PRSINESURENSSS S S

publisher or recipient acknowledg

the U.S. Government’s right t0

retain a nonexciusive, royalty-free
license in and to any copyright
covering the article. }

STATISTICAL TECHNIQUES FOR AUTOMATING THE DETECTION
OF ANOMALOUS PERFORMANCE IN ROTATING MACHINERY * MSTER

X. R. Piety
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

By acceptance of this article, the ’
]
]

COOF - 186D -~ |

T. E. Magette
Department of Nuclear Engineering
University of Tennessee
Knoxville, Tennessee 37916

To be presented at the
Mechanical Failures Prevention Group Symposium
November 28-30, 1978, San Antonio, TX

*Research sponsored by the Reactor Research and Technology Division,
U.S. Department of Energy under contract W-7405-eng-26 with the Union

Carbide Corporation.

P

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tenmnessee 37830
Operated by
UNION CARBIDE CORPORATION
for the
U.S. DEPARTMENT OF ENERGY

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their

b or thelr emp makes
any wurranty, express or implied, or assumes any legal
tiability or responsibility for the accuracy, completeness
or of sany duct or TR ET SI FVE Py e

o Dlibie: SULION OF il DUCUAENT IS UNLIMITED
b

process disclosed, or fepresents that its use would not

infringe privately owned rights. )




STATISTICAL TECHNIQUES FOR AUTOMATING THE DETECTION OF
ANOMALOUS PERFORMANCE IN ROTATING MACHINERY

K. R. Piety
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

T. E. Magette
Nuclear Engineering Department
University of Tennessee
Knoxville, Tennessee 37919

J
Introduction

Scope of the work: The purpose of our research is the demonstration of
surveillance techniques which extend the sophistication existing in
automated systems monitoring industrial rotating equipment. This task
involves assessing the effectiveness of ongoing monitoring programs and
the potential of alternative approaches. Our evaluations of deficien-
cies in existing or proposed surveillance systems have strongly
influenced the system developed at ORNL and are therefore presented in
some length.

We have formulated techniques to automate the recognition of anomalous
conditions in rotating equipment and have implemented these on a mini-
computer. Time and frequency domain descriptors are selected to compose
an overall signature characterizing the monitored equipment.. The
anomaly detection techniques apply an approximate statistical test to
each signature descriptor. The effectiveness of this monitoring system
was evaluated in laboratory tests on a small rotor assembly, using
vibration signals from both displacement probes and accelerometers. As
demonstrated over several months of testing, this monitoring system is
capable of detecting anomalous performance while exhibiting a false
alarm rate below 0.5%.

Background: The practice of monitoring gross vibrational levels as an
indication of machinery health began more than 150 years ago. However,
it was not until- 1939 that vibration sensors and rudimentary signal
analysis techniques enabled the compilation of empirical vibrational
severity criteria (1-3). Only in the past twenty five years have
advancements in data processing techniques and computer hardware allowed
machinery health to be evaluated using signatures derived from the
detailed structure of vibrational signals (4,5).

lthough the advantages of signature analysis techniques are widely
acknowledged, the demand such analysis methods place on plant personnel



limit their use for general surveillance tasks (5,6). Computer automa-—
tion of these monitoring requirements alleviates this drawback and
allows maintenance personnel to direct their efforts towards equipment
most in need of attention. Additionally, a computerized surveillance
system should provide sufficient sensitivity to provide an early warning
of incipient failures, thus enhancing diagnostic capabilities and allow-
ing better scheduling of maintenance. However, while monitoring machin-
ery to detect excessive vibration is a well established practice, a best
approach for automating such monitoring activities has not gained
general acceptance.

