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I. INTRODUCTION

Particle-confinement criteria for a fusion system is fundamentally

important because it is the basis for many essential calculations, e.g.,

evaluation of particle-confinement time, particle distribution functions,

possible loss-cone-like instability, etc. In previous studies, Wang and

Miley obtained the confinement criteria for a spherical-Hill's-vortex

magnetic configuration; Lovelace et. al_. obtained similar results when

considering ion-ring equilibria where they considered ions with canonical

angular momentum PQ < 0 (defining the z-component of the external magnetic

field B-v , > 0). In this report, the general conditions for particle

confinement are derived for an axisymmetric system and specialized to a

general class of vortex-type field-reversed magnetic configurations. The

criteria for closed-field and open-field confinements are obtained, including

both the lower and upper bounds of PQ/q where q is the charge of the particle.

The constraint on PQ/q represents a necessary condition for particle confine-

ment. In certain limits, the commonly used criterion for Hamiltonian,

H < - w0Pg, where ooQ s qB0/mc, is deduced from a more general form as a
p

special case. In addition, a new criterion, - B (I /2c < Pg/q < 0, where

Rw = wall radius, and BQ = vacuum field, is found necessary to be imposed,

which reduces the confined region in (E,Pe) space. These results can be

applied to calculations for Field-Reversed Mirrors and Field-Reversed Theta

Pinches.

II. DERIVATION OF CONFINEMENT CRITERIA

The Hamiltonian for a particle with mass m and charge q in an axisym-

metric magnetic field B = V x A, A = A6(r,z)9, and electric field E = -VV,



V = V(r,z), is given by

H =
pj

(1)

where Pz, P , PQ are the canonical momenta

(2)

and

(3)

As was noted earlier, since PQ is a constant of motion, Eq. (1) can be

viewed as

H =

effective kinetic
energy in (r,z)
motion, T

\

/ \

effective potential

energy in (r,z)

motion, U
\

where

Tor,2) ̂ *YY\ 2 m

(4)

(5)

'. (6)

The consideration of particle confinement is, therefore, equivalent to con-

sidering the (r.z) motion of a particle with total energy H moving in a

potential U(r,z).



The equipotential contours in (r,z) plane (or equipotential surfaces in

(r, 6, z) configuration space) are determined by

(7)

A different value of the constant gives a different contour. Therefore, for

a particle with total energy H and canonical angular momentur PQ to be con-

fined in certain spatial region R, the necessary and sufficient condition is

that the equipotential contour U(r,z) = H must locate within region R. In

other words, if I) -t is the maximum permissible potential barrier, i.e.,

every point of the contour U(r,z) = U > is located either inside R or on

the boundary of R, then the necessary and sufficient condition is H < U t̂.

Say, the system we are considering is bounded by 0 < r < R1( and
w

L-j < z < l_2. The conditions for absolute confinement, i.e., for particles

to be confined in the system, therefore, are that (i) there must be points

(r., z.)» i = 1» 2, 3, 4, on the equipotential contour U(r,z) = constant such
that

dz
dr

o ̂  r <

(8)

see Fig. 1, and (ii) if we define

U c r r t =
then

(9)

00)



FSL-8I-I3I

AXIAL POSITION, Z

Figure 1. Points (r., z.), i = 15 2, 3, 4, on the equipotential contour
U(r,z) = constant represent the necessary condition, Eq. (8).



By Eq. (7), on the equipotential contour we have

'- ft!

where subindices z and r stand for the corresponding partial derivatives.

The Eqs. (8) - (11) are very general. To get more explicit form for

confinement criteria, we need to specify the magnetic and electric fields.

In case of no electric field, V = 0. Furthermore, if we consider a class of

vortex-type field-reversed magnetic configurations given by

where r, = z/k, k = Z /R = elongation factor, R and Z are the maximum r-

and z- coordinates of the separatrix, 0 < _ R , r < R , - L < Z , Z < L . The

configuration described by Eq. (12) is shown in Fig. 2.
drFor particles confined in open-field region, the condition -p = 0

implies

T ? " ° , 03)

which can always be satisfied by certain (r,c) in the open-field region

where r2 + ? > R2, 0 <_ r ± Rw> 0 £ c <_ c m a x = L/k. No constraint is obtained.

However, the condition ^ = 0 implies

f— »ll= o
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Figure 2. The magnetic configuration described by Eq. (12),



Since Eq. (14) must be satisfied by certain (r,c) in the open-field region,

it thus requires

* -r c ° (i5)

This is a necessary condition to be satisfied by confined particles.

In order to apply condition (ii), i. e., to calculate u" .., we need to

know, depending on R and L, whether the radial bound or axial bound is
w

more stringent. If the radial bound is more stringent, i. e., the maximum

permissible equipotential surface touches the radial wall of the system first

before it touches the axial wall, then

(16)

7z = °' Y =

Using Eq. (13), Eq. (16) becomes

On the other hand, if the axial bound is more stringent, then

= m m { U(r. 2=/,)}
(18)

Using Eq. (14) Eq. (17) becomes

7



(19)

where c = LRP/z,.» and r is the solution ofmax s s c

f +
As mentioned before, the Eq. (15) is a necessary condition to be satis-

fied by PQ/q, of the confined particles. The actual lower and upper bounds

of P0/q» depending on whether the radial or axial confinement is more stringent,

are derived as follows. If the radial confinement is more stringent, i.e.,

Ucrit =ll(fV 0)' then

If the axial confinement is more stringent, i.e., U -t = U(r , C m a x ) , then

Eq. (14) requires

or approximately,

22- ( «$ ~r ) < f * O (22)

