1928; 2nd ed., 1931; translated as "The Theory of Groups and Quantum Mechanics", by M.P. Robertson, Merhuen, London, 1931; reissued Dover, New York, 1949.
3. A Young, Quantitative Substitutional Analysis, PLMS (1), I, 33 (1901), 97-146; II, 34 (1902), 361-397, PLMS (2) III, 28 (1928), 255-292; IV, 31 (1930), 253-272; V. ibid., 273-288; VI, 34 (193.2), 196-230; VII, 36 (1933), 304-368, VIII, 37 (1934), 441495; IX, 54 (1952), 218-253.
4. H. Weyl, "The Structure and Representations of Continuous Groups", Lectures at the Inst. for Adv. Study, Princeton, N.J., 1934-35 (unpublished). (Notes by R. Brauer.)
5. T. Yamanouchi, On the calculation of atomic energy levels IV, Proc. Phys.-Math. Soc. Japan 16 (1936), 623-640; On the construction of unitary irreducible representations of the symmetric group, ibid. 19 (1937), 436-450.
6. P. Doubilet, $\frac{19}{G .-C . ~ R o t a, ~ a n d ~ J . ~ S t e i n, ~ O n ~ t h e ~ f o u n d a t i o n s ~} c^{5}$ combinatorial theory: IX. Combinatorial methods in invariay theory, Studies in Appl. Math., Vol. LIII, No. 3, 1974, 185-216.
7. V. Bargmann and M. Moshinsky, Group thoery of harmonic oscillators (I). The collective modes, Nucl. Phys. 18 (1960), 697-712.
8. . M. Moshinsky, Bases forthe irreducible representations of the uritary groups and some applications, J. Math. Phys. 4 (1963), 1128-1139.
9. G.E. Baj.rd and L.C. Biedenharn, On the representations of semisimple Lie groups. II, J. Math. Phys. 4 (1963), 1449-1466; III, The explicit conjugation operation for $\operatorname{SU}(n)$, Ibid, $\underline{5}$ (1964), 1723-1730; IV, A canonical classification for tensor operators in SU_{3}, Ibid, 5 (1965), 1730-1747.
10. J.G. Nagel and M. Moshinsky, Operators that raise or lower the irreducible vector spaces of $\mathrm{U}_{\mathrm{r}-1}$ contained in an irreducible vector space of U_{n}, J. Math. Phys. 6 (1965), 682-694.
11. J.D. Louck, Group theory of harmonic oscillators in n-dimensional space, J. Math. Phys. $\underline{6}$ (1965), 1736-1804.
12. M. Moshinsky, Gel'fand states and the irreducible representations of the symmetric group, J. Math. Phys. 7 (1966), 691-698.
13. L.C. Biedenharn, A. Giovannini, and J.D. Louck, Canonical definition of Wigner operators in U_{n}, J. Math. Phys. 8 (1967), 691-700.
14. L.C. Biedenharn and J.D. Louck, A pattern calcuTus for tensor operators in the unitary groups, Commun. Math. Phys. 8 (1968) 80-131.
15. P. Kramer and M. Moshinsky, Group theory of harmonic oscillators and nuclear structure, in "Group Theory and its Applications", ed. by E.M. Loebl, Academic Press, New York, 1968, 339-468.
16. M. Ciftan, On the combinatorial structure of state vectors in $U(n)$, II. The generalizatio: of hypergeometric functions on $U(n)$ states, J. Math. Phys. 10 (1969), 1635-1646.
17. J.D. Louck, Recent progress toward a theory of tensor operators in the unitary groups, Am. J. Phys. 38 (1970), 3-42.
1\%. J.D. Louck and L.C. Biedenharn, Canoñcal unit adjoint tensor operatons in $U(n), J . M a t h$. Phys. 11 (1970), 2388-2414,
18. A.C.T. Wu, Structure of the combinatorial generalization of hypergeometric functions for $\operatorname{SU}(\mathrm{n})$ states, J. Math. Phys. 12 (1971), 437-440
19. W.J. Holman, On the general boson states of $U_{n}{ }^{*} U_{n}$ and $\mathrm{Sp}_{4}{ }^{\star} \mathrm{Sp}_{4}$, Nuovo Cimento 4A (1971), 904-931.
20. W.J. Holman and L.C. Biedenharn, "The Representations and Tensor Operators of the Unitary Groups $U(n)$ ", in "Group Theory and its Applications", Vol. II, ed. by E.M. Loebl, Academic Press, New York, 1971, 1-73.
21. T.H. Seligman, The Weyl basis of the unitary group $U(k)$, J. Math. Phys. 13 (1972), 876-879.
22. J.D. Louck and L.C. Biedenharn, The structure of the canonical tensor operators in the unitary groups. III. Further developments of the boson polynomials and their implications, J. Math. Ph. 14 (1973), 1336-1357.
23. T.H. Seligman, "Double Coset Decompositions of Finite Groups and the Many-Body Problem", Burg Verlag, A.G., Basel (1975).
24. C.W. Patterson and W.G. Harter, "Canonical symmetrization for the unitary bases. I. Canonical Weyl bases, J. Math. Phys. 17 (1976), 1125-1136; II. Boson and fermion bases, ibid, 17, 1I了71142.
25. J.S. Frame, G. de B. Robinson and R.M. Thrall, "The Hook Graphs of the Symmetric Group", Can. J. Math. 6, 316-324 (1954).
26. G. de B. Robinson, "Representation Theory of the Symmetric Group," University of Toronto Press, 1961.