Limitations of monitoring systems: There are certain drawbacks asso-
ciated with all systems presently used for on-line surveillance of
rotating equipment. The most basic of such systems are those which
derive a set of parameters characterizing the vibration signal (such

as its peak-to-peak amplitude, RMS power, or power at the rotational
frequency) for comparison with absolute limits (7-9). To set such
limits one must resort to a vibration severity chart, perform analytical
calculations for the equipment to be monitored, or accumulate the neces-
sary information from testing. Since fixed limits must encompass the
"worse-case" conditions over the entire range of normal operationms,
sensitivity to anomalous performance at any given operational state is
reduced (9,10). Another disadvantage frequently associated with this
approach is a lack of information on which to base diagnostic decisions

(9,11).

In an effort to compensate for this deficiency some monitoring systems
add trending capabilities or utilize the detail available with complete
spectral analysis (12-16). Unfortunately, due to the storage limita-
tions which exist in systems monitoring several hundred data channels,
trending the entire power spectrum is typically not practical. The
storage problems associated with maintaining full spectral detail is
further compounded if baseline signatures and limiting criteria are to
be saved as a function of operational conditions. A common compromise
is to trend only gross vibrational levels and to alarm if these param~-
eters exceed acceptable limits. The complete power spectra of the
vibratioral signals are saved only at baseload conditions at the outset -
of monitoring, with further spectral analysis performed only upon
operator raquest, at widely spaced intervals, or under alarm conditionms.
A decision to monitor only gross vibrational level sacrifices sensitiv-
ity (6,11,19). However, the decision to monitor a larger set of
detailed descriptors makes it difficult to establish meaningful detec-—
tion criteria (particularly as a function of operational conditions) and
has, in some cases, completely exhausted the patience of operations

personnel (7).

Another approach taken by some researchers is the implementation of
statistical algorithms as a basis for anomaly detectipn (17-19). Both
the experience and success in applying these techniques have been



limited. Our own previous efforts with a strictly statistical approach
revealed that the rotating equipment being monitored was nonstationary.
Even at fixed conditions, the equipment would operate for indefinite
periods described by one sev. of statistical parameters and then randomly
change to other equally normal conditions with different statistics.
Data taken under such conditions results in biased samples of the sta-
tistical populations, thereby destroying the rigor of statistical tests
(18). Statistical techniques can also be data intensive and thus ‘become
unmanageable with the added complication of varying operational condi-
tions.

The most mathematically complex, techniques envisioned for automated
surveillance systems may be generally referred to as pattern recognition
methods (19-22). Implementation of these methods typically requires
accumulation of signatures from any abnormal conditions to be detected,
in addition to those for normal conditions. Such comprehensive data
requirements cannot normally be satisfied, particularly at the onset of
surveillance activities. In addition, since pattern recognition methods
have characteristically been developed for other application#, they
rarely incorporate — and then only indirectly -- engineering knowledge
pertinent to specific surveillance tasks, It nonetheless would appear
that some of these methods do show promise as diagnostic algorithms once
the required data is obtained.

H
The ORNL surveillance system overview: This monitoring systeI is the
result of applying engineering judgment to the specific task qf automat-
ing machinery surveillance. To maintain high sensitivity to anomalies,
vibrational signatures arz catalogued as a function of operational con-
ditions, and detection decisions are based on simple statistical tests.
The determination of alarm criteria is accomplished automatically based
upon normal data obtained during a learning period. Judicious feature
selection is incorporated to reduce storage requirements; however, data
logging adequate for diagnostic investigations is provided. False
alarms are reduced by implementing processing logic that compensates for
normal data variatioms.

Feature selection: A vibration signature is obtained by selecting only .
a subset of the various signal descriptors that can be derived from data
processing techniques. This seelction process introduces available
engineering knowledge related to individual equipment, critical fault
events, or the signal character into the monitoring system. For
example, the power in the fifth order (five times the rotational speed)
would logically be included as a feature describing a famn with five
blades. Obviously, the specific set of parameters comprising a signa-
ture will vary for dissimilar applications. Discarding or combining
redundant descriptors should result in a reduced set of descriptors
which enhance the information contained in the measured data. For our
test purposes we chose 48 parameters per signal which define the phase,
size and shape of the time-averaged waveform, the total power of the



signal, the harmonic and nonharnomic power, the power and phase of the
first three orders of rotation, the spectrua-weighted order, and the
average harmonic and nonharmonic order. A detailed explanation of these
descriptors is given in the appendix. Although these features are not
proposed as an optimum set for other monitoring applications, many of
the frequently chosen descriptors are included, and the ability to com~
pare the performance of descriptors with different levels of detail is

provided.