It can be shown that a necessary condition for the axial confinement

to be more stringent, i.e., for U(rc, ?max) < U(Rw, 0) is

(23)



drFor particles confined in the closed-field region, ^r a 0 implies

r? = 0. Again, this can always be satisfied by certain (r,z) in the closed-

field region. The condition 37 = 0 implies

(24)

which must be satisfied by certain (r , c) in the closed-field region where

r 2 + c2 < R2, 0 <_ r <. R , 0 < ? £ R-. This requires

96.*s" up

$ •

(25)

And, the maximum permissible potential is given by

wCrrt

= mm
S ?e

(26)

As a limiting case, if r > > r , then Eq. (19) reduces to



£BoPg (6
"err* ~ 4^c (X* -IP* ) t ? I *«*

T

If, furthermore, ?max > > ̂ , i.e., the system length is much longer than

the length of the closed-field region, then Eq. l?J) is simplified to

(2g)

Note that rc < Rw and usually R$ . i^, therefore, W > > R& also implies
cmax > > rc' Et)uatio" (28) is the previous result1 and used very commonly.

In this limiting case, Eq. (14) reduces to

T
which requires

Note that the lower bound of P0/q in Eq. (29) represents an additional con-

straint on the confinement criteria, which is not included in previous results.1'2

The above criteria derived from Eqs. (8) - (11) are the conditions for

a particle having total energy H and canonical angular momentum P to be
8confined. Since

J ' 2m

only part of (H, PQ) space is energetically assessible by the particles.

10



Therefore, one mere constraint needed to be imposed, when we deal with

variables E and Pn, is
t)

(30)

III. SUMMARY AMD CONCLUSIONS

(i) The general form of confinement criteria given by Eqs. (8)-(ll)

can be applied to the calculations for field-reversed mirrors and field-

reversed theta pinches. For a general class of vortex-type field-reversed

magnetic configurations, Eq. (12), the confinement criteria are summarized

as follows. For a particle to be confined within the closed-field region,

the total energy H and canonical angular momentum ?Q need to satisfy

H * — (P-lu/x* (30)

H < ~ ^ - (3D

For a particles to be confined in the open-field region, i. e., absolute

confinement, the criteria are

aC

|f ) < -| < o

11



H 2 ̂ ?5<fr-£*>* (30
02)

H '< I

where U(Rw, 0) and U(rc, e m a x) are given by Eqs. (17) and (19), respectively.

Note that a necessary condition for U(r , £_,„„) < U(R , 0) is t „ . o -m D

C ilia A W inaA ^ £ • JO f% •

(ii) As a special case of the general expressions, the criteria for

absolute confinement in case of L > > R are given by
w

' < -I«L <r o (29)
8-

—!— n^ - •? ̂  ) ̂ (30)

< - ̂ r-- Pe
 (28)

(iii) Typical results for the confined region in (H, PQ) space are

shown in Figs. 3 to 7. Figure 3 is for closed-field confinement. Figures

4 to 7 compare the exact expression with the approximate limiting case for

the open-field confinement. Figures 4 and 5 show the cases where the axial

open-field confinement is more stringent, while Figs. 6 and 7 are for the

cases where the radial open-field confinement being more stringent.

(iv) In practical use of these confinement criteria, as shown by Figs. 3

to 7 and actually can also be understood from the derivation, Eq. (25) and the

lower bound in Eq. (15) do not affect the confined region in (H, P6) space,

because they will be satisfied automatically ones the other criteria are

satisfied. But the lower bound of Pe/q in Eqs. (22) and (29) does represent

a new criterion necessary to be imposed, which reduces the confined region

in (H, Pe) space. In other words, in case of axial open-field confinements

12
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Figure 3. A typical confined region in (H,Pe) space for the closed-

f i e l d confinement. System parameters, in Gaussian un i t s ,

are BQ = 8500, q = 4.8 x 10" 1 0 , m = 3.34 x 1 0 ' 2 4 ,

Rw ' Rs = 5' L = 50> zs = 40' r = 4* z = ° '
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Figure 4. Typical confined regions in (H, Pe) space, at a position

(r, z) in the closed-field region, for the exact axial

open-field confinement (dashed lines) and the approximate

limiting case (solid lines). All parameters are the same

as in Fig. 3.
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Figure 5. Typical confined regions in (H,Pe) space, at a position

(r, 2) in the open-field region, for the exact axial open-

field confinement (dashed lines) and the approximate

limiting case (solid lines). All parameters are the

same as in Fig. 4 except r = 7.
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Figure 6.

C A N O N I C A L A N G U L A R M C M E N ~ U M . D

Typical confined regions in (H, PQ) space, at a position
(r,z) in the closed-field region, for the exact radial
open-field confinement (dashed lines) and the approxi-
mate limitinq case (solid lines). All parameters are
the same as in Fig. 4.
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Figure 7. Typical confined regions in (H, PQ) space, at a position
in open-field region, for the exact radial open-field
confinement (dashed lines) and the approximate l imit ing
case (solid l ines). All parameters are the same as in
Fig. 5.
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the lower bound of PQ/q represents a new constraint which has not been im-
1 4posed in previous studies. '

(v) Since only part of (H, PQ) space is energetically allowed, the

energetic constraint, Eq. (30) is another necessary condition needed to be

satisfied. This constraint has not been stated explicitly in previous

study.1
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