Reference catalogue of baseline data: Baseline signatures are cata-
logued as a function of coperational conditions. This procedure neces-
sitates access to variables defining the operational state, for example,
speed, load, or flow. Discrete intervals are chosen to span the full
range available to controlling variables; once specified, the interval
structure determines the maximum number of entries required in the
reference catalogue. Since it has been demonstrated that variations

in speed and load can introduce changes in vibration exceeding those
associated with anomalies (10), compensation for such changes stimulated
by control variables is necessary for maintaining sensitivity for
anomaly detection and for reducing false alarms. Although most investi-
gations acknowledge these facts (7-10), few monitoring systems implement
capabilities for handling this complication. We chose the direct cata-
loguing approach after reviewing various mathematical alternatives and
experimenting with techniques, based on principal components analysis
and regression analysis.

Establishing limiting criteria: Baseline signatures and their normal
interval of variation are established automatically by observing equip-
ment operation during an initial learning period. During this period,
the equipment must be operated at or near all conditions for which
monitoring capability will be needed. The learning period should be

of sufficient duration to include a representative sample of normal
variations. This period was 2-4 days in our investigatiomns. The ade-
quzcy of learning appears to be moure closely related to elapsed clock
time than to the number of signatures measured because of the biased
sampling previously cited (18). Several checks are available to ascer-
tain if the learning periocd has been adequate. These include counters
which conservatively estimate the proportion of the learning signatures
considered normal and the number of learning signatures since the last
abnormal classification, as well as the ability to switch to the moni-
toring wode for a defined period during which a detailed monitoring
summary is automatically obtained. If necessary, additional learning
can be initiated at any time. Since the system detects deviations from
whatever baselines are established, sensitivity to further degradation
is maintained whether or not equipment was operating normally during

the learning period.

Detection logic: During monitoring, each vibration signature is
measured under steady operating conditions and tested to determine if
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its deviations from the baseline signatures are statistiecally signifi-
cant. While the application of classical statistics is imvalidated by
biased sampling and by lumping differing operations into coarse inter-
vals, - the deviations calculated in approximate standard deviation units
do provide a quantitative measure of problem severity. Approximate
methods of calculating signature deviations, although lacking in mathe-
matical elegance, are incorporated because they have proven to reduce
the incidence of false alarms.

During learning, the maximum and minimum values encountered for every
feature are stored for each operational interval. When & signature at
a given operational state is tested, the extreme values mormal to that
operational interval and those values from its nearest nedghbors are
combined to obtain a smeared interval that encloses all extremes. From
this interval, a pseudo mean, m, and standard deviation, @, are calcu-
lated as follows:

Max + Min
N

G = Max - Min
s -

The absolute deviations calculated using these quantities: are compared
against a confidence limit which decreases from C+3 to € {an input
parameter) as the number of measurements, M, upon which m and ¢ are
based, increases from 0 to 500.

Statistical intuition and experience indicate that values: of C around 7
are most appropriate. For industrial surveillance applications, testing
the gross vibration levels against established severity cxiteria (1-4)

is recommended. This additional detection capability would provide
limited protection during learning when no other performamnce monitoring
is in force and would inherently set an upper limit on the statisticaily-
derived criteria.

Comprehensive data logging for diagnosis: No automatic diagnostic logic
is implemented in this system. However, the detection of anomalous
events does automatically initiate procedures that log data to assist

" in diagnosis. If a signature is encountered that exceeds normal bounds,
an anomaly signature catalogue is begun for all signals from the suspect
machine. The anomaly catalogue allows detailed comparisens between data



accumulated following the suspect event with that in the baseline
reference catalog obtained during learning. Additionally, a detection
summary which tallies suspect events for each signature component and
computes the average deviation is collected and available upon request.
Also upon demand a variety of visual displays from standard signal pro-
cessing algorithm (orbits and detailed power spectra) can be obtained,
although data from these analysis capabilities is not automatically
retained. It is expected that the data collected for diagnostic pur-
poses will allow the development of zlgorithms to diagnose the most

probable faults.
Results ’

Software implementation: The surveillance software has been implemented
on a Digital Equipment Corp. PDP 11/34 minicomputer with 28K words of
memory. Mass storage capability is provided by two disks, each with

a 1.5M word capacity. All programs are written in FORTRAN except for
the peripheral handler routines that require assembly language.

A small portion of the disk storage is required for the software system;
the remaining portion, “2M words, is available for data storage. The

burden of the data storage is associated with cataloguing baseline data.
The total storage requirement, R, for this reference catalogue 1Is given

by

where M is the number of machines to be monitored; 0;, the number of
lumped operational states allowed for the 7th machine; S, the number
of sensors on the ith machine; and Di;, the number of descriptors used
to describe the information from the jth sensor on the Zth machine.

The mass storage requirements for the monitoring system are within
reason for even large scale industrial applications. Assume, for
example, that one desired to monitor 100 machines, each equipped with
eight sensors. An analysis that assigns 20 lumped operational states
to each machine and characterizes each signal with 25 descriptors would
require 1.6M words of storage. This allows one to describe each piece
of equipment with 200 descriptors and still reserve some stourage area
for logging diagnostic data.

Evaluation of monitoring system: A laboratory evaluation of the moni-
toring software has been accomplished using a small rotor assembly
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driven by a fractional horsepower motor (1). Three displacement probes
are installed on the rotor as shown in Fig. 1.

One probe ("keyphasor") provides a tach signal and, through supplemen-
tary electronics, generates a rotationally synchronized sampling pulse
to trigger the analog-to-digital converter. Two other probes, placed at
90° to each other, measure the radial vibration of the shaft. In addi~
tion, two accelerometers, not shown in Fig. 1, have been installed on
the inboard bearing housing to measure the orthogonal components of
radial vibration. '

The rotor can attain spe ds frém 0 to 200 revolutions per second (rps);
this was the only contr .. variable altered during tests. For our pur-
pose, lumped operationa. states were chosen to correspond to l-rps
intervals, This speed resolution was a convenient choice which offered
reasonable detail.

In our previous work (18), the monitoring system was unable to maintain
a low false alarm rate over extended periods of testing using the limit-
ing criteria which were automatically established. This difficulty was
overcome by modifying the detection logic and by extending the learning
period., We have, in fact, demonstrated that a learning file composed

in a few days can be used to monitor normal operation for periods of
several months without false alarms becoming a difficulty.

In our tests, two signatures describing rotor operation are actually
calculated, one for the displacement probes and the other for the
accelerometer, Signature descriptors for both the horizontal and
vertical directions combine to formulate this signature.

The detection capability of the monitoring system was investigated by
introducing fault conditions into the test setup. The four fault types
chosen for testing include shaft rub, imbalance, mechanical looseness,
and misalignments. Each anomaly type can be introduced in varying
degrees of severity. Some faults introduced no discernible perturbation

to the vibration signals; however, detection was always possible as the -

severity level was increased. After the anomalous conditlons associated
with fault testing are removed, the return to normal operation is veri-
fied by the monitoring system. Examples of the type diagnostic data
available from the system are presented as the individual tests are
described.

Imbalance test: The balance of the rotor was altered by the additioﬁ of
a 1.52-g mass 3.32 cm from the shaft centerline (translating to 0.238 Nt
m) (ref. Fig. 1). The change in the vibration was readily detected by

1. Bently Nevada Corp., Minden, Nevada, Model RK-3.




both horizontal ard vertical displacement probes, as illustrated by the
detection summary shown in Table 1. Any signature for which some
descriptor was out of bounds is considered suspect. This was the case
for all 1000 comparison signatures of each type comprising this summary.
An interesting detail in this test is that the weight added actually
imprcved tne balance of the rotor. This is apparent from Fig. 2 which
plots the time-averaged orbit for both baseline and imbalance condi-
tions. This can also be seen from the detection summary which shows a
reduction (negative deviations) in the signal descriptors associated
with the amplitude of the vibration. A change in vibrational amplitude
at the “irst order is well established as the primary indication of
changes in balance. However, a@s noted in Table 1, this descriptors was
affected less dramatically than others. This resulis from the asymmet-
ric domain (always positive) of power spectrum measurements which
reduces their statistical sensitivity to reductions in their magnitude.
This can be corrected by using instead the log of their magnitudes. The
phase ot the first order does show significant variations throughout the
entire speed range as demonstrated in Fig. 3. A similar plot is shown
in Fig. 4 which contrasts normal and anomalous variations for the peak
displacement descriptor as a function of speed.

Misalignment test: The alignment of the rotor can be alterad by placing
shims under the bearing pedestals. The data shown resulted from raising
one side of the inboard bearing pedestal by 1.32 mm, offsetting the
centerlines of the motor and rotor shafts. Ths misalignment was readily
detected as indicated by most of the descriptors shown in Table 2.
Unexpectedly, all descriptors except nonharmonic power showed a decrease
in their magnitudes. Figure 5 shows this effect in detail for the power '
at the second order and is in contrast to Fig. 6 which shows the
increase in the nonharmonic power.

The decrease in overall and harmonic vibration levels is not, however,
an indication that the damage potential has been reduced since the
coupling to the motor destructively failed within 12 hours. The promi-
nent peak in the plot of nonharmonic power, Fig. 6, resulted from data
taken just prior to the destruction of the coupling. The reduction in
vibration levels was not common to all misalignment tests; nonetheless, -
it does serve as a base in point to caution system designers that would
ignore the importance of such effects.

Mechanical loosenass test: This test is accomplished by loosening the
screws that fasten the inboard bearing pedestal to the base plate. 1In
this case, the accelerometers had a greater sensitivity to the abnormal-
ity than did the proximity probes. This rather pronounced effect in

the accelerometer signatures, tabulated in the detection summary given
in Table 3, most likely results from altering the mechanical impedance
at the bearing pedestal (23). All descriptors influenced by the har-
monic content of the signal were strongly affected. A plot of the
extreme values experienced under both normal and loose conditions for
the power at the second order as a function of speed is shown in Fig. 7.



Partial shaft rub test: The shaft rubs which were introduced in our
tests were detected most strongly by the accelerometer signals. The
data given here is from the least severe case, a partial shaft rub,
where  the rub screw (see Fig. 1) is allowed to lightly bounce against
the shaft. This anomaly emphasizes again the importance of choosing
descriptors which measure nonharmonic signal power (11). As seen from
the detection summary in Table 4, the nonharmonic power is the only
parameter which dependably indicates the presence of the rub., Detailed
power spectra for the accelerometer under normal and rub conditions are
shown in Figs. 8 and 9, respectively. The noise floor of the rub
spectrum is raised over a rather broad order interval; this train has
been characteristic of rub anomalies we tested.

Summary and recommendations: The monitoring system automatically
established limiting criteria during an initial learning period of a
few days; and subsequently, while monitotring the test rotor during an
extended period of normal operation, experienced a false alarm rate of
0.5%. At the same time, the monitoring system successfully detected all
fault types that introduced into the test setup. Tests on real world
equipment are needed to provide final verification of the monitoring
techniques. The incremental expense required to implement hardware for
this purpose would be small in an industrial plant where sensors,
electronics, and cabling already exist for vibration monitoring.
Furthermore, the data required to make this monitoring approach effec-
tive would not hinder normal industrial operations.

There are areas that would profit from additional investigation in the
laboratory environment. A comparison of the relative value of alternate
descriptors under given fault conditions would be worthwhile. This
should be pursued in cenjunction with extending the set of fault types
available, e.g., lecaring problems. Othct tests should examine the
effects of using fewer (more coarse) intervals to define the lumped
operational states. Finally, techniques to diagnose the most probable
fault should be developed by drawing upon the extensive data avtomati-
cally logged by the monitoring system.



Appendix:

In Table A-~1 is a list of the desecriptors which we chose to include in
our vibration signatures. Many of these descriptors are commonly rsead
and require no additional explanation. However, I will provide some
discussion for those where confusion may exist.

The waveform from a vibration sensor attached to a rotating mzchine has
a repetitive component. Regardless of magnitude of this component, its
presence can be enhanced by time-averaging the waveform. This process
requires that the raw signal be sampled at some integer multiple of the
frequency of rotation, f,. These sampled values, :I(iAt), are then
averaged using the following formula

NREV

T =L = ; . = -
Xi = XREV n=£ X(iAt + nT) (i =0, 1, 2, ... NPTS-1) (1)

where T is the period of rotation

T = NPIS « At = ?l (2)
o

This time-averaging technique is equivalent to applying a comb filter to
the original signal which passes only the fundamental frequency and its
harmonics. The time averaged waveforms from two sensors at 90° to each
other can be used to obtain average orbital plots which describe the
motion of the shaft centerline at the monitored position. The "NPTS"
values (usually 30) that describe the averaged waveform, ii, are corre-
lated with the averaged waveform obtained initially as a baseline, XBj,
to derive three additional quantities. The shape factor is the maximum
value obtained for the normalized correlation function, H(J), which is

defined by

g oweIs
s 1¥i Xivg * *By
lel @) = w555 = (J=0,1, 2, ... NPTS-1) 3
o T g
|i=1 it

Values for Xj;; beyond Xyprg are obtained by repeating the original
waveform. The poini J = L where H(J) is a maximum also defines the lag
value, LAG, and the size factor, SZF, according to the following expres-

sions,



LAG = J & =300 (4)

szF = i1 (5)

i=1

When analyzing the vibrational ‘signals from rotating machinery, order
domain analysis (instead of the more familiar frequency domain) simpli-
fies interpretation of results, especially when variable speed operation
exists, The basic relationship that allows conversion between the two
domains is :

I
Q_ ‘fo (6)

where f, is the fundamental rotational frequency.

'Integral orders (Q = 1, 2, 3, etc.) occur at harmonics of the running
speed. 1If the vibrational signal is analyzed for NREV revolutions, the
‘minimum order resolution achievable is

1
M = e ¢

The power at any order, Q;, will be denoted by G(Qi) where Qi = iAqQ,
i=1, NOC.

1Thus the total power in the vibrational signal up to some desired order,
QD’ is obtained by summing '

k
TPOW = 6(q,) - (8)
i=1
where
Q
X =2 (9



The harmonic power in the signal can be obtained by summing the power
spectrum estimates at integral orders

N
HPOW = . G(m) . (10)
m=1

The nonharmonic power is the difference of these two quantities
NHPOW = TPOW ~ HPOW ) (11)

When combining power estimates over an order interval, another param-
eter of interest is the power-weighted average order. This parameter
provides an indication of the order at which the power in the interval
is concentrated. This is given by

- ]1/2
Q 6(Q,) !
ATO = i ) (12)
T G(Q,)
=1 4
Similarly tie average harmonic order is given by
{iN ) —=1/2
T omt G(m)
ano = 1221 (13)
P, G(m)
L =1
and the average nonharmonic order is given by
"k N ) y 1/2
| Qiqq)- " mt G(m)
1 m=1 (14)

ANHO =

| % CaY ‘
ey - > am
W |



All of the parameters defined above can be calculated from the time
domain signal directly without the need for order domain transforma-

tions. The total power can be obt.ained by iategrating the squared time
signal,

~T
TPOW =—;- /[ K2 (t) dt

(15)
/0
L WAT , K
TPOW =~ ——=== =, x, = ] G(Q,) (16)
NDAT ;) i .y i
The total harmonic power can be obtained by integrating the time
averaged waveform
, WIS , N
HPOW = NPTS .~ xi = - G(m) (17)

i=1 =1

The sums of the squared orders weighted by their power in Egs. (12)-(14)

are equal to integrating the square of the derivative of the time signal
and the time averaged signals, respectively,

S 2 L (oegiyq? .
ndf e =1 [x@1* a (8)
NBAT /x. - X \2
1 =% [Ad i~1 .
Mo v ST (AL) (19)
NoAT ;9\ At ) . .
NPTS /X. = Xx.q}
L 2 ~ 1_ N ™ 1 1+1 . .
T o’ e ~ i e (———-— ot () (20)
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Table 1. Detection summary (1000 signatures tested) for imbalance test
over the speed range of 60 to 85 rps.

Displacement Signature Acceleration Signature
X Sensor Y Sensor X Sensor Y Sensor
Signature Descriptor No. Out (Dev.%) No. Out (Dev.a) No. Out (Dev.a) No. Cut (Dev.%)

Lag values 997 802 994 0]
Shape factor 0 8 0 0
Size factor 416 (-12.2) 1 (~18.9) 0 (0.0) 0 (0.0)
Peak values _ 416 (~10.4) 1 (-26.3) 0 (0.0) 0 (0.0)
Total power ' 81 (~10.6) 1 (~18.6) 0 (0.0) 0 (0.0)
Harmonic power 81 (-10.6) 1 (~18.6) 0 (0.0) 0 (G.0)
Nonharmonic power 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Average order 350 (8.7) 18 (12.5) 95 (8.0) 0 (0.0)
Average harmonic order 38 (8.9) 12 (11.8) 1 (7.5) 0 (0.0)
Average nonharmonic order 0 (0.0 0 (0.0) 0 (0.0) 0 (0.0)
PSD order 1 71 (~10.9) 1 (-18.6) 0 (0.0) 0 {0.0)
PSD order 2 0 (0.0) 1 (-8.,5) 0 (0.0) 0 (0.0)
PSD order 3 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Phase order 1 1000 416 1000 0
Phase order 2 726 914 445 0
Phase order 3 11 10 409 0

No. of suspect signatures = 1000 No. of suspect signatures = 1000

%Deviations from baseline data in approximate standard deviation units.




Table 2. Detection summary (500 signatures tested) for misalignment test
over the speed range of 55 to 100 rps.

Displacement Signature Acceleration Signature
X Sensor Y Sensor X Sensor Y Sensor
Signature Descriptor No. Out (Dev.?) No. Out (Dev.%) No. Out (Dev.?) No. Out (Dev.%)
Lag values 426 336 487 0
Shape factor 0 13 0 0
Size factor 463 (~18.1) 51 (-18.4) 2 (~8.8) 0 (0.0)
Peak values 310 (-13.7) 47 (-11.,0) 0 (0.0) 0 (0,0)
Total power : 313 (~13.1) 47 (-16.4) 0 (0.0) 0 (0.0)
Harmonic power 315 (-13.7) 47 (-18.7) 0 (0.0 0 (0.0)
Nonharmonic power 459 (333.9) 461 (514.3) 38 (10.0) 0 (0.0)
Average order 23 (3.5) 6 (-10.7) 179 (10.4) 0 (0.0)
Average harmonic order 11 (9.6) 7 (18.7) 101 (14.4) 0 (0.0)
Average nonharmonic order -0 (0.0) 0 (0.0) 408 (-14.2) 14 (-8.3) -
PSD order 1 . 315 (-13.7) 47 (-18.7) 5 (20.5) 0 (0.0)
PSD order 2 101 (-9.1) 47 (-8.3) 0 (0.0) 0 (0.0)
PSD order 3 : 10 (27.0) 11 (18.0) 14 (35.0) 0 (0.0)
Phase order 1 . 493 327 496 3
Phase order 2 1 , 189 22 0
Phase order 3 28 305 336 1
No. of suspect signatures = 500 No. of suspect signatures = 500

%Deviations from baseline data in approximate standard deviation units.




Table 3, Detection summary (1000 signatures tested) for merhanical looseness test
over the speed range of 75 to 95 rps.

Displacement Signature Acceleration Signature
X Sensor Y Sensor X Sensor a Y Sensor
Signature Descriptor No. Out (Dev.%) No. Out (Dev.?) No. Out (Dev.?) No. Out (Dev.?)
Lag values 0 5 194 0
Shape factor 0 0 0 0
Size factor 7 (-8.6) 0 (0.0) 0 (0.0) 26 (9.9
Peak values 8 (-9.0) 0 (0.0) 151 (9.8) 309 (17.1)
Total power 7 (-8.4) 0 (0.0) 137 92.7) 210 (17.3)
Harmonic power 7 (-8.5) 0 (0.0) 114 (10.1) 313 (17.0)
Nonharmonic power 47 (24.9) 6 (9.9) 121 (15.8) 96 (16.1)
Average order 0 (0.0) 0 (0.0) 13 (9.1) 0 (0.0)
Average harmonic order 0 (0.0) 0 (0.0) 7 (9.1) 0 (0.0)
Average nonharmonic order - 0 (0.0) 0 (0.0} 341 (~11.3) 15 (7.9
PSD order 1 7 (~8.5) 0 (0.0) 0 (0.0 112 (13.2)
PSD order 2 0 (0.0) 0 (0.0) 957 {154.0) 216 (21.5)
PSD order 3 0 (0.0) 0 (0.0) : gg;,(126.8) 131 (16.3)
Phase order 1 0 29 "~ 353 0
Phase order 2 0 32 419 0
Phase order 3 0 0 266 0
- No. of suspect signatures = 87 No, of suspect signatures = 1000

%Deviations from baseline data in approximate standard deviation units,



Table 4. Detection summary (20 signatures tested) for partial shaft rub
test over the speed range of 60 to 65 rps.

Displacement Signature Acceleration Signature
X Sensor Y Sensor X Sensor a Y Sensor
Signature Descriptor No. Out (Dev.9) No. Out (Dev.?) No. Out (Dev. ) No. Out (Dev.a)
Lag values 0 0 0 0
Shape factor 0 0 0 0
Size factor 0 (0.0) 0 (0.0 0 (0.0) 0 (0.0)
Peak values 0 (0.0) 0 (0.0) 0 (0.0) 20 (27.1)
Total power 0 (0.0) 0 (0.0) 0 (0.0) 15 (17.9)
Harmonic power 0 (0.0) 0 (0.0) 0 (O:O) 0 (0.0)
Nonharmonic power 4 (26.4) 17 (85.7) 19 (19.4) 20 (30.8)
Average order 0 (0.0) 0 (0.0) 0 (6.0 0 (0.0) L
Average harmonic order 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Average nonharmonic order 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
PSD order 2 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
PSD order 3 0 (0.0) 0 (0.0) 0 (0.0 0 (0.0)
Phase order 1 0 0 0 4]
Phase order 2 0 0 0 0
Phase order 3 0 1 0 0
No. of suspect signatufes = 17 No. of suspect signatures = 20

aDeviations from baseline data in approximate standard deviation units,




Table A-l. Descriptors in vibration signature
1. Time-averaged waveform ("NPTS" values)
2. Lag value of time-average waveform

3. Shape factor for time-average waveform
4, Size factor ,for time-average waveform
5. Peak signal value

6. Total signal power

7. Harmonic power in signal

8. Nonharmonic power in signal

9. Average order of signal

"0. Average harmonic order of signal

11. Average nonharmonic order of signal
12. Power at first order of signal

13. Power at second order of signal

l4. Power at third order of signal
15. Phase of first order of signél

16. Phase of second order of signal

17.

Phase of third order of signal
